Dynamic Kinetic Resolution in the Asymmetric Synthesis of Atropisomeric Biaryl [4] and [5]Helicenequinones

Alfonso Latorre, Antonio Urbano,* M. Carmen Carreño*
antonio.urbano@uam.es, carmen.carrenno@uam.es

Synthesis of dienes (rac)-1a,b, (rac)-5 and (rac)-7

$\xrightarrow[\substack{84 \% \text { for } 11 \mathrm{a} \\ 76 \% \text { for } 11 \mathrm{~b}}]{\substack{\text { i. } \mathrm{Na}, \mathrm{EtOH} \\ \text { ii. } \mathrm{HCO}_{2} \mathrm{Et}, \mathrm{Et}_{2} \mathrm{O} \\ 0^{\circ} \mathrm{C} \text { to rt }}}$

Synthesis of dienes (rac)-1a,b

$$
\text { a: } \mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{H} ; \mathbf{b}: \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OMe}
$$

$$
\begin{aligned}
& \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Cs}_{2} \mathrm{CO}_{3} \mathrm{~B}(\mathrm{OH})_{2} \\
& \text { toluene, } \mathrm{EtOH}, \mathrm{H}_{2} \mathrm{O}, 95^{\circ} \mathrm{C}
\end{aligned}
$$

Synthesis of diene (rac)-5

Synthesis of diene (rac)-7

Experimental Procedures

Melting points were obtained in open capillary tubes and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} at 300 and 75 MHz , respectively. All reactions were monitored by thin layer chromatography that was performed on precoated sheets of silica gel 60 , and flash column chromatography was done with silica gel 60 (230-400 mesh) of Merck. Eluting solvents are indicated in the text. The apparatus for inert atmosphere experiments was dried by flaming in a stream of dry argon. Ethyl ether, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF and $\mathrm{CH}_{3} \mathrm{CN}$ were dried over $4 \AA$ molecular sieves. All other reagent quality solvents were used without purification. For routine workup, hydrolysis was carried out with water, extractions with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and solvent drying with MgSO_{4}.

8-Bromo-5-methoxy-3,4-dihydronaphthalen-1(2H)-one (10b)

To a vigorously stirred solution of commercially available 5-methoxy-1-tetralone ($3.4 \mathrm{~g}, 18.9$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(105 \mathrm{~mL})$, NBS ($4.1 \mathrm{~g}, 22.6 \mathrm{mmol}$) was added. After 48 h , the solvent was evaporated and the residue purified by flash chromatography (eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give $\mathbf{1 0 b}$ as a yellow solid, in 96% yield: m.p. $52-53{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.07-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{dd}, J=6.7$ and 6.8 $\mathrm{Hz}, 1 \mathrm{H}$), 2.93 (dd, $J=6.2$ and $6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.88 ($\mathrm{s}, 3 \mathrm{H}$), $6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (d, $J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.0,23.6,39.9,55.9,111.3,114.5,131.4,133.4,136.0,156.0,197.2$; MS (EI): $m / z(\%) 76$ (37), 198 (48), 226 (51), $254\left(\mathrm{M}^{+}, 100\right), 256\left(\mathrm{M}^{+}+2,96\right)$; HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Br}\left(\mathrm{M}^{+}\right) 253.9942$ found 253.9932 .

General procedure for the $\boldsymbol{\alpha}$-formylation of 1-tetralones. Method A.

To a solution of the corresponding 1-tetralone $\mathbf{1 0 a , b}(3.2 \mathrm{~g}, 12.6 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(12.6 \mathrm{~mL})$ under argon, an excess of sodium metal (6 or 7 pieces of ca. 0.5 cm), ethyl formate ($1.46 \mathrm{~mL}, 18.9$ $\mathrm{mmol})$ and $\mathrm{EtOH}(0.15 \mathrm{~mL})$ were added at $0^{\circ} \mathrm{C}$. After stirring for 30 min at $0^{\circ} \mathrm{C}$ and overnight at rt , the mixture was treated with water at $0^{\circ} \mathrm{C}$ and stirred 30 min . The organic phase was washed with water, and the combined aqueous extracts treated with HCl until acidity. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with sodium bicarbonate. After workup and flash chromatography, pure α-formyl derivatives $\mathbf{1 1 a}, \mathbf{b}$ were obtained.

8-Bromo-2-(hydroxymethylene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one (11a)

Compound 11a was obtained from 1-tetralone 10a ${ }^{1}$ following method A (eluent hexane/EtOAc 3:1) as a yellow solid, in 84% yield: m.p. $84-86^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.44(\mathrm{dd}, J=6.9$ and $5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.81$ (dd, $J=6.9$ and $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 6.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ (d, 9.2 Hz, 1H); ${ }^{13} \mathrm{C}$ NMR $\delta 23.9,30.0,56.8,110.6,112.1,115.5,127.9,132.0,137.1,155.8,170.0$, 187.1; MS (EI): m / z (\%) 115 (85), 131 (85), 174 (95), 255 (47), $281\left(\mathrm{M}^{+}, 100\right), 283\left(\mathrm{M}^{+}+2,88\right)$; HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{Br}\left(\mathrm{M}^{+}\right)$281.9892, found 281.9897 .

8-Bromo-2-(hydroxymethylene)-5-methoxy-3,4-dihydronaphthalen-1(2H)-one (11b)

Compound 11b was obtained from 1-tetralone 10b following method A (eluent hexane/EtOAc 1:1) as a yellow solid, in 76% yield: m.p. $90-91^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.43(\mathrm{dd}, J=6.5$ and $7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.87 (dd, $J=6.5$ and $7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $3.86(\mathrm{~s}, 3 \mathrm{H}), 6.85(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.5,22.9,55.9,110.1,111.7,114.9,131.2,133.7,134.5,155.5$, 169.8, 186.6; MS (EI): $m / z(\%) 115$ (51), 139 (59), 174 (84), 253 (82), $282\left(\mathrm{M}^{+}, 100\right), 284\left(\mathrm{M}^{+}+2\right.$, 96); HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{Br}\left(\mathrm{M}^{+}\right)$281.9891, found 281.9881 .

[^0]
General procedure for the Robinson Annulation. Method B.

To a stirred mixture of the corresponding α-formyl 1-tetralone 11a,b ($2.18 \mathrm{~g}, 7.73 \mathrm{mmol}$) in anhydrous methanol (31 mL) at $0{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}(2.1 \mathrm{~mL})$ was added dropwise. After complete dissolution, methyl vinyl ketone ($0.76 \mathrm{~mL}, 9.27 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture stirred at room temperature for 20 h . After neutralization with acetic acid (0.92 mL), the solvents were evaporated and the residue redissolved in dioxane (17.5 mL). After addition of a solution of $\mathrm{KOH}(1.4 \mathrm{~g})$ in water (16 mL), the mixture was vigorously stirred for 3.5 h at room temperature. Then, the solution was diluted with water, saturated with NaCl , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After workup and flash chromatography, pure tetrahydrophenanthrenones $\mathbf{1 2 a}, \mathbf{b}$ were obtained.

5-Bromo-6-methoxy-1,2,10,10a-tetrahydrophenanthren-3(9H)-one (12a)

Compound 12a was obtained from α-formyl-1-tetralone 11a following method B (eluent hexane/EtOAc 3:1) as a white solid, in 80% yield: m.p. $89-90{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.69-2.03(\mathrm{~m}, 3 \mathrm{H})$, $2.14(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.70(\mathrm{~m}, 3 \mathrm{H}), 2.80(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 6.51(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 27.8,28.8,30.2,34.8,37.7,56.6,110.6,112.3$, 126.5, 129.1, 135.3, 137.1, 155.1, 157.7, 199.4; MS (EI): m/z (\%) 128 (28), 171 (48), 199 (100), $306\left(\mathrm{M}^{+}, 46\right), 308\left(\mathrm{M}^{+}+2,88\right)$; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{Br}\left(\mathrm{M}^{+}\right) 306.0255$, found 306.0261.

5-Bromo-6-methoxy-1,2,10,10a-tetrahydrophenanthren-3(9H)-one (12b).

Compound 12b was obtained from α-formyl-1-tetralone 11b following method B (eluent hexane/EtOAc 2:1) as a white solid, in 78% yield: m.p. $108-110{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.72-1.99(\mathrm{~m}, 3 \mathrm{H})$, 2.15-2.24 (m, 1H), 2.27-2.37 (m, 1H), 2.43-2.58 (m, 2H), 2.69-2.78 (m, 1H), $3.04(\mathrm{dt}, J=5.5,16.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 6.57(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.2,28.5,29.6,34.8,36.9,55.8,111.2,111.8,128.6,131.6,132.2,136.1,155.2,158.0$, 199.6; MS (EI): m / z (\%) 115 (20), 128 (33), 171 (50), 199 (100), 306 (${ }^{+}, 40$), $307\left(\mathrm{M}^{+}+2,39\right)$; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{Br}\left(\mathrm{M}^{+}\right) 306.0255$, found 306.0245.

General procedure for the Suzuki Coupling. Method C.

To a mixture of bromo derivatives 12a,b ($635 \mathrm{mg}, 2.06 \mathrm{mmol}$), naphtyl boronic acid ($1.23 \mathrm{~g}, 7.20$ $\mathrm{mmol}), \mathrm{CsCO}_{3}(1.55 \mathrm{~g}, 4.73 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(190 \mathrm{mg}, 8 \% \mathrm{~mol})$ under argon, toluene $(10 \mathrm{~mL})$, EtOH $(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$ were added. The reaction mixture was heated to $100{ }^{\circ} \mathrm{C}$ for 12 h , filtered with celite and washed with water. After workup and flash chromatography, pure biaryls 13a,b were obtained.

6-Methoxy-5-(1-naphthyl)-1,2,10,10a-tetrahydrophenanthren-3(9H)-one (13a)

Compound 13a was obtained, as a 70:30 mixture of diastereomers, from bromo derivative 12a following method C (eluent hexane $/ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 6: 1: 2$), as a yellow solid, in 81% yield: ${ }^{1} \mathrm{H}$ NMR $\delta 1.72-2.09(\mathrm{~m}, 8 \mathrm{H}), 2.14-2.35(\mathrm{~m}, 4 \mathrm{H}), 2.56-2.85(\mathrm{~m}, 6 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 5.08(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (dd, J $=1.1$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.47(\mathrm{~m}, 5 \mathrm{H}), 7.51-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.78-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 28.0,29.5,29.6,29.9,30.1,34.9$, $36.1,37.0,37.0,37.4,56.0,56.2,111.7,112.7,124.6,125.2,125.3,125.5,125.6,125.7,126.1$, $126.4,126.7,127.5,127.6,127.7,127.8,127.9,128.0,128.5,128.6,129.9,131.8,133.3,133.4$, 133.7, 133.9, 134.0, 135.6, 136.8, 136.9, 156.4, 156.5, 158.7, 158.8, 199.1, 199.2; MS (EI): m/z (\%) 239 (34), 265 (46), 298 (34), 336 (44), 354 ($\mathrm{M}^{+}, 100$); HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$ 354.1620 , found 354.1614 .

8-Methoxy-5-(1-naphthyl)-1,2,10,10a-tetrahydrophenanthren-3(9H)-one (13b).

Compound 13b was obtained, as a 70:30 mixture of diastereomers, from bromo derivative 12b following method C (eluent hexane/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 6: 1: 2$), as a yellow solid, in 65% yield: ${ }^{1} \mathrm{H}$ NMR $\delta 1.70-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.97(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.23(\mathrm{~m}, 6 \mathrm{H}), 2.28-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.83(\mathrm{~m}, 5 \mathrm{H})$, 3.03-3.18 (m, 2H), $3.96(\mathrm{~s}, 6 \mathrm{H}), 5.31(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=1.1$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.47-7-53(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.59$ (m, 2H), 7.82-7.85 (m, 3H), 7.93 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 20.5,20.8,27.6,28.0(2 \mathrm{C}), 28.1$, $33.6,34.5,34.8,35.2,54.2$, (2C), 108.6, 109.4, 123.7, 123.9, 124.1, 124.2, 124.4 (2C), 124.5, $124.8,125.6,125.8,126.1,126.3,126.4,127.1,127.2,127.3,128.4,129.0,129.6,129.7,129.9$, 130.0, 130.6, 132.1, 132.6, 134.5, 138.1, 138.3, 154.2, 154.5, 157.4, 197.6 (2C); MS (EI): m / z (\%) 239 (28), 252 (31), 298 (26), 336(30), $354\left(\mathrm{M}^{+}, 100\right)$; HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$ 354.1620, found 354.1615 .

General procedure for the enol triflate formation. Method D.

To a solution of the corresponding tetrahydrophenanthrenone (0.42 mmol) and di-tertbutylmethylpyridine ($75 \mathrm{mg}, 0.42 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, triflic anhydride ($74 \mu \mathrm{~L}, 0.42$ mmol) was slowly added, under argon. After stirring for 30 minutes at rt , the solution was cooled to $0{ }^{\circ} \mathrm{C}$ and hexane was added. After 10 minutes, the solution was filtered with celite, the solvent evaporated, and the resulting enol triflates were used in the next step without further purification.

6-Methoxy-5-(1-naphthyl)-1,2,9,10-tetrahydrophenanthren-3-yl

trifluoromethanesulfonate (14a).

Compound $\mathbf{1 4 a}$ was obtained from tetrahydrophenanthrenone $\mathbf{1 3 a}(148 \mathrm{mg})$ following method D as a yellow oil, in 92% yield: ${ }^{1} \mathrm{H}$ NMR $\delta 2.04-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.52(\mathrm{~m}, 5 \mathrm{H}), 2.72(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.63$ (s, 3H), 4.92 (s, 1H), 6.87 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.28$ (m, 2H), 7.37 (t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43-7.51 (m, 3H), 7.85-7.90 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\delta 25.2,28.6,29.1,29.9,55.9,108.9,117.0,118(\mathrm{q}$, $J=322 \mathrm{~Hz}, 1 \mathrm{C}), 124.9,125.0,125.2,125.5,125.7,125.8,125.9,127.2,128.1,128.3,129.6,132.6$, 133.5, 134.6, 135.4, 137.5, 144.4, 156.6; MS (EI): m/z (\%) 303 (26), 320 (17), 335 (100), 352 (19), $486\left(\mathrm{M}^{+}, 48\right)$; HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~F}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right) 486.1112$, found 486.1103 . (14b)

Compound $\mathbf{1 4 b}$ was obtained from tetrahydrophenanthrenone $\mathbf{1 3 b}(148 \mathrm{mg})$ following method D as a yellow oil, in 80\% yield: ${ }^{1} \mathrm{H}$ NMR $\delta 2.03-2.07(\mathrm{~m}, 4 \mathrm{H}), 2.45-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.93(\mathrm{~m}, 2 \mathrm{H})$, $3.92(\mathrm{~s}, 3 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 2 \mathrm{H})$, 7.41-7.49 (m, 2H), $7.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.89(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.2,25.2,27.7,28.9$, 55.7, 109.2, 117.0, 125.3, 125.4, 125.7, 125.8, 125.9, 126.0, 127.5, 127.9, 128.4, 128.8, 130.7, $132.2,133.8,134.4,136.9,139.8,144.8,155.5 ; \mathrm{MS}(\mathrm{FAB}): m / z(\%) 335(100), 486\left(\mathrm{M}^{+}, 60\right)$; HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~F}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right) 486.1113$, found 486.1104 .

General procedure for the Stille coupling: synthesis of dienes. Method E.

To a mixture of the corresponding enol triflate (0.267 mmol), $\mathrm{LiCl}(56 \mathrm{mg}, 1.3 \mathrm{mmol})$ and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(15 \mathrm{mg}, 5 \% \mathrm{~mol})$ in dry THF $(2.6 \mathrm{~mL})$, under argon, vinyltributylstannane $(84 \mathrm{mg}, 0.267$ mmol) was added dropwise. The reaction mixture was refluxed for the time indicated in each case, filtered with celite and washed with water. After workup and flash chromatography, pure 3-vinyl tetrahydrophenanthrenes were obtained.

6-Methoxy-5-(1-naphthyl)-3-vinyl-1,2,9,10-tetrahydrophenanthrene (1a).

Compound 1a was obtained from enol triflate $\mathbf{1 4 a}(129 \mathrm{mg})$ following method $\mathrm{E}(90 \mathrm{~min}$, eluent hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 3$) as a colourless oil, in 63% yield ${ }^{1} \mathrm{H}$ NMR $\delta 1.87-1.93(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.25(\mathrm{~m}$, $3 \mathrm{H}), 2.32-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.73(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 4.58(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=17.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{dd}, J=10.6$ and $17.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~m}, 1 \mathrm{H})$, $7.23(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 20.6,29.1,29.2,29.3,55.9,108.3,109.3,125.0,125.1,125.2,125.5,126.4$, $127.0,127.5,128.0,128.4,128.8,130.2,131.1,133.0,133.3,135.9,136.3,138.2,139.3,156.5 ; \mathrm{MS}$ (EI): $m / z(\%) 165$ (6), 239 (6), 289 (12), $364\left(\mathrm{M}^{+}, 100\right)$; HRMS (EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{1}\left(\mathrm{M}^{+}\right)$ 364.1827 , found 364.1815 .

8-Methoxy-5-(1-naphthyl)-3-vinyl-1,2,9,10-tetrahydrophenanthrene (1b).

Compound 1b was obtained from enol triflate $\mathbf{1 4 b}(129 \mathrm{mg})$ following method $\mathrm{E}(90 \mathrm{~min}$, eluent hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 15: 1$ in $\mathrm{Al}_{2} \mathrm{O}_{3}$) as a colourless oil, in 42% yield: ${ }^{1} \mathrm{H}$ NMR $\delta 1.83$ (ddd, $J=6.3,9.7$ and $16.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.99 (ddd, $J=7.5,8.4$ and $16.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.23-2.36 (m, 4H), 2.76 (ddd, $J=7.7$, 8.0 and $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{ddd}, J=7.6,7.9$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.59(\mathrm{~d}, J=10.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.75(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=10.7$ and $17.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.82(\mathrm{~d}, ~ J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 20.7,21.3,28.2,29.1,55.7,108.6,109.5,125.1,125.4$, $125.5,125.6,126.3,127.2,127.5,127.6,128.0,127.7,128.9,130.4,131.4,132.4,133.5,135.6$, 138.2, 138.6, 140.7, 155.3; MS (EI): m / z (\%) 144 (11), 165 (11), 289 (22), 335 (22), 364 (${ }^{+}, 100$); HRMS (EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{1}\left(\mathrm{M}^{+}\right) 364.1827$, found 364.1840.

General procedure for the synthesis of 14-aryl-[5]helicenequinones. Method F.

To a mixture of the corresponding 3-vinyltetrahydrophenanthrene (0.11 mmol) and ($\mathrm{S} S$)-5-methyl-2-(p-tolylsulfinyl)-1,4-benzoquinone (2) $)^{2}(54 \mathrm{mg}, 0.22 \mathrm{mmol})$ at $-27^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5 \mathrm{~mL})$ was rapidly added, under argon. The reaction mixture was stirred at the temperature and for the time indicated in each case. After elimination of the solvent and flash chromatography, the corresponding pure 14-aryl-[5]helicenequinones were obtained.
(P, aS)-13-Methoxy-3-methyl-14-(1-naphtyl)-7,8,9,10-tetrahydro-[5]-helicenequinone (3a) and ($P, a R$)-13-methoxy-3-methyl-14-(1-naphtyl)-7,8,9,10-tetrahydro-[5]-helicenequinone (4a).

[^1]Compounds $(P, a S)-\mathbf{3 a}$ and $(P, a R)-\mathbf{4 a}$ were obtained, as a 50:50 mixture, from 3vinyltetrahydrophenanthrene 1a (40 mg) following method $\mathrm{F}\left(12 \mathrm{~h}\right.$ at $-27^{\circ} \mathrm{C}$ and 3 h at room temperature, eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) as a red solid, in 68% overall yield. Analytic amounts of both diastereoisomers could be obtained after preparative HPLC (Column C18, $250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$; $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN} 20 / 80 ; \mathrm{R}_{\mathrm{t}}(P, \mathrm{aS})$-3a: $\left.14.93 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}(P, \mathrm{a} R)-4 \mathbf{4}: 16.96 \mathrm{~min}\right)$:
Diastereoisomer (P,aS)-3a: m.p. $220-221^{\circ} \mathrm{C} ;\left\{[\alpha]_{\mathrm{D}}{ }^{20}=+936\left(\mathrm{c}=0.012\right.\right.$ in CHCl_{3}), 99% ee (Chiral HPLC: Daicel Chiralpak OD, hexane/2-propanol 98:2; $1.0 \mathrm{~mL} \mathrm{~min}^{-1}, 254 \mathrm{~nm}, R_{\mathrm{t}}=33.0 \mathrm{~min}, T=25$ $\left.{ }^{\circ} \mathrm{C}\right\} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.77(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.27-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.50-2.63(\mathrm{~m}, 3 \mathrm{H}), 2.87(\mathrm{dd}, J=4.6$ and $13.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.02(\mathrm{ddd}, J=5.5,14.2$ and $14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 6.06(\mathrm{q}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.74(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.87(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.6,1 \mathrm{H}), 7.18-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 15.7,29.4,29.8,29.9$, $30.2,55.5,107.3,122.0,124.0,125.1,125.4,125.5 .126 .5,126.7,127.2,127.4,128.2,128.5,129.8$, 130.7, 130.8, 131.2, 132.5, 133.0, 135.9, 136.0, 136.6, 137.4, 142.9, 144.8, 148.8, 155.8, 184.5, 185.3; MS (EI): $m / z(\%) 241$ (5), 451 (6), $482\left(\mathrm{M}^{+}, 100\right)$; HRMS (EI) calcd for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$ 482.1881, found 482.1881.

Diastereoisomer $(P, \mathrm{a} R)-4 \mathrm{a}:$ m.p. $203-205^{\circ} \mathrm{C} ;\left\{[\alpha]_{\mathrm{D}}{ }^{20}=+977\left(\mathrm{c}=0.009\right.\right.$ in $\left.\mathrm{CHCl}_{3}\right), 98 \%$ ee (Chiral HPLC: Daicel Chiralpak OD, hexane/2-propanol 95:5; $0.8 \mathrm{~mL} \mathrm{~min}^{-1}, 254 \mathrm{~nm}, R_{\mathrm{t}}=20.8 \mathrm{~min}, T=25$ $\left.\left.{ }^{\circ} \mathrm{C}\right)\right\} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.11(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.14-2.26(\mathrm{~m}, 4 \mathrm{H}), 2.35(\mathrm{dd}, J=5.6$ and $17.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.60(\mathrm{ddd}, J=5.0,16.3$ and $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{ddd}, J=1.7,4.9$ and $13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{ddd}, J=$ $5.5,13.9$ and $14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 6.53(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=7.1$ and 8.1 Hz$), 7.08-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.28(\mathrm{~m}$, $3 \mathrm{H}), 7.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 15.9,28.4,29.1,29.6,30.4,55.9$, $108.5,122.2,123.3,123.5,125.2,125.8,125.9,126.7,127.1,128.0,128.3,128.6,129.5,130.1$, 130.2, 131.0, 132.2, 133.3, 133.7, 135.4 (2C), 136.4, 144.6, 144.8, 148.3, 155.9, 184.4, 186.0; MS (EI): m / z (\%) 175 (5), 241 (5), 451 (6), $482\left(\mathrm{M}^{+}, 100\right)$; HRMS (EI) calcd for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$ 482.1881, found 482.1881.
($P, a R$)-11-methoxy-3-methyl-14-(1-naphtyl)-7,8,9,10-tetrahydro-[5]-helicenequinone (3b) and ($\boldsymbol{P}, \mathrm{aS}$)-11-Methoxy-3-methyl-14-(1-naphthyl)-7,8,9,10-tetrahydro-[5]-helicenequinone (4b)

Compounds $(P, a \mathrm{R}) \mathbf{- 3 b}$ and $(P, a \mathrm{~S})-\mathbf{4 b}$ were obtained, as an unseparable 20:80 mixture, from 3vinyltetrahydrophenanthrene $\mathbf{1 b}(40 \mathrm{mg})$ following method $\mathrm{F}\left(12 \mathrm{~h}\right.$ at $-27^{\circ} \mathrm{C}$ and 3 h at $-10^{\circ} \mathrm{C}$, eluent hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 3: 1$) as a red solid, in 74% overall yield: m.p. $220-221^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+1434$ (c $=0.009$ in CHCl_{3}); MS (EI): $m / z(\%) 391(12), 482\left(\mathrm{M}^{+}, 100\right) ;$ HRMS (EI) calcd for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$ 482.1881, found 482.1875.

The following data correspond to the major diastereoisomer $(P, a \mathrm{~S})-\mathbf{4 b}$ and were obtained from the mixture: 93\% ee (Chiral HPLC: Daicel Chiralpak IB, hexane/2-propanol 95:5; $0.6 \mathrm{~mL} \mathrm{~min}{ }^{-1}, 254$ $\left.\mathrm{nm}, R_{\mathrm{t}}=19.1 \mathrm{~min}, T=25^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 2.10(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.17-2.25(\mathrm{~m}, 3 \mathrm{H}), 2.37-2.51(\mathrm{~m}$, $3 \mathrm{H}), 2.55-2.62(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{dd}, J=4.2$ and $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 6.47(\mathrm{q}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-$ 7.29 (m, 4H), $7.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 15.9,21.0,28.5,28.9,29.5,55.5,108.7,123.4$, $124.0,125.3,125.5,125.8$ (2C), 126.5, 127.0, 127.4, 127.8, 128.2, 128.7, 129.9, 130.4, 130.8, 131.9, 132.8, 133.7, 135.2, 136.3, 142.0, 144.8, 144.9, 147.5, 155.4, 184.2, 186.0.

5-Bromo-1,2,9,10-tetrahydro-8-methoxyphenanthren-3-yl-trifluoromethanesulfonate (15).

Compound $\mathbf{1 5}$ was obtained from tetrahydrophenanthrenone $\mathbf{1 2 b}(128 \mathrm{mg})$ following method D as a pale yellow oil, in 90% yield: ${ }^{1} \mathrm{H}$ NMR $\delta 2.16$ (dd, $J=6.1$ and $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.62 (br s, 4 H), 2.68 (dd, $J=6.1$ and $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.80(\mathrm{~s}, 3 \mathrm{H}), 6.65(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 1 H); ${ }^{13} \mathrm{C}$ NMR $\delta 21.6,25.5,27.3,30.3,55.7,110.2,111.0,117.6,118.6$ ($\mathrm{q}, J=320 \mathrm{~Hz}$), 125.1, 128.2, 132.3, 134.4, 139.4, 144.2, 155.2; MS (EI): m/z (\%) 196 (100), 224 (78), 436 (${ }^{+}-2,89$), $438\left[\left(\mathrm{M}^{+}-2\right)+2,89\right)$. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{BrF}_{3} \mathrm{~S}\left(\mathrm{M}^{+}-2\right) 435.9592$, found 435.9574 .

5-Bromo-8-methoxy-3-vinyl-1,2,9,10-tetrahydrophenanthrene (16).

Compound 16 was obtained from enol triflate $15(116 \mathrm{mg})$ following method E (50 min , eluent hexane in neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ deactivated with 10% of water) as a colourless oil, in 56% yield: ${ }^{1} \mathrm{H}$ NMR δ
$2.20(\mathrm{dd}, J=7.4$ and $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-2.41(\mathrm{~m}, 4 \mathrm{H}), 2.67(\mathrm{dd}, J=7.4$ and $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.81$, (s, $3 \mathrm{H}), 5.04(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=10.8$ and $17.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-$ $6.64(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.0,21.7,27.9,29.5,55.8,110.5,110.6$ (2C), 127.5, 128.2, 128.5, 131.1, 132.1, 135.6, 138.8, 140.8, 155.1. MS (EI): m / z (\%) 165 (87), 194 (95), $316\left(\mathrm{M}^{+}, 100\right), 318\left(\mathrm{M}^{+}+2,85\right)$.

5-(2-Biphenyl)-8-methoxy-3-vinyl-1,2,9,10-tetrahydrophenanthrene (5)

A mixture of bromo tetrahydrophenanthrene 16 ($46 \mathrm{mg}, 0.14 \mathrm{mmol}$), 2-biphenyl boronic acid (70 $\mathrm{mg}, 0.33 \mathrm{mmol}), \mathrm{Ba}(\mathrm{OH})_{2} 8 \mathrm{H}_{2} \mathrm{O}(102 \mathrm{mg}, 0.32 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(13 \mathrm{mg}, 8 \% \mathrm{~mol})$ in DME $(3.5$ mL), under argon, was heated at $90^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was filtered with celite and washed with water. After workup and flash chromatography (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 10:1 in $\mathrm{Al}_{2} \mathrm{O}_{3}$ deactivated with 10% of water), pure compound 5 was obtained as a colourless oil, in 62% yield: ${ }^{1} \mathrm{H}$ NMR $\delta 1.55-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{ddd}, J=4.7,5.0$ and $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-2.27(\mathrm{~m}, 5 \mathrm{H}), 2.82$ (ddd, J $=4.2,4.3$ and $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.80(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (s, 1H), $5.81(\mathrm{dd}, J=10.6$ and $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.88(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.09$ $(\mathrm{m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.45(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 20.8,20.9,27.9,28.8,55.6,108.6,109.6,125.5,125.9,127.1,127.4,127.5,127.8$ (2C), 129.7 (2C), $130.1,130.3,130.6,131.1,135.0,138.3,139.1,141.3,141.4$ (2C), 155.0 ; MS (EI): m / z (\%) 165 (13), 239 (7), 315 (6), 359 (7), 390 ($\mathrm{M}^{+}, 100$); HRMS (EI) calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{O}$ (M^{+}) 390.1983 , found 390.1985 .

($\boldsymbol{P}, \mathrm{aS}$)-14-(2-Biphenyl)-11-methoxy-3-methyl-7,8,9,10-tetrahydro-[5]-helicenequinone (6)

Compound $(P, a S)-6$ was obtained from 3-vinyltetrahydrophenanthrene $5(43 \mathrm{mg})$ following method F (12 h at $-27^{\circ} \mathrm{C}, 5 \mathrm{~h}$ at $-10{ }^{\circ} \mathrm{C}$; eluent hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 6: 2: 1$) as a red solid, in 75% yield: m.p. 229-230 ${ }^{\circ} \mathrm{C}$; $\left\{[\alpha]_{\mathrm{D}}{ }^{20}=+1970\left(\mathrm{c}=0.01\right.\right.$ in CHCl_{3}), 95% ee (Chiral HPLC: Daicel Chiralpak IA, hexane/2-propanol 90:10; $\left.\left.0.8 \mathrm{~mL} \mathrm{~min}^{-1}, 254 \mathrm{~nm}, R_{\mathrm{t}}=9.6 \mathrm{~min}, T=25{ }^{\circ} \mathrm{C}\right)\right\} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.82-1.88$ (m, 2H), $2.02(\mathrm{dd}, J=5.0$ and $16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.17-2.41(\mathrm{~m}, 4 \mathrm{H}), 3.25$ (ddd, $J=1.5,5.1$ and $15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 6.48(\mathrm{q}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.94$ (m, 4H), 6.97-7.00 (m, 3H), 7.05-7.07 (m, 3H), 7.19 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 15.9,20.9,28.4,28.7,29.0,55.4,108.6,123.9,125.9,126.1,126.2,127.4,127.6,128.6$, $128.7,129.5,129.6,130.1,130.5,130.6,130.7,132.4,134.5,134.8,136.4,138.3,139.6,142.0$, 144.7, 145.7, 147.6, 155.0, 184.6, 186.1; MS (EI): m / z (\%) 165 (13), 189 (6), 239 (6), 477 (6), 508 $\left(\mathrm{M}^{+}, 100\right)$; HRMS (EI) calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right) 508.2038$, found 508.2016.

8-(2-Biphenyl)-3,4-dihydronaphtalen-2-trifluoromethanesulfonate (18).

To a solution of 8-(2-biphenyl)-2-tetralone (17) $)^{3}(64 \mathrm{mg}, 0.21 \mathrm{mmol})$ and N -phenylbis(trifluoromethanesulfonimide) ($82 \mathrm{~g}, 0.23 \mathrm{mmol}$) in dry THF (2.1 mL) was slowly added a solution of KHMDS 0.5 M in THF $(0.46 \mathrm{~mL}, 0.23 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, under argon. The mixture was stirred for 80 min and quenched with $\mathrm{H}_{2} \mathrm{O}$ at $-78^{\circ} \mathrm{C}$. After warming to room temperature, workup and flash chromatography (eluent EtOAc/hexane 1:5), compound $\mathbf{1 8}$ was obtained as a colorless oil, in 98% yield: ${ }^{1} \mathrm{H}$ NMR $\delta 2.46$ (ddd, $J=7.9,9.1$ and $16.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.53 (ddd, $J=7.3,8.2$ and 16.9 $\mathrm{Hz}, 1 \mathrm{H}), 2.96(\mathrm{~m}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 6.97-7.17(\mathrm{~m}, 8 \mathrm{H}), 7.26-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.48(\mathrm{~m} 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 26.1,29.1,117.0,126.3,126.5,127.3,127.5,128.2,128.5,129.4,129.5,130.2,131.0$, 132.0, 133.2, 135.6, 138.0, 139.7, 141.0, 141.5, 149.9; MS (EI): m/z (\%) 239 (37), 279 (100), 297 (79), $430\left(\mathrm{M}^{+}, 36\right)$; HRMS (EI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~F}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right) 430.0850$, found 430.0850.

2-Acetyl-8-(2-biphenyl)-3,4-dihydronaphthalene (19)

[^2]To a mixture of enol triflate $18(255 \mathrm{mg}, 0.59 \mathrm{mmol}), \mathrm{LiCl}(123 \mathrm{mg}, 2.9 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(34$ $\mathrm{mg}, 5 \% \mathrm{~mol}$) in THF (5.9 mL), under argon, (1 -ethoxyvinyl)-tributylstannane ($166 \mu \mathrm{~L}, 0.65 \mathrm{mmol}$) was added. The reaction mixture was heated at $90^{\circ} \mathrm{C}$ for 1.5 h , filtered with celite and washed with water. The solvent was evaporated and the residue was charged in a flash column chromatography for 1 h to provoke the hydrolysis of the vinyl ether. Then, the residue was eluted with a mixture of EtOAc/hexane 1:6, to obtain pure compound 19 as a white solid, in 62% yield: m.p. $140-141^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR δ 2.03-2.16 (m, 1H), $2.16(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=6.1$ and $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.01-$ $7.06(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.50(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 20.4,25.2,28.1,126.7,127.4,127.8,128.3,129.1,129.4,129.5,130.0,130.5,131.2$, 135.5, 137.9 (2C), 138.3, 140.8, 140.9, 141.6, 198.5; MS (EI): m/z (\%) 203 (25), 252 (31), 265 (50), 281 (82), $324\left(\mathrm{M}^{+}, 100\right)$; HRMS (EI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}(\mathrm{M}+) 324.1514$, found 324.1519.

8-(2-Biphenyl)-2-[1-(tert-butyldimethylsilyloxy)vinyl]-3,4-dihydronaphthalene (7)

To a solution of methyl ketone $19(35 \mathrm{mg}, 0.1 \mathrm{mmol})$ in THF (2.1 mL) was slowly added a solution of KHMDS 0.5 M in THF $(0.24 \mathrm{~mL}, 0.12 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, under argon, and the mixture stirred for 10 min . Then, TBDMSOTf ($0.26 \mathrm{~mL}, 0.12 \mathrm{mmol}$) was added and the mixture was stirred for 1.5 h and quenched with $\mathrm{H}_{2} \mathrm{O}$ at $-78{ }^{\circ} \mathrm{C}$. After warming to room temperature, workup and flash chromatography (hexane in $\mathrm{Al}_{2} \mathrm{O}_{3}$ deactivated with 10% of water), compound 7 was obtained as a colorless oil, in 85% yield: ${ }^{1} \mathrm{H}$ NMR $\delta 0.05$ (s, 3 H), 0.07 (s, 3H), 0.73 (s, 9H), 2.22 (ddd, $J=8.0$, 8.2 and $15.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37 (ddd, $J=7.7,8.0$ and $15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{~d}, J=0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.54(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6,83(\mathrm{dd}, J=1.7$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.98(\mathrm{~m}, 2 \mathrm{H})$, 7.03-7.06 (m, 2H), 7.08-7.12 (m, 3H), 7.27-7.30 (m,1H), 7.32-7.37 (m, 1H), 7.38-7.41 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\delta-4.8,-4.7,18.0,23.5,25.7,28.7,92.1,122.6,125.8,126.1,126.2,127.0,127.4,127.5$, 128.5, 128.9, 129.5, 130.0, 131.1, 132.0, 132.6, 134.8, 135.7, 139.3, 141.4, 156.0; MS (EI): m/z (\%) 371 (100), 382 (53), 397 (64), 415 (75), $438\left(\mathrm{M}^{+}, 59\right)$; HRMS (EI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}\left(\mathrm{M}^{+}\right)$ 438.2378 , found 438.2371 .
($\boldsymbol{P}, \mathrm{aS}$)-12-(2-Biphenyl)-6-(tert-butyldimethylsilyloxy)-7,8-dihydro-[4]-helicenequinone (9a)

Compound $(P, \mathrm{aS})-9$-9as was obtained following method $\mathrm{F}\left(18 \mathrm{~h},-27^{\circ} \mathrm{C}\right.$, eluent hexane $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 3\right)$ from diene 7 and (SS)-2-(p-tolylsulfinyl)-1,4-benzoquinone ($\mathbf{8})^{2}(0.18 \mathrm{mmol}, 44 \mathrm{mg}, 2$ equiv) as an orange solid, in 76% yield: m.p. $183-184{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+748\left(\mathrm{c}=0.033\right.$ in $\left.\mathrm{CHCl}_{3}\right), 85 \%$ ee (Chiral HPLC: Daicel Chiralpak IA, hexane/2-propanol 90:10; $0.8 \mathrm{~mL} \mathrm{~min}^{-1}, 254 \mathrm{~nm}, R_{\mathrm{t}}=7.9 \mathrm{~min}, T=25$ $\left.\left.{ }^{\circ} \mathrm{C}\right)\right\} ;{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}) \delta 0.27(\mathrm{~s}, 3 \mathrm{H}), 0.43(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{dd}, J=4.6$ and 15.4 Hz , $1 \mathrm{H}), 2.73(\mathrm{td}, J=4.41$ and $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.28$ and $6.39(\mathrm{AB}$ system, $J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.31-6.33$ $(\mathrm{m}, 2 \mathrm{H}), 6.84-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.96-7.00(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36-7.41(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta-4.4,-3.8,18.3,22.3,25.6,29.4,112.4,125.9,126.6,127.0$, $127.3,127.4,127.5,128.3,128.4,129.6,130.9,131.4,132.4,134.9,135.1,136.9,139.6,139.7$, 140.3 (2C), 140.5, 140.9, 155.4, 185.0, 185.9; MS (EI): m/z (\%) 333 (12), 389 (100), 485 (39), 542 ($\mathrm{M}^{+}, 75$); HRMS (EI) calcd for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}\left(\mathrm{M}^{+}\right)$542.2277, found 542.2254.

(P,aS)-12-(2-Biphenyl)-6-hydroxy-7,8-dihydro-[4]-helicenequinone (9b)

To a solution of OTBDMS derivative $(P, \mathrm{aS})-\mathbf{9 a}(13.5 \mathrm{mg}, 0.025 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$, a solution of TBAF 1 M in THF $(0.05 \mathrm{~mL}, 0.05 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred 1 h and quenched with $\mathrm{NH}_{4} \mathrm{Cl}$. After workup and flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, compound $(P, \mathrm{aS})-\mathbf{9 b}$ was obtained as an orange solid, in 75% yield: m.p. $226-228{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+1034\left(\mathrm{c}=0.014\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.25(\mathrm{dd}, J=5.1$ and $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=4.6$ and $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.71(\mathrm{~m}$, $2 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 6.30$ and $6.41(\mathrm{AB}$ system, $J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.31-6.33(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.92(\mathrm{~m}$, $2 \mathrm{H}), 6.97-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=7.1$ and $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.44(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.6,29.2,110.5,126.0$, $126.5,126.9,127.3,127.4,127.5,128.4,128.5,129.5,131.0,131.6,132.0,134.8,135.0,135.4$, 137.3, 139.4, 140.2, 140.3, 140.5, 140.6, 140.9, 155.6, 185.2, 185.7; MS (FAB): $m / z(\%) 136$ (68), 154 (100), 307 (19), $429\left(\mathrm{M}^{+}+1,8\right)$; HRMS (FAB) calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{O}_{3}\left(\mathrm{M}^{+}+1\right) 429.1491$, found 429.1481 .

General synthesis of bis-(-)-camphanates. Method G.

$\mathrm{Et}_{3} \mathrm{~N}(195 \mu \mathrm{~L})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ were added to a mixture of the corresponding helicenequinone (0.066 mmol), activated $\mathrm{Zn}(56 \mathrm{mg}, 0.85 \mathrm{mmol}$), (-)-camphanoyl chloride ($72 \mathrm{mg}, 0.33 \mathrm{mmol}$) and

DMAP ($3.8 \mathrm{mg}, 0.033 \mathrm{mmol}$), under argon. The mixture was refluxed for the time indicated in each case. Filtration through celite, aided by several ethyl acetate washes, removed remaining Zn . The organic solution was washed with saturated aqueous $\mathrm{NaHCO}_{3}, 2 \% \mathrm{HCl}$ and water. After workup and flash chromatography, the corresponding pure bis-(-)-camphanate was obtained.

(P,aS)-14-(2-Biphenyl)-11-methoxy-7,8,9,10-tetrahydro-[5]-helicene-bis-(-)-camphanoyl-

 hydroquinone (20).

Compound $(P, \mathrm{aS})-\mathbf{2 0}$ was obtained from helicenequinone $(P, \mathrm{aS})-\mathbf{6}(16 \mathrm{mg})$ following method $\mathrm{G}(45$ \min, eluent hexane/EtOAc 2:1) as a pale brown solid, in 78% yield; m.p. $200-202{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+355$ $\left(\mathrm{c}=0.12\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \delta 0.80(\mathrm{~s}, 3 \mathrm{H}), 1.00(3 \mathrm{H}), 1.05(3 \mathrm{H}), 1.23(3 \mathrm{H}), 1.26(\mathrm{~s}$, $3 \mathrm{H}), 1.59-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 5 \mathrm{H}), 2.03-2.12(\mathrm{~m}, 3 \mathrm{H}), 2.16-2.39(\mathrm{~m}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{dt}$, $J=5.5$ and $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{ddd}, J=4.2,10.7$ and $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=5.3$ and 15.0 Hz , $1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 6.59-6.60(\mathrm{~m}, 4 \mathrm{H}), 6.73-6-77(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.01(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.08(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 9.8,9.9,16.7,16.9,17.0,17.1,17.2,20.2$, $28.6,28.7,28.8,28.9,29.0,31.6,54.4,54.8,55.1,55.2,56.2,90.9,91.2,108.0,118.3,119.2,123.6$, $123.8,125.6,127.7,126.8,127.2,127.3,128.5,129.1,129.3,129.5,129.6,130.5,132.3,135.9$, 136.8, 138.0, 140.1, 140.6, 141.7, 143.1, 145.3, 154.8, 165.0, 178.1, 178.2; MS (MALDI): $m / z(\%)$ 673 (100), $870\left(\mathrm{M}^{+}, 34\right)$; HRMS (MALDI) calcd for $\mathrm{C}_{56} \mathrm{H}_{54} \mathrm{O}_{9}\left(\mathrm{M}^{+}\right) 870.3815$, found 870.3762 .
($\boldsymbol{P}, \mathrm{aS}$)-12-(2-Biphenyl)-6-[(tert-butyldimethylsilyl)oxy]-7,8-dihydro-[4]-helicene-bis(-)-camphanoyl-hydroquinone (21)
 $\mathrm{R}^{*}=$

Compound (P, aS)-21 was obtained from helicenequinone ($P, \mathrm{a} S$)-9a (59 mg) following method G (50 min , eluent hex/EtOAc 3:1) as a yellow solid, in 72% yield: m.p. $194-195^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+252(\mathrm{c}=$ 0.16 in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 0.23(\mathrm{~s}, 3 \mathrm{H}), 0.44(\mathrm{~s}, 3 \mathrm{H}), 0.65(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~s}$, $3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{dt}, J=4.4$ and $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{ddd}, J=4.2$, 9.3 and $13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{ddd}, J=3.9,9.1$ and $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.88(\mathrm{~m}, 2 \mathrm{H}), 2.03-2.09(\mathrm{~m}$, $2 \mathrm{H}), 2.32(\mathrm{ddd}, J=4.6,9.3$ and $13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dt}, J=4.2$ and $14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.72(\mathrm{~m}, 3 \mathrm{H})$, 6.13-6.15 (m, 2H), $6.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.82(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 7.03$, (dd, $J=7.6$ and $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.27$ $(\mathrm{m}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=7.4$ and $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta-4.7,-3.7,9.6,9.8,16.5,17.0,17.1,17.2,18.2,23.1,25.6,29.1,29.2,29.6,29.8,31.3$, $54.1,54.5,54.6,54.9,90.7,90.9,105.2,114.6,116.0,122.2,125.5,125.7,126.7,127.1,127.2$, $127.5,128.1,129.3,130.9,131.0,133.4,137.6,139.5,139.7,140.0$ (2C), 141.1, 142.6, 143.1, 151.7, 165.0, 166.0, 177.7, 177.8; MS (EI): m/z (\%) 904 ($\mathrm{M}^{+}, 100$), $905\left(\mathrm{M}^{+}+1,65\right)$; HRMS (MALDI) calcd for $\mathrm{C}_{56} \mathrm{H}_{60} \mathrm{O}_{9} \mathrm{Si}\left(\mathrm{M}^{+}\right) 904.4038$, found 904.4001.

X-Ray Crystallography

Crystal data for $(P, \mathrm{aR})-\mathbf{4 a}: \mathrm{C}_{34} \mathrm{H}_{26} \mathrm{O}_{3}, M=482.55$, triclinic, $a=10.1039(6), b=11.6511(7), c=$ $11.8095(7) \AA, \alpha=116.0420(10), \beta=90.402(3), \gamma=95.849(4)^{\circ}, U=1240.50(13) \AA^{3}, T=100(2) \mathrm{K}$, space group $P 1, Z=2$, 22716 measured and 22716 independent reflections $\left(R_{\text {int }}=0.000\right), R_{1}=$ $0.0584, w R_{2}=0.1639$, Flack x parameter $=-0.5(6)$.

Crystal data for $(P, \mathrm{a} S)-6: \mathrm{C}_{36} \mathrm{H}_{28} \mathrm{O}_{3}, M=508.58$, orthorhombic, $a=7.6471(4), b=15.5793(9), c=$ $21.7870(13) \AA, U=2595.60(3) \AA^{3}, T=100(2) \mathrm{K}$, space group $P 2_{1} 2_{1} 2_{1}, Z=4,106248$ measured and 5503 independent reflections $\left(R_{\text {int }}=0.0507\right), R_{1}=0.0308, w R_{2}=0.0854$, Flack x parameter $=-$ $0.1(9)$.

$\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & p p m\end{array}$

[^3]

[^4]

$\begin{array}{lllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \text { ppm }\end{array}$

13a (70:30)

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	

a

1 a

$1 \mathbf{a}$

1	1	1	1	1	1	1	1	1	1

[^5]

1	1	1	,	1	1	1	1	,	1		
200	180	160	140	120	100	80	60	40	20	0	ppm

.

[^6]

18

[^7]

HudMund

1 \qquad

$\begin{array}{lllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

($P, a S$)-9b

[^0]: (1) Bohlmann, F.; Fritz, G. Chem. Ber. 1976, 109, 3371-3374.

[^1]: (2) Carreño, M. C.; García Ruano, J. L.; Urbano, A. Synthesis, 1992, 651-653.

[^2]: (3) M. C. Carreño, M. González-López, A. Latorre, A. Urbano, J. Org. Chem. 2006, 71, 4956-4964.

[^3]: $\begin{array}{llllllllllllllllllllllllllll}9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & \mathrm{ppm}\end{array}$

[^4]: $\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \text { ppm }\end{array}$

[^5]: $\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

[^6]: $\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \text { ppm }\end{array}$

[^7]: $\begin{array}{llllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & & \text { ppm }\end{array}$

