Supporting Information for

Agostic BH interaction in a Rh(I)-Complex of an Anionic bis phosphine-borane Ligand.

Matthias Blug,^a Dan Grünstein,^a Gilles Alcaraz,^b Sylviane Sabo-Etienne,^b Xavier-Frederic Le Goff,^a Pascal Le Floch,^a and Nicolas Mézailles,^a

^a Laboratoire « Hétéroéléments et Coordination », UMR CNRS 7653 (DCPH), Département de Chimie, Ecole Polytechnique, 91128 Palaiseau Cédex, France.

Tel: +33 1 69 33 44 14 ; Fax: +33 1 69 33 39 90

E-mail: nicolas.mezailles@polytechnique.edu

^bCNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, F-31077 Toulouse, France, Université de Toulouse, UPS, INPT, F-31077 Toulouse, France.

Tel: +33 5 61 33 31 77 ; Fax: +33 5 61 55 30 03

E-mail: sabo@lcc-toulouse.fr

Table of Contents

Experimental Section	S 3
General	S 3
Experimental procedures	S4
Selectively decoupled ¹ H NMR spectra of 3	S 6
X-Ray crystal structure analysis	S 7
Theoretical Calculations	S 8
Cartesian coordinates, three lower frequencies and thermochemistry of I	S 9
Cartesian coordinates, three lower frequencies and thermochemistry of II	S 11
Cartesian coordinates, three lower frequencies and thermochemistry of III	S 13
References	S15

Experimental Section

General: All experiments were performed under an atmosphere of dry nitrogen or argon using standard schlenk and glove box techniques. Solvents were freshly distilled under nitrogen from Na/benzophenone (diethylether, pentane). Nuclear magnetic resonance spectra were recorded on a Bruker Avance 300 spectrometer operating at 300.130 MHz for ¹H, 121.495 MHz for ³¹P, 155.505 MHz for ⁷Li and 75.768 MHz for ¹¹B, and on a Bruker Avance 400 spectrometer operating at 100.613 MHz for ¹³C. ¹H and ¹³C chemical shifts are reported in ppm relative to Me₄Si as external standard. ³¹P shifts are relative to a 85% H₃PO₄ external reference. ⁷Li shifts are relative to a lithium chloride in D₂O external reference and ¹¹B shifts relative to a BF₃•Et₂O external reference. Selectively decoupled ¹H NMR spectra were recorded on a Bruker Avance 500 Spectrometer. Coupling constants are given in hertz. The following abbreviations are used: b, broad; s, singlet; d, doublet; dd, doublet of doublets; t, triplet; q, quartet, m, multiplet. Elemental analysis was performed by the "Service de Microanalyse du LCC". RhCl₃ hydrate was purchased from Strem. dppm(BH₃)₂¹ and [Rh(COD)Cl]₂² were prepared according to literature procedures.

Experimental procedures

$(H_3B)Ph_2P$ -CHLi-PPh₂(BH₃), Et₂O (2) :

A 1.6 M ethereal solution of MeLi (0.819 mL, 1.310 mmol) was added to a dry ether (5 mL) solution of dppm $(BH_3)_2$ (0.270g, 0.655 mmol) and stirred for 36 h at room temperature. The solvent was then removed under vacuum and the resulting solid washed copiously with dry pentane and dried under vacuum. The resulting compound was obtained as 1/1 lithium salt/diethylether adduct **1** as a white solid in nearly quantitative yield.

³¹P{¹H} NMR (C₆D₆, 121.495 Hz): δ 8.95 (m); ¹¹B{¹H} NMR (C₆D₆, 75.768 Hz): δ -33.2 (bd, ¹J_{BP} = 64 Hz, BH₃); ⁷Li (C₆D₆, 155.505 MHz): δ 0.95; ¹H (C₆D₆, 300.130 Hz): δ 7.83-7.96 (m, 8H, CH arom.), 7.00-7.13 (m, 12H, CH arom.), 4.00 (q, 4H, ³J_{HH} = 7.06 Hz, CH₂ Et₂O), 1.45 (bs, BH₃), 1.33 (t, 1H, ²J_{HP} = 13.60 Hz, PCH(Li)P), 0.87 (t, 6H, ³J_{HH} = 7.06 Hz, CH₃ Et₂O); ¹³C{¹H} NMR (C₆D₆, 100.613 MHz): δ 140.59 (d, ¹J_{CP} = 68.63 Hz, C arom.), 132.25 (pt, J_{CP} = 4.79 Hz, CH arom.), 129.44 (s, CH arom.), 128.47 (pt, J_{CP} = 5.03 Hz, CH arom.), 66.67 (s, CH₂, Et₂O), 14.97 (s, CH₃ Et₂O), 8.53 (t, ¹J_{CP} = 70.46 Hz, CHLi).

$[(H_3B)Ph_2P]_2CH-Rh(COD)$ (3):

A C_6D_6 solution of 2 (0.067g, 0.136 mmol) was added to a room temperature C_6D_6 stirred solution of $[(COD)RhCl]_2$ (0.0336g, 0.068 mmol) and the reaction was monitored by ³¹P NMR spectroscopy. After completion, the solvent was removed under vacuum. Pentane was added and the resulting suspension was filtered over cellite[®]. Removal of the solvent and drying under vacuum lead to complex **3** that was obtained as a greenish powder (0.040g) in 47% yield.

³¹P{¹H} NMR (C₆D₆, 121.495 Hz): δ 4.88 (bs); ¹¹B{¹H} NMR (C₇D₈, 353 K, 160.526 Hz): δ - 40.62 (d, ¹J_{PB} = 73 Hz, B); ¹H NMR (C₆D₆, 300.130 Hz): δ 8.10-8.20 and 7.50-7.60 (2 x m, 4H,

CH arom.), 7.00-7.13 and 6.60-6.80 (2 x m, 6H, CH arom.), 4.90 (m, 4H, CH=CH COD), 2.72 and 1.29 (bm, COD), 1.11 (t, ${}^{2}J_{HP} = 11.07$ Hz, PCH(Rh)P), 1.09 (bm, BH₃); ${}^{13}C{}^{1}H$ NMR (C₆D₆, 100.613 Hz): δ 135.70 (d, ${}^{1}J_{PC} = 33.40$ Hz, C_{ipso} Ar), 134.37 (dd, ${}^{1}J_{PC} = 66.04$ Hz, ${}^{3}J_{PC} = 9.68$ Hz, C_{ipso} Ar), 132.63 and 131.75 (2 x d, $J_{PC} = 9.5$ Hz, CH Ar), 130.78 and 130.11 (2 x d, ${}^{4}J_{PC} = 2.01$ Hz, CH Ar), 128.82 and 128.35 (2 x d, $J_{PC} = 9.85$ Hz, CH Ar), 89.35 and 72.32 (2 x bs, CH COD), 31.88 and 29.04 (2 x bs, CH₂ COD), -3.72 (td, ${}^{1}J_{PC} = 15.42$ Hz, ${}^{1}J_{RhC} = 18.89$ Hz, CHRh).

Anal. calcd for C₃₃H₃₉B₂P₂Rh: C, 63.71; H, 6.32. Found: C, 63.51; H, 6.65.

Selectively decoupled ¹H NMR spectra of 3 in C_7D_8 at 353 K

X-Ray crystal structure analysis

Data were collected at 150.0(1) K on a Nonius Kappa CCD diffractometer using a Mo K α (λ = 0.71070 Å) X-ray source and a graphite monochromator. All data were measured using phi and omega scans. The crystal structures were solved using SIR 97³ and Shelx1-97.⁴ ORTEP drawings were made using ORTEP III for Windows.⁵ CCDC 725320 - 725321 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/ retrieving.html or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk

Theoretical Calculations

Calculations were performed with the GAUSSIAN 03 series of programs.⁶ The B3PW91 functional ⁷ was used in combination with the 6-31+G* basis set for all non-metal-bound atoms (C, H, P), the 6-311+G* for all metal-bound-atoms (C, H, P, S) and the LANL2DZ basis⁸ for iridium with an additional f-polarization function (exponent = 1.350).⁹ The stationary points were characterized as minima by full vibration frequencies calculations (no imaginary frequency).

Cartesian coordinates, three lower frequencies and thermochemistry of I

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	45	0	0.040777	-0.020421	-0.002096
2	15	0	0.003793	0.038493	2.872377
3	15	0	2.705193	-0.018793	1.319031
4	6	0	1.124906	0.749851	1.674594
5	1	0	1.214774	1.833823	1.777856
6	1	0	-0.963768	1.053094	3.023816
7	1	0	0.537037	0.054560	4.197901
8	1	0	3.560859	-0.005893	2.459892
9	1	0	3.346644	0.985430	0.563662
10	6	0	-1.655453	-0.595864	-1.347221
11	1	0	-2.126518	-1.425286	-0.826774
12	6	0	-2.546175	0.590776	-1.653646
13	1	0	-3.592209	0.278049	-1.576578
14	1	0	-2.404132	0.894631	-2.694550
15	6	0	-2.288559	1.768260	-0.704904
16	1	0	-2.604154	2.717367	-1.165460
17	1	0	-2.909039	1.650584	0.190163
18	6	0	-0.847351	1.842835	-0.256996
19	1	0	-0.713296	2.459337	0.633851
20	6	0	0.297665	1.726643	-1.109405
21	1	0	1.188249	2.260608	-0.776728
22	6	0	0.215851	1.527101	-2.618442
23	1	0	-0.665599	2.042947	-3.014340
24	1	0	1.073211	2.013424	-3.094075
25	6	0	0.205199	0.040436	-3.013742
26	1	0	1.237443	-0.304485	-3.125207
27	1	0	-0.265228	-0.097830	-3.998759
28	6	0	-0.456052	-0.853188	-1.990578
29	1	0	-0.085098	-1.874943	-1.957772
30	5	0	-0.690482	-1.637470	2.226602

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

31 32 33 34 35 36 37	1 1 5 1 1 1		0 0 0 0 0 0	0.064366 -1.833237 -0.641276 2.500894 2.269602 3.477065 1.502585	-2.513471 -1.753216 -1.550276 -1.680179 -2.555628 -1.835433 -1.442167	2.561265 2.594231 0.975666 0.366026 1.157988 -0.328241 -0.340922
Frequencies Red. masses Frc consts IR Inten	5 5 	1 A 33.4518 2.9238 0.0019 7.2299		2 A 48.697 4.138 0.005 0.681	7 3 3 0 5 8 . 0	3 A 93.7216 2.2024 0.0114 0.7005
Sum of elect Sum of elec Sum of elec Sum of elec	tronic tronic tronic	and zero-po c and therma c and therma c and therma	int l Er l Er l Fr	Energies= hergies= hthalpies= ree Energies=	-1199.3 -1199. -1199. -1199.	96863 379274 378330 441276

HF=-1199.6965408

Cartesian coordinates, three lower frequencies and thermochemistry of II

Input orientation:

Center Atomic Atomic			Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	45	0	-0.130167	-0.095920	0.132130
2	15	0	0.062849	-0.248535	3.373224
3	15	0	2.335723	0.306353	1.422863
4	6	0	0.665333	0.692142	1.949452
5	1	0	0.510686	1.763354	2.106197
6	1	0	-1.310423	0.084402	3.414505
7	1	0	0.485219	0.494527	4.508467
8	1	0	3.290483	0.277203	2.482552
9	1	0	2.769989	1.471791	0.759794
10	6	0	-1.357077	-1.148693	-1.360169
11	1	0	-1.210886	-2.199530	-1.116753
12	6	0	-2.791654	-0.659714	-1.329988
13	1	0	-3.462188	-1.524278	-1.345502
14	1	0	-3.012544	-0.100675	-2.243211
15	6	0	-3.096612	0.189987	-0.084223
16	1	0	-3.971590	0.833387	-0.261687
17	1	0	-3.378099	-0.473043	0.740549
18	6	0	-1.920095	1.015426	0.379660
19	1	0	-1.982376	1.330467	1.420717
20	6	0	-1.046882	1.742734	-0.446633
21	1	0	-0.475404	2.536560	0.032151
22	6	0	-1.197421	1.882592	-1.952039
23	1	0	-2.256675	1.839106	-2.221590
24	1	0	-0.858743	2.878850	-2.253051
25	6	0	-0.394610	0.823102	-2.725288
26	1	0	0.629925	1.182404	-2.865899
27	1	0	-0.806344	0.692473	-3.737121
28	6	0	-0.312741	-0.502702	-2.010366
29	1	0	0.566828	-1.096350	-2.248978
30	5	0	0.465717	-2.120913	3.559182

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

31 32 33 34 35 36 37	1 1 5 1 1 1		0 1.678863 0 -0.021043 0 -0.047287 0 2.204975 0 2.719075 0 0.962790 0 2.607853	-2.170950 -2.398914 -2.684772 -1.247939 -1.030253 -1.541237 -2.211440	3.562271 4.635724 2.620722 0.278028 -0.787788 0.173383 0.871471
Frequencie Red. masse Frc consts IR Inten	es es 5	1 A 32.5912 3.2132 0.0020 4.5389	2 A 44.8 4.2 0.00 1.88	499 388 050 382	3 52.3678 3.1577 0.0051 4.1545
Sum of elec Sum of ele Sum of ele Sum of ele	ctronic ectronic ectronic ectronic	and zero-po and therma and therma and therma	int Energies= l Energies= l Enthalpies= l Free Energies=	-1199.3 -1199. -1199. -1199.	96470 378530 377586 442059

HF=-1199.6962136

Cartesian coordinates, three lower frequencies and thermochemistry of III

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	45	0	-0.214773	-0.441561	-0.533046
2	15	0	-0.183308	0.218538	2.719237
3	15	0	2.227960	-0.503450	1.115526
4	6	0	0.725510	0.507122	1.174587
5	1	0	0.945536	1.572692	1.063789
6	1	0	-1.347833	1.005240	2.587125
7	1	0	0.484054	1.010632	3.692535
8	1	0	2.795599	-0.765676	2.392471
9	1	0	3.235782	0.323140	0.573778
10	6	0	-1.660406	-1.636709	-1.700033
11	1	0	-1.564012	-2.633945	-1.276294
12	6	0	-3.051807	-1.035580	-1.663589
13	1	0	-3.778164	-1.835249	-1.488889
14	1	0	-3.297909	-0.621485	-2.645546
15	6	0	-3.191798	0.032938	-0.572033
16	1	0	-4.020065	0.720246	-0.803275
17	1	0	-3.459792	-0.452475	0.372261
18	6	0	-1.908686	0.795633	-0.341233
19	1	0	-1.890791	1.325776	0.608507
20	6	0	-1.047858	1.305012	-1.347325
21	1	0	-0.419831	2.146548	-1.056600
22	6	0	-1.333164	1.218083	-2.840666
23	1	0	-2.413819	1.247279	-3.011042
24	1	0	-0.936314	2.110384	-3.334927
25	6	0	-0.713016	-0.031311	-3.486181
26	1	0	0.312220	0.197458	-3.794652
27	1	0	-1.249063	-0.299415	-4.408858
28	6	0	-0.647720	-1.214414	-2.551288
29	1	0	0.144324	-1.927102	-2.768138

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

30 31 32 33 34 35 36 37	5 1 1 5 1 1 1	0 0 0 0 0 0 0 0	-0.470665 0.634401 -0.931866 -1.228543 1.618081 1.573816 0.477504 2.273774	-1.581571 -2.088425 -1.428755 -2.099577 -1.873151 -1.169381 -2.138444 -2.857542	3.338799 3.353810 4.450471 2.552160 -0.083284 -1.115275 0.347486 -0.269927
Frequenc Red. mas Frc cons IR Inten	ies ses ts 	1 A 35.6757 3.9425 0.0030 2.1237	2 A 52.19 3.09 0.00 7.28	924 952 950 323	3 A 91.2401 3.6385 0.0178 1.5845
Sum of e Sum of e Sum of e Sum of e	lectronic lectronic lectronic lectronic	and zero-poi and thermal and thermal and thermal	nt Energies= Energies= Enthalpies= Free Energies=	-1199. -1199. -1199. -1199.	395247 377719 376774 439499

HF=-1199.6951394

References

- H. Schmidbaur, A. Stutzer, P. Bissinger and A. Schier, Z. Anorg. Allg. Chem., 1993, 619, 1519.
- 2. G. Giordano, R. H. Crabtree, R. M. Heintz, D. Forster and D. E. Morris, in *Inorganic Syntheses Vol.* 28, ed. R. J. Angelici, John Wiley and Sons, Inc., New York, 1990, p. 88.
- 3. A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G.
 G. Moliterni, G. Polidori and R. Spagna, SIR97, an integrated package of computer programs for the solution and refinement of crystal structures using single crystal data.
- 4. G. M. Sheldrick, *SHELXL-97*, Universität Göttingen, Göttingen, Germany, 1997.
- 5. L. J. Farrugia, *ORTEP-3*, Department of Chemistry, University of Glasgow.
- Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, r., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

- 7. (a) J. P. Perdew and Y. Wang, *Phys. Rev. B*, 1992, 45, 13244, (b) A. D. Becke, *J. Chem. Phys.*, 1993, 98, 5648.
- 8. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299.
- A. W. Ehlers, M. Bohme, S. Dapprich, A. Gobbi, A. Hollwarth, V. Jonas, K. F. Kohler, R. Stegmann, A. Veldkamp and G. Frenking, *Chem. Phys. Lett.*, 1993, 208, 111.