Supporting Information

A facile iodide-controlled fluorescent switch based on the interconversion between two- and three-coordinate copper(I) complexes

Chang-Chuan Chou*, Hsueh-Ju Liu and Lucas Hung-Chieh Chao

Contents

General information

- 1. Synthesis of 1,3-bis-(3,5-dimethyl-pyrazol-1-ylmethyl)-2-phenyl-2,3-dihydro-1*H*-perimidine, L^{ph}
- 2. Synthesis of Complex [Cu(L^{ph})](ClO₄) 1·(ClO₄)
- 3. Synthesis of Complex $[Cu(L^{ph})I]$ 2
- 4. Molecular structure of ligand L^{Ph} (Figure S1)
- 5. ¹H & ¹³C NMR spectra of ligand L^{ph} (Figure S2)
- 6. Variable temperature ¹H NMR spectra of methylene portion in 1⁺ (a), and ¹H NMR spectrum of 1⁺ (b) ((Figure S3)
- 7. ¹³C NMR spectra of complex 1·(ClO₄) (Figure S4)
- 8. ¹H & ¹³C NMR spectra of complex **2** (Figure S5)
- 9. ¹H NMR spectra of the reaction of **1**·(ClO₄) with n-Bu₄I (Figure S6)
- 10. ¹H NMR spectra of the reaction of **1**·(ClO₄) with n-Bu₄I and Ag(ClO₄) (Figure S7)
- 11. Fluorescence titration experiments (Figure S8-S10)
- 12. Absorption spectra of L^{Ph}, **1**·(ClO₄) and **2** (Figure S11)
- The change of the emission intensity for the complexation of L^{Ph} with Ni²⁺, Cu²⁺ and Zn²⁺ ions (Figure S12-S14)

General information All manipulations were performed under a nitrogen atmosphere using standard Schlenk or glovebox techniques. Acetonitrile and dichloromethane were distilled from CaH₂ before use. Diethyl ether was dried by distillation from sodium benzophenone prior to use. All reagents were obtained from commercial sources and used as received without further purification. ¹H NMR and ¹³C NMR spectra were obtained at room temperature using Bruker Avance 400 and 500 MHz spectrometers. IR data were obtained as Nujol mulls on a Bruker Alpha-T FTIR spectrometer. Mass spectra were acquired on a Finnigan TSQ 700 spectrometer. Elemental analyses were performed on a HERAEUS CHN-O-S-Rapid elemental analyzer by Instruments Center, National Chung Hsin University, and a HERAEUS VarioEL-III Analyzer by Advanced Instrument Center, National Taiwan University. Fluorescence emission spectra were recorded at ambient on a Hitachi F-7000 fluorescence spectrophotometer. Ultraviolet-Visible spectra were recorded on a Hewlett Packard 8453 Ultraviolet/Visible Absorption Spectrometer.

1. **Synthesis of** 1,3-bis-(3,5-dimethyl-pyrazol-1-ylmethyl)-2-phenyl-2,3-dihydro-1*H*-perimidine, L^{ph}:

A 30 ml diethylether solution of 1,8-diaminonaphthalene 1.36g (8.6 mmole) and benzaldehyde1.01g (9.5mmole) was vigorously stirred at room temperature for 13 hours. This solution was filtrated and the solvent was removed under vacuum. A mixture of the residue and 3,5-dimethylpyrazolemethanol 2.17g (17mmole) in acetonitrile (30ml) was stirred at room temperature for 24 hours. The brown precipitates formed was filtered off and extracted with n-hexane to give 2.50g (63%) of L^{ph}. ¹H NMR (CD₂Cl₂, 500.13 MHz): δ 7.38- 7.35 (m, 2H), 7.29- 7.27 (m, 4H), 7.06- 6.99 (m, 4H), 5.83 (s, 2H, pyrazole-CH), 5.74 (s, 1H, CH), 5.74 (d, 2H, ²J_{HH} = 14.2 Hz), 5.42 (d, 2H, ²J_{HH} = 14.2 Hz), 2.24 (s, 6H, CH₃), 2.17 (s, 6H, CH₃) ppm. ¹³C

2

NMR (CD₂Cl₂, 125.77 MHz): δ 148.39, 140.62, 140.34, 140.18, 135.13, 128.59, 128.08, 127.54, 127.51, 120.17, 118.26, 110.13, 106.69, 72.36, 65.53, 13.88, 11.46 ppm. Positive ESI-MS: 485.4 (M+Na⁺, 100%). Anal. Calcd for C₂₉H₃₀N₆ (L^{Ph}): C, 75.30; H, 6.54; N, 18.17. Found: C, 75.37; H, 6.60; N, 18.16.

2. Synthesis of Complex [Cu(L^{ph})](ClO₄) 1·(ClO₄):

Method 1: A 7ml CH₂Cl₂ solution of [Cu(MeCN)₄]ClO₄ (0.15 g, 0.46mmol) and L^{Ph} (0.21g, 0.46mmol) was stirred at room temperature for 2 hr under N₂. After the addition of 10ml Et₂O, the white precipitates formed was filtered off and washed by 5ml CH₂Cl₂ and 10ml Et₂O for two times. The resulting white solid was dried under vacuum to yield 0.21g (74 %) of 1·(ClO₄). Single crystals of 1·(ClO₄) were obtained after cooling the saturated, hot CH₃CN solution to room temperature. IR(Nujol): ν_{ClO_4} - 1093, 622 cm⁻¹. ¹H NMR (CD₂Cl₂, 500.13 MHz): δ 7.31- 7.16 (m, 9H, naphthalene and phenyl CH), 6.94 (s, 1H, CH), 6.47- 6.45 (m,2H, phenyl CH), 6.07 (s, 2H, pyrazole-CH), 5.96 (s, 4H, CH₂), 2.56 (s, 6H, CH₃), 2.35 (s, 6H, CH₃) ppm. ¹³C NMR (CD₂Cl₂, 125.77 MHz): δ 151.83, 143.32, 140.03, 137.26, 135.48, 129.40, 129.07, 127.60, 126.89, 120.60, 116.97, 108.04, 106.21, 79.01, 63.80, 15.61, 12.05 ppm. Positive ESI-MS: 525.3 (M⁺, 100%). Anal. Calcd for C₂₉H₃₀ClCuN₆O₄ (1·(ClO₄) ·CH₂Cl₂): C, 55.68; H, 4.83; N, 13.43. Found: C, 55.59; H, 4.63; N, 13.89.

Method 2: AgClO₄ (10.9mg, 0.05mmol) was added to an acetonitrile solution (10 mL) of complex **2** (34.6 mg, 0.05mmol). The mixture was stirred for at room temperature for 5 min and the yellow precipitate was formed immediately. The resulting solution was filtered by celite and the filtrate was dried under vacuum. The isolated complex $1 \cdot (ClO_4)$ was determined and confirmed by IR and H NMR and gave a yield higher than 96%.

3. Synthesis of Complex [Cu(L^{ph})I] **2**:

Method 1: The reaction of CuI (60mg, 0.314 mmol) and L^{Ph} (146.3 mg, 0.316 mmol) was carried out following a procedure similar to that described for the synthesis of complex $1 \cdot (ClO_4)$ in a 85% yield (173.6 mg). Single crystals were grown from CH_2Cl_2/Et_2O . ¹H NMR (CD_2Cl_2 , 500.13 MHz): δ 7.31- 6.64 (m, 9H, naphthalene and phenyl CH), 6.65 (d,2H, phenyl CH), 5.98 (s, 2H, pyrazole-CH), 5.93 (d, 2H, ${}^{2}J_{\rm HH} = 13.7$ Hz, CH₂), 5.78 (d, 2H, ${}^{2}J_{\rm HH} = 13.6$ Hz, CH₂), 2.49 (s, 3H, CH₃), 2.34 (s, 3H, CH₃) ppm. ¹³C NMR (CD₂Cl₂, 125.77 MHz): δ 149.64, 141.77, 140.49, 138.72, 135.18, 129.17, 128.72, 127.38, 127.07, 120.53, 117.89, 107.99, 107.33, 76.29, 63.98, 14.99, 12.12 ppm. Positive ESI-MS: 525.2 ([M-I]⁺, 100%). Anal. Calcd for C₃₀H₃₂Cl₂CuN₆I (2): C, 48.83; H, 4.37; N, 11.39. Found: C, 49.10; H, 4.58; N, 11.72. **Method 2**: To a stirred solution of complex $1 \cdot (ClO_4)$ (17.3 mg, 0.028mmol) in 10 CH₂Cl₂ was added a solution of n-Bu₄NI (10.2mg, 0.028mmol) in 5ml CH₂Cl₂. After reaction for 30 min at room temperature, the resulting solution was dried under The solid was analyzed by ¹H NMR in CD_2Cl_2 and the yield of **2** is nearly vacuum. quantitative. The ¹H NMR spectrum of the solid is almost identical with that of complex 2 in addition to the signals of butyl groups. 1 H NMR (CD₂Cl₂, 400.13) MHz): δ 7.31- 6.66 (m, 9H, naphthalene and phenyl CH), 6.67 (d,2H, phenyl CH), 5.98 (s, 2H, pyrazole-CH), 5.93 (d, 2H, ${}^{2}J_{HH} = 13.7$ Hz), 5.78 (d, 2H, ${}^{2}J_{HH} = 13.6$ Hz), 3.16 (t, 8H, n-Bu CH₂), 2.49 (s, 6H, CH₃), 2.33 (s, 6H, CH₃), 1.67-1.60 (m, 8H, n-Bu CH₂), 1.48-1.39 (m, 8H, n-Bu CH₂), 1.02 (t, 12H, n-Bu CH₃) ppm.

4. Figure S1 Molecular structure of ligand L^{Ph} (hydrogen atoms have been omitted for clarity). Selected bond distances (Å) and bond angles (°): C7–N3 1.445 (4), C7–C12 1.420 (5), C12–C13 1.440 (5), C13–N4 1.393 (4), C17–N3 1.467 (4), C17–N4 1.456 (4), C6–N3 1.479 (4), C18–N4 1.435 (4); C6–N3–C7 110.7 (3), C7–N3–C17 109.8 (3), C6–N3–C17 112.1 (3), C13–N4–C17 116.5 (3), C13–N4–C18 123.3 (3), C17–N4–C18 120.1 (3), N3–C17–N4 111.0 (3).

5. Figure S2 ¹H & ¹³C NMR spectra of ligand L^{ph} .

6. Figure S3 Variable temperature ¹H NMR spectra of the methylene portion in 1⁺
(a), and ¹H NMR spectrum of 1⁺
(b).

7. Figure S4 13 C NMR spectra of complex 1·(ClO₄).

8. Figure S5 1 H & 13 C NMR spectra of complex **2**.

9. Figure S6 ¹H NMR spectrum of the reaction of $1 \cdot (ClO_4)$ with n-Bu₄I.

10. Figure S7 ¹H NMR spectrum of the reaction of $1 \cdot (ClO_4)$ with n-Bu₄I and Ag(ClO₄).

11. Fluorescence titration experiments

Fluorescence quenching and blank experiments on L^{Ph} by $[Cu(MeCN)_4](ClO_4)$, CuI and n-Bu₄NI were carried out in CH₂Cl₂ with a concentration of 6.8*10⁻⁵ M. $[Cu(MeCN)_4](ClO_4)$, CuI were dissolved in MeCN/CH₂Cl₂ mix solvent to improve their solubility.

Exp. No.	equiv. of	equiv. of
	L^{Ph}	[Cu(MeCN) ₄](ClO ₄)
1	1	0
2	1	0.2
3	1	0.4
4	1	0.6
5	1	0.8
6	1	1.0
7	1	1.5
8	1	2

EXP I Ligand L^{Ph} vs. [Cu(MeCN)₄(ClO₄)]

Fig. S8 Titration of L^{Ph} with [Cu(MeCN)₄](ClO₄) (red dot) and Cul(blue dot).

EXP II Ligand L ¹ " vs. Cul	EXP II	Ligand L ^{Ph}	vs. CuI
--	--------	------------------------	---------

Exp. No.	equiv. of L ^{Ph}	equiv. of CuI
1	1	0
2	1	0.2
3	1	0.4
4	1	0.6
5	1	0.8
6	1	1.0
7	1	1.5
8	1	2

EXP III Ligand L^{Ph} vs. n-Bu₄NI

EXP IV Complex $1 \cdot (ClO_4)$ vs. n-Bu₄NI (The spectral change of fluorescence spectra upon a gradual addition of n-BuN₄I to complex 1 with a concentration of 2.76*10-5 M.)

Exp. No.	equiv. of	equiv. of n-Bu ₄ NI
	L^{Ph}	
1	1	0
2	1	0.1
3	1	0.2
4	1	0.3
5	1	0.4
6	1	0.5
7	1	0.6
8	1	0.7
9	1	0.8
10	1	0.9
11	1	1.0

Figure S11. Absorption spectra of L^{Ph}, 1·(ClO₄) and 2.

Figure S12 The change of the emission intensity for free ligand L^{Ph} (a) and its complexation with Ni²⁺ ion in a molar ratio (L^{Ph} : Ni²⁺) of 1.0 : 0.5 (b); 1.0 : 1.0 (c) and 1.0 : 1.5 (d).

Figure S13 The change of the emission intensity for free ligand L^{Ph} (a) and its complexation with Cu^{2+} ion in a molar ratio $(L^{Ph} : Cu^{2+})$ of 1.0 : 0.5 (b) and 1.0 : 1.0 (c).

Figure S14 The change of the emission intensity for free ligand L^{Ph} (a) and its complexation with Zn^{2+} ion in a molar ratio ($L^{Ph} : Zn^{2+}$) of 1.0 : 0.5 (b) and 1.0 : 1.0 (c).