SUPPORTING INFORMATION

Surprising Isomer Preference on $\mathrm{Ir}^{\mathrm{II} \mathrm{\prime}}$, Favoring Facile H-C(sp $\left.{ }^{3}\right)$ Bond Cleavage

Nikolai P. Tsvetkov, Matthew F. Laird, Hongjun Fan, Maren Pink, and Kenneth G. Caulton* Department of Chemistry, Indiana University, Bloomington, IN

Experimental

General Considerations. All manipulations were performed using standard Schlenk techniques or in an argon filled glovebox unless otherwise noted. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, Pentane and THF were purified using an Innovative Technologies solvent purification system Pure Solv 400-6MD. Deuterated THF and benzene were also dried under $\mathrm{Ph}_{2} \mathrm{CO} / \mathrm{Na}$, vacuum transferred and stored in the glovebox under argon. $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was dried with $\mathrm{P}_{2} \mathrm{O}_{5}$. NMR chemical shifts are reported in ppm relative to protio impurities in the deutero solvents. Coupling constants are given in Hz. ${ }^{31} \mathrm{P}$ NMR spectra are referenced to external standards of $\mathrm{H}_{3} \mathrm{PO}_{4}$. All NMR spectra were recorded at $25^{\circ} \mathrm{C}$ with a Varian Unity INOVA instrument ($400 \mathrm{MHz}{ }^{1} \mathrm{H} ; 162 \mathrm{MHz}{ }^{31} \mathrm{P}$). "PNP" is $\mathrm{N}\left(\mathrm{SiMe}_{2} \mathrm{CH}_{2} \mathrm{P}{ }^{\mathrm{t}} \mathrm{Bu}_{2}\right)_{2}$. Mass spectra were recorded with a MAT-95XP by Thermo Electron Corp. (Waltham, MA).

Synthesis of (PNP*)IrH. 200 mg of $\left[(\mathrm{COE})_{2} \operatorname{IrCl}\right]_{2}(0.223 \mathrm{mmol})$ was added with vigorous stirring to a solution of 266 mg of (PNP) MgCl (dioxane) (0.446 mmol) in 20 mL of THF. After 2 h all volatiles were removed from the red solution. The residue was dissolved in 10 mL of pentane. The precipitate $\left(\mathrm{MgCl}_{2}\right)$ was filtered and the solution was concentrated, then dried in vacuum at room temperature overnight to remove all cyclooctene. Product was collected and used without further purification. Yield: 94%. Samples prepared by this procedure contains less than 5% of (PNP) IrH_{2}. It is also possible to use (PNP)Li(crown) ${ }^{\text {ref }}$ instead of (PNP) MgCl (dioxane); the main advantages are better accessibility and very low solubility of Li complex in pentane. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{C}_{6} \mathbf{D}_{\mathbf{1 2}}$): - 21.37 (d.d., $1 \mathrm{H}, J=11.0,15.6$); 0.03, $0.12,0.21,0.30$ (all s, 3 H each, SiCH_{3}); 1.19 (d, $18 \mathrm{H}, J=12.4, \mathrm{PBu}^{\mathrm{t}}$, accidental degeneracy); $1.31(\mathrm{~d}, 9 \mathrm{H}, J=$ 13.7, $\left.\mathrm{PBu}^{\mathrm{t}}\right)$; 1.70-1.80 (m, $1 \mathrm{H}, \mathrm{CH}_{2}$); other protons in two CH_{3} and CH_{2} were not located due to overlap with other signals. ${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{C}_{6} \mathbf{D}_{12}$): 15.3 ($\mathrm{d}, \mathrm{J}=360$); $60.1(\mathrm{~d}, J=360)$. MS CI (THF) Exp: $641.2756[\mathrm{M}]^{+}$Calc. $641.2737\left(\mathrm{C}_{22} \mathrm{H}_{52} \mathrm{~N}_{1} \mathrm{Ir}_{1} \mathrm{P}_{2} \mathrm{Si}_{2}\right)$.

Synthesis of (PNP)IrCl. 100 mg of (PNP^{*}) $\operatorname{IrH}(0.156 \mathrm{mmol})$ was dissolved in 20 mL of pentane. 75 mg of $\mathrm{C}_{2} \mathrm{Cl}_{6}(0.320 \mathrm{mmol})$ was added to the solution at $22^{\circ} \mathrm{C}$. The mixture was stirred for one hour and the color changed from red to green-yellow. The reaction mixture was then filtered, concentrated to 10 mL and the product crystallized after 12 h at $-40^{\circ} \mathrm{C}$. Green crystals were collected and washed with minimum amount of cold pentane to give $83 \mathrm{mg}(79 \%)$ after drying in vacuum. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{12}, 25^{\circ} \mathrm{C}\right)$: 1.3 (br.s, $12 \mathrm{H}, \mathrm{SiMe}$), 2.9 (br.s, $36 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}$), 4.5 (br.s, $4 \mathrm{H}, \mathrm{CH}_{2}$). MS CI (THF) Exp: 676.2419 $[\mathrm{M}]^{+}$Calc. $676.2431 \mathrm{C}_{22} \mathrm{H}_{52} \mathrm{ClIINP}_{2} \mathrm{Si}_{2}$. This reaction also succeeds, but less cleanly, with N chlorosuccinimide or PhICl_{2}, with reductive elimination of H with CH_{2}, to give (PNP) IrCl . All spectra (${ }^{1} \mathrm{H}$, absence of ${ }^{31} \mathrm{P}$ and EPR, see below) indicate that (PNP)IrCl is a planar $\mathrm{d}^{7} \mathrm{Ir}^{\mathrm{II}}$ monomer.

Synthesis of ($\mathbf{(P N (H) P *)} \mathbf{I r}(\mathbf{C l})_{2} .21 \mathrm{mg}$ of ($\left.\mathbf{P N P}\right) \operatorname{IrCl}(0.0314 \mathrm{mmol})$ was dissolved in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 4.2 mg of N -chlorosuccinimide (0.0314 $\mathrm{mmol})$ were added. NMR observation showed full conversion into the product in 12 h . The product was isolated by vacuum removal of solvent, the residue was extracted into pentane to remove succinimide, filtered and the pentane soluble were dried in vacuum. Yield: $19 \mathrm{mg}(88 \%){ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 0.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.50\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right.$, accidental degeneracy), $1.12\left(\mathrm{~d}, 3 \mathrm{H}, J=13.9, \mathrm{CH}_{3} \mathrm{C}\right), 1.27,1.38$ and 1.47 (three d, 9 H each, $J=$ 12.2, 13.7, and 12.4, three Bu^{t}), $1.70\left(\mathrm{~d}, 3 \mathrm{H}, J=14.3, \mathrm{CH}_{3} \mathrm{C}\right), 2.97(\mathrm{~d}, 1 \mathrm{H}, J=8.7$, H in Ir CH_{2}), 3.52 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}$ in $\mathrm{Ir}-\mathrm{CH}_{2}$), 4.47 (br.s, $1 \mathrm{H}, \mathrm{NH}$); two $\mathrm{Si}-\mathrm{CH}_{2}$ groups were not resolved due to overlapping with other signals. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $-47.0(\mathrm{~d}, \mathrm{~J}=410), 8.6(\mathrm{~d}, \mathrm{~J}=410)$.

Synthesis of (PN(H)P*)Ir(I) $\mathbf{2}_{\mathbf{2}} .20 \mathrm{mg}$ of ($\left.\mathbf{P N P}^{*}\right) \operatorname{IrH}(0.0312 \mathrm{mmol})$ was dissolved in 0.5 mL of benzene and 7.9 mg of $\mathrm{I}_{2}(0.0312 \mathrm{mmol})$ were added. A precipitate forms and was isolated by filtration after 15 min , washed with pentane and dried to yield $23 \mathrm{mg}(83 \%)$ of product. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right)$: $0.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.55\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right.$, accidental degeneracy), $0.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 1.13(\mathrm{~d}, 3$
$\mathrm{H}, J=13.8, \mathrm{CH}_{3} \mathrm{C}$), $1.35\left(\mathrm{br}, 9 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}\right), 1.50$ and 1.62 (both d, 9 H each, $J=13.6$ and 12.4 , two Bu^{t}), $1.85\left(\mathrm{~d}, 3 \mathrm{H}, J=14.1, \mathrm{CH}_{3} \mathrm{C}\right), 3.16(\mathrm{~d}, 1 \mathrm{H}, J=7.5, \mathrm{H}$ in Ir-CH2$), 3.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}$ in IrCH_{2}), 4.40 (br.s, $1 \mathrm{H}, \mathrm{NH}$); two $\mathrm{Si}-\mathrm{CH}_{2}$ groups were not resolved due to overlapping with other signals. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right):-5.3(\mathrm{~d}, \mathrm{~J}=398),-60.2(\mathrm{~d}, \mathrm{~J}=398)$. MS CI (THF) Exp: $768.1793[\mathrm{M}-\mathrm{I}]^{+}$Calc: $768.1787 \mathrm{C}_{22} \mathrm{H}_{52} \mathrm{IIrNP}_{2} \mathrm{Si}_{2}$. The reaction proceeds equally well in THF, but the product remains soluble and is isolated pure by vacuum removal of all volatiles.

Synthesis of (PN(H)P*)Ir(I) $\mathbf{2}_{\mathbf{2}} .20 \mathrm{mg}$ of ($\left.\mathbf{P N P *}\right) \operatorname{IrH}(0.0312 \mathrm{mmol})$ was dissolved in 0.5 mL of THF and 7.9 mg of $\mathrm{I}_{2}(0.0312 \mathrm{mmol})$ were added. All volatiles were removed in vacuum after 15 min , residue was washed with pentane and dried to yield $23 \mathrm{mg}(83 \%)$ of product. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 0.48$ (s, $\left.3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.55\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right.$, accidental degeneracy), $0.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 1.13(\mathrm{~d}, 3 \mathrm{H}, J=$ $13.8, \mathrm{CH}_{3} \mathrm{C}$), 1.35 (br, $9 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}$), 1.50 and 1.62 (both d, 9 H each, $J=13.6$ and 12.4 , two Bu^{t}), $1.85\left(\mathrm{~d}, 3 \mathrm{H}, J=14.1, \mathrm{CH}_{3} \mathrm{C}\right), 3.16\left(\mathrm{~d}, 1 \mathrm{H}, J=7.5, \mathrm{H}\right.$ in $\left.\mathrm{Ir}-\mathrm{CH}_{2}\right), 3.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}\right.$ in $\left.\mathrm{Ir}-\mathrm{CH}_{2}\right)$, 4.40 (br.s, $1 \mathrm{H}, \mathrm{NH}$); two $\mathrm{Si}-\mathrm{CH}_{2}$ groups were not resolved due to overlapping with other signals. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):-5.3(\mathrm{~d}, J=398),-60.2(\mathrm{~d}, J=398)$. MS CI (THF) Exp. 768.1793 $[\mathrm{M}-\mathrm{I}]^{+}$Calc. $768.1787 \mathrm{C}_{22} \mathrm{H}_{52} \mathrm{IIrNP}_{2} \mathrm{Si}_{2}$.

($\left.\mathbf{P N} \mathbf{(H)} \mathbf{P}^{*}\right) \mathbf{I r C l}(\mathbf{O T f}) .20 \mathrm{mg}$ of $(\mathrm{PNP}) \operatorname{IrCl}(0.029 \mathrm{mmol})$ and 9.7 mg of $\left[\mathrm{Cp}_{2} \mathrm{Fe}\right] \mathrm{OTf}(0.029 \mathrm{mmol})$ was dissolved in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The green reaction mixture turned to orange in 12 h at $+40^{\circ} \mathrm{C}$. Red crystals formed in 12 h from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layered with pentane. Yield: $21 \mathrm{mg}(86 \%) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right): 0.41$, $0.58,0.68,0.72$ (all s, 3 H each, SiCH_{3}), 1.26 (d, $3 \mathrm{H}, J=14.4, \mathrm{CH}_{3} \mathrm{C}$), 1.29 (d, $9 \mathrm{H}, J=13.6$, Bu^{t}), 1.38 and 1.39 (both d, 9 H each, $J=13.5$ and 14.5 , two Bu^{t}), $1.69\left(\mathrm{~d}, 3 \mathrm{H}, J=14.1, \mathrm{CH}_{3} \mathrm{C}\right.$), 3.54 (br.s, $1 \mathrm{H}, \mathrm{NH}$), 3.88 (d, $1 \mathrm{H}, J=6.2$, H in $\mathrm{Ir}-\mathrm{CH}_{2}$), 4.25 (d.d.d, $1 \mathrm{H}, J=3.7,6.2,17.1, \mathrm{H}$ in Ir- CH_{2}); two Si- CH_{2} groups were not resolved due to overlapping with other signals. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right):-19.8(\mathrm{~d}, J=362), 24.4(\mathrm{~d}, J=362) .{ }^{\mathbf{1 9}} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right):-79.0$ (s).

Synthesis of ($\mathbf{P N} \mathbf{(H) P} \mathbf{)} \mathbf{I r H}(\mathbf{C l})_{\mathbf{2}} \mathbf{.} 16.5 \mathrm{mg}(0.025 \mathrm{mmol})$ of (PNP*) IrH were dissolved in 0.5 mL of $\mathrm{Et}_{2} \mathrm{O}$ and $0.026 \mathrm{~mL}(0.0527 \mathrm{mmol})$ of a 2 M solution of HCl in $\mathrm{Et}_{2} \mathrm{O}$ were vacuum transferred at liquid nitrogen temperature. The reaction mixture was then allowed to melt in a Dewar filled with acetone at $-40^{\circ} \mathrm{C}$. Color of the solution changed from red to yellow after the tube was vigorously shaken. ${ }^{31} \mathrm{P}$ NMR showed complete conversion into the product. Red crystals ($15 \mathrm{mg}, 87 \%$) formed in 12 h from $\mathrm{CD}_{2} \mathrm{Cl}_{2} /$ pentane. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right.$): $-25.22(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=12.9$), $0.35,0.43$ (both s, 6 H each, SiMe), $1.10,1.25$ (both $\mathrm{m}, 2 \mathrm{H}$ each, CH_{2}), 1.40, 1.48 (both $\mathrm{t}, 18 \mathrm{H}$ each, $\mathrm{J}=6.6, \mathrm{Bu}^{\mathrm{t}}$), 3.32 (br.s, $1 \mathrm{H}, \mathrm{NH}) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right)$: 17.6.

Synthesis of (PNP)Ir(H)(Cl). $10 \mathrm{mg}(0.014 \mathrm{mmol})$ of $(\mathrm{PN}(\mathrm{H}) \mathrm{P}) \operatorname{Ir}(\mathrm{H})(\mathrm{Cl})_{2}$ were dissolved in 2 mL of THF and were reacted with $1.6 \mathrm{mg} \operatorname{LiN}^{\mathrm{i}} \mathrm{Pr}_{2}(0.014$ $\mathrm{mmol})$. The color of the solution changed immediately from yellow to purple. After 1 h all volatiles were removed in vacuum, the residue was extracted with pentane, filtered and dried in vacuum. Yield: $8 \mathrm{mg}(84 \%) .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$: $-47.0(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=11.7$, $\operatorname{Ir}-\mathrm{H})$, $0.25,0.32$ (both s, 6 H each, SiMe), $0.77,0.89$ (m, 2 H each, all CH_{2}), 1.27, 1.40 (both t, 18 H each, $\left.\mathbf{J}=6.6, \mathrm{Bu}^{\mathrm{t}}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right): 42.4$.

Synthesis of ($\mathbf{P N P}$) $\operatorname{Ir}\left(\mathbf{O}_{\mathbf{2}}\right) .18 .6 \mathrm{mg}$ of ($\left.\mathbf{P N P}^{*}\right) \operatorname{IrH}(0.0312 \mathrm{mmol})$ was dissolved in 0.5 mL of pentane and was degassed through 3 freeze-pumpthaw cycles using liquid $\mathrm{N}_{2} .1 \mathrm{~atm}$. of O_{2} (~ 4 equiv.) was added to the evacuated head space of the frozen solution. The reaction vessel was allowed to warm and the red reaction mixture turned to green-yellow in time of mixing. Pentane was removed in vacuum to give $19 \mathrm{mg}(97 \%)$ of green powder. NMR observation showed full conversion into the product. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right): 0.24\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.66\left(\mathrm{t}, 4 \mathrm{H}, J=4.4, \mathrm{CH}_{2}\right), 1.32(\mathrm{t}, 36 \mathrm{H}$, $\left.J=6.5,{ }^{\mathrm{t}} \mathrm{Bu}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right): 27.9$ (s). MS CI (THF) Exp: $673.2632[\mathrm{M}]^{+}$Calc. $673.2641\left(\mathrm{C}_{22} \mathrm{H}_{52} \mathrm{IrNO}_{2} \mathrm{P}_{2} \mathrm{Si}_{2}\right)$.

Structure determination of ($\left.\mathbf{P N}(\mathbf{H}) \mathbf{P}^{*}\right) \mathbf{I r I}_{\mathbf{2}}$.
An orange crystal (approximate dimensions $0.15 \times 0.15 \times 0.12$ mm^{3}) was placed onto the tip of a 0.1 mm diameter glass capillary and mounted on a Bruker APEX II Kappa Duo diffractometer equipped with an APEX II detector at 150(2) K.

Data collection

The data collection was carried out using Mo K α radiation (graphite monochromator) with a frame time of 15 seconds and a detector distance of 5.0 cm . A collection strategy was calculated and complete data to a resolution of $0.71 \AA$ with a redundancy of 6 were collected (five major sections of frames with $0.50^{\circ} \omega$ and ϕ scans). Data to a resolution of $0.71 \AA$ were considered in the reduction. Final cell constants were calculated from the xyz centroids of 9963 strong reflections from the actual data collection after integration (SAINT). ${ }^{1}$ The intensity data were corrected for absorption (SADABS). ${ }^{2}$

Structure solution and refinement

The space group $\mathrm{P} 2{ }_{1} / \mathrm{c}$ was determined based on intensity statistics and systematic absences. The structure was solved using SIR- 2004^{3} and refined with SHELXL-97. ${ }^{4}$ A direct-methods solution was calculated, which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed, which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to $\mathrm{R} 1=0.0363$ and $\mathrm{wR} 2=0.0805\left(\mathrm{~F}^{2}\right.$, all data). The remaining electron density is rather large and located near the iodine atoms. The structure was found as proposed with two independent molecules per asymmetric unit.

[^0]Structure determination of $[(\mathbf{P N} \mathbf{(H)} \mathbf{P} \mathbf{*}) \mathbf{I r C l}] \mathbf{O T f}$. A red crystal (approximate dimensions $0.15 \times 0.13 \times 0.10$ mm^{3}) was placed onto the tip of a 0.1 mm diameter glass capillary and mounted on a Bruker APEX II Kappa Duo diffractometer equipped with an APEX II detector at 150(2) K.

Data collection

The data collection was carried out using Mo K α radiation (graphite monochromator) with a frame time of 10 seconds and a detector distance of 5.0 cm . A collection strategy was calculated and complete data to a resolution of $0.77 \AA$ with a redundancy of 4 were collected. Three major sections of frames were collected with $0.50^{\circ} \omega$ and ϕ scans. Data to a resolution of $0.82 \AA$ were considered in the reduction. Final cell constants were calculated from the xyz centroids of 9506 strong reflections from the actual data collection after integration (SAINT). ${ }^{1}$ The intensity data were corrected for absorption (SADABS). ${ }^{2}$

Structure solution and refinement

The space group $\mathrm{P} 2_{1} / \mathrm{n}$ was determined based on intensity statistics and systematic absences. The structure was solved using SIR-2004 ${ }^{3}$ and refined with SHELXL-97. ${ }^{4}$ A direct-methods solution was calculated, which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed, which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters with the exception of H1n, which is involved in hydrogen bonding and was refined for all parameters. The final full matrix least squares refinement converged to R1 $=0.0316$ and $w R 2=$ 0.0815 (F^{2}, all data). The remaining electron density is located near Ir.

1 SAINT, Bruker Analytical X-Ray Systems, Madison, WI, current version.
2 An empirical correction for absorption anisotropy.
R. Blessing, Acta Cryst. A51, 33-38 (1995).

3 Sir2004, A Program for Automatic Solution and Refinement of Crystal Structures.
M. C. Burla, R. Caliandro, M. Carnalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Sagna. Vers. 1.0 (2004).

4 A short history of SHELX.
G. M. Sheldrick, Acta Cryst. A64, 112-122 (2008).

Computational Details

All calculations were carried out using Density Functional Theory as implemented in the Jaguar 6.0 suite 1 of ab initio quantum chemistry programs. Geometry optimizations were performed with the PBE^{2} functional and the $6-31 \mathrm{G}^{* *}$ basis set with no symmetry restrictions. Transition metals were represented using the Los Alamos LACVP basis ${ }^{3,4}$. The energies of the optimized structures were reevaluated by additional single-point calculations on each optimized geometry using Dunning's correlation-consistent triple- ζ basis set ${ }^{5}$ cc-pVTZ(-f) that includes a double set of polarization functions. For all transition metals, we used a modified version of LACVP, designated as LACV3P, in which the exponents were decontracted to match the effective core potential with the triple- ζ quality basis.

The models used in this study consist of ~ 80 atoms, which represent the non-truncated substrates that were also used in the experimental work. Although a smaller model may also able to reproduce the most important features of the studied reaction qualitatively, we chose to employ the large scale model faithfully construct a realistic model chemistry.

References

1. Jaguar, version 6.0, Schrödinger, L.L.C, New York, NY, 2005.
2. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865; Phys. Rev. Lett (Erratum) 1997, 78, 1386.
3. Hay, P. J.; Wadt, W. R., J. Chem. Phys. 1985, 82, 270.
4. Wadt, W. R.; Hay, P. J., J. Chem. Phys. 1985, 82, 284.
5. Dunning, T. H., J. Chem. Phys. 1989, 90, 1007.

S1. Optimized structure of isomers of (PNP) $\operatorname{IrCl}_{2}(\mathbf{F}, \mathbf{G 1}$ and G2).

F (+17.76*)

G1 (+14.55)

G2 (0.00)

* Numbers in parenthesis are relative electronic energies in $\mathrm{kcal} / \mathrm{mol}$.

Select bond length (in \AA) and bond angle (in ${ }^{\circ}$).

F		G1		G2	
Ir-P1	2.425	Ir-P1	2.297	Ir-P1	2.323
Ir-P2	2.407	Ir-P2	2.458	Ir-P2	2.422
Ir-N	2.014	Ir-N	2.367	Ir-N	2.237
Ir-Cl1	2.372	Ir-Cl1	2.436	Ir-Cl1	2.573
Ir-Cl2	2.484	Ir-Cl2	2.430	Ir-Cl2	2.411
P1-Ir-P2	165.0	Ir-C1	2.116	Ir-C1	2.135
N-Ir-Cl2	166.4	N-H1	1.034	N-H1	1.055
N-Ir-Cl1	109.5	P1-Ir-P2	178.1	P1-Ir-P2	171.8
Cl1-Ir-Cl2	83.8	N-Ir-C1	158.6	N-Ir-C12	171.4
		Cl1-Ir-Cl2	175.5	C1-Ir-Cl1	163.5

S1. Optimized structure of isomers of (PNP) $\mathrm{IrHCl}(\mathbf{H}$ and $\mathbf{I})$.

H (0.00^{*})

I (+2.14)

* Numbers in parenthesis are relative electronic energies in $\mathrm{kcal} / \mathrm{mol}$.

Select bond length (in \AA) and bond angle (in ${ }^{\circ}$):

H		I	
Ir-P1	2.372	Ir-P1	2.301
Ir-P2	2.364	Ir-P2	2.365
Ir-N	2.073	Ir-N	2.400
Ir-Cl1	2.476	Ir-Cl1	2.595
Ir-H1	1.545	Ir-C1	2.127
P1-Ir-P2	174.9	Ir-H2	1.579
N-Ir-H1	107.9	N-H1	1.047
N-Ir-Cl	79.1	P1-Ir-P2	170.6
H1-Ir-Cl	172.9	C1-Ir-Cl1	163.6
		N-Ir-H2	171.6

S5. Optimized structures.

F			
Ir	15.355572485		
P	16.454177725	0.385855909	19.224254000
P	13.949163108	4.141170552	
Si	15.631019323	1.755145155	21.979647669
Si	12.893153182	3.163514093	20.746227904
N	14.688772081	2.802667618	20.806774603
C	17.127554510	2.779637877	22.483412693
H	16.821334138	3.637023501	23.106872621
H	17.670842947	3.169269805	21.607957689
H	17.827805682	2.174001199	23.083301395
C	14.628068977	1.271615507	23.508011402
H	14.215327927	2.156813811	24.020184120
H	15.290180539	0.761615169	24.229387531
H	13.797123334	0.582219725	23.289180071
C	16.110220312	0.156628704	21.049820947
H	16.962938810	-0.332307465	21.552506375
H	15.265453009	-0.545611258	21.154508667
C	15.223934418	-0.819837498	18.393199937
C	18.282160216	-0.058595683	18.953937111
C	12.490107572	4.423422032	22.096891373
H	13.172808926	5.287120674	22.119680363
H	12.542264326	3.934751979	23.084623458
H	11.463521274	4.810498535	21.979161768
C	11.828250883	1.634625661	21.061776193
H	11.835743660	0.889993398	20.251896326
H	10.784510447	1.982654542	21.161471544
H	12.085187047	1.128463249	22.005219722
C	12.433530421	3.831245645	18.975401989
H	11.845264848	3.038090656	18.480809771
H	11.775396485	4.715076880	19.041945715
C	14.246708059	6.029116249	18.037799323
C	13.005331570	6.769579141	17.496872584
H	13.194597231	7.856396189	17.550272375
H	12.093613840	6.572612876	18.083601325
H	12.800973823	6.523058344	16.443024150
C	14.038758939	3.374978715	16.162801780
C	14.965299742	-2.171768077	19.080940947
C	15.591933424	-1.078355090	16.920072679
C	13.953239463	0.058281312	18.487527801
C	18.540998391	-1.558584673	19.192215430
C	19.106612596	0.783538773	19.953180834
C	18.680864633	0.353285446	17.521221334
C	14.162433208	4.314453834	14.952264257
C	12.825237248	2.458372347	15.924753073
C	15.369497208	2.600864501	16.470064392
C	14.460247050	6.375551751	19.526106109
C	15.494589931	6.467400369	17.241150910
H	20.177844792	0.592285205	19.766850248
H	18.908339512	0.514937666	21.003251294
H	18.928774290	1.861884301	19.819857701
H	19.626210316	-1.751645879	19.122662688

H	18.048212545	-2.194047898	18.439204486
H	18.215601136	-1.888836193	20.193189698
H	19.768084095	0.205832356	17.399038301
H	18.457324444	1.415977790	17.335112188
H	18.180057359	-0.251731254	16.751152785
H	14.181649113	-2.720611779	18.528141920
H	14.617626774	-2.077361139	20.121803774
H	15.867895588	-2.801663423	19.079687126
H	14.729433735	-1.534823484	16.402440458
H	16.431163809	-1.786064856	16.836424120
H	15.862714567	-0.159007478	16.381912649
H	13.120743605	-0.339841921	17.874368589
H	14.087328042	1.093995486	17.977323252
H	13.597388764	0.178522247	19.517996096
H	14.609402689	7.465767108	19.620709622
H	15.362210222	5.883963869	19.927074158
H	13.587260869	6.118085261	20.145972543
H	15.726431164	7.511308950	17.516644766
H	15.320212176	6.455414358	16.156773452
H	16.376774493	5.854420131	17.473964561
H	14.226434271	3.695012477	14.039574460
H	15.070751246	4.930130555	14.987241061
H	13.285582866	4.973224811	14.837293480
H	16.245193318	3.201387548	16.171756445
H	13.018399799	1.827107407	15.039511555
H	11.916645304	3.048465316	15.719430977
H	12.598854432	1.781676033	16.763427817
H	15.400605999	1.643752813	15.922020878
Cl	17.205974229	3.817290002	18.846447128
H	15.158932276	3.721242338	20.864992296

G1
$\begin{array}{lllll}\text { Ir } & 15.196006387 & 2.378568316 & 18.509968144\end{array}$
P $\quad 16.4090909930 .33820908319 .149747097$
P $\quad 14.127349941 \quad 4.322491279 \quad 17.913592261$
$\begin{array}{llll}\text { Si } & 15.338904638 & 1.674248912 & 21.905495792\end{array}$
Si $\quad 12.829443250 \quad 3.425939434 \quad 20.629121891$
$\begin{array}{llll}\mathrm{N} & 14.541552305 & 2.812528948 & 20.743007802\end{array}$
C $\quad 16.319982671 \quad 2.754397870 \quad 23.117481673$
H $\quad 15.656926293 \quad 3.405566941 \quad 23.711661516$
$\begin{array}{lllll}\mathrm{H} & 17.032317787 & 3.395276883 & 22.569981382\end{array}$
$\begin{array}{lllll}\mathrm{H} & 16.901755430 & 2.134863220 & 23.821711941\end{array}$
C $14.069310974 \quad 0.673167250 \quad 22.889918645$
$\begin{array}{lllll}\mathrm{H} & 13.521969506 & 1.335440097 & 23.582342493\end{array}$
H $\quad 14.586323375-0.086491808 \quad 23.501385631$
H $\quad 13.334154857 \quad 0.153981303 \quad 22.258898952$
C $16.638914119 \quad 0.595765924 \quad 20.993134852$
H $\quad 17.572370925 \quad 1.172238138 \quad 21.101926131$
H $16.794232766-0.361937356 \quad 21.523562770$
C $15.554310215-1.39971082719 .091515617$
C $\quad 18.227179094 \quad 0.178852436 \quad 18.389271895$
C $12.580119006 \quad 4.709094325 \quad 22.014671339$
H $\quad 13.398285375 \quad 5.439705182 \quad 22.108027742$
$\begin{array}{llll}\text { H } & 12.499050615 & 4.181909817 & 22.981235725\end{array}$
H $\quad 11.640829028 \quad 5.271222722 \quad 21.871444251$
C $\quad 11.531446138 \quad 2.090064965 \quad 20.930866901$
H $\quad 11.674544898 \quad 1.225421373 \quad 20.268138499$
H $\quad 10.537392205 \quad 2.521525556 \quad 20.716536704$
H $\quad 11.527270087 \quad 1.757039645 \quad 21.980838951$
C $12.530014600 \quad 4.233229666 \quad 18.876073067$
H $\quad 11.883218842 \quad 3.51748263318 .341437598$
H $\quad 11.994992793 \quad 5.195557008 \quad 18.949464097$
C $\quad 14.690188131 \quad 6.14653003318 .169887832$
C $\quad 13.610167357 \quad 7.083222404 \quad 17.583193128$
$\begin{array}{lllll}\text { H } & 13.935448336 & 8.131077542 & 17.718866874\end{array}$
H $12.633570207 \quad 6.97856597418 .083154151$
$\begin{array}{llll}\mathrm{H} & 13.461822043 & 6.920204423 & 16.503763864\end{array}$
C $\quad 14.247114619 \quad 3.727760024 \quad 16.064635513$
C $16.379615625-2.58217952719 .653667731$
C $15.154092642-1.68484005717 .629167619$
C 14.295608999 -1.317375263 19.984338392
C 18.734668437 -1.254925768 18.138646907
C $\quad 19.263643507 \quad 0.857060598 \quad 19.309461379$
C $\quad 18.191452857 \quad 0.91109093317 .032404703$
C $\quad 14.843380313 \quad 4.706458353 \quad 15.039280412$
C $\quad 12.883101396 \quad 3.264173583 \quad 15.527363574$
C $\quad 15.271117741 \quad 2.579375107 \quad 16.404507913$
C $\quad 14.813931170 \quad 6.398260525 \quad 19.685466452$
C $\quad 16.050466689 \quad 6.473223832 \quad 17.514533547$
$\begin{array}{lllll}\mathrm{H} & 20.238373014 & 0.861004039 & 18.787338922\end{array}$
H $\quad 19.404395860 \quad 0.299580036 \quad 20.251104697$
H $19.000967187 \quad 1.899829218 \quad 19.536939600$
H $19.727432883-1.177373782 \quad 17.657461527$
H $18.093014295-1.83026874417 .454089332$
H $18.871261227-1.82613595319 .068678450$
$\begin{array}{lllll}\mathrm{H} & 19.181650980 & 0.820672799 & 16.548036023\end{array}$
H $\quad 17.961787317 \quad 1.977490777 \quad 17.162406192$
H $\quad 17.440827364 \quad 0.477003608 \quad 16.350932652$
H $\quad 15.679220536-3.40530047419 .885207823$
H $16.900366349-2.333856983 \quad 20.594769803$
H $17.116209890-2.978155543 \quad 18.945215097$
H $14.627454066-2.655518067 \quad 17.576515017$
H $\quad 16.032069642-1.751361846 \quad 16.965111491$
H $\quad 14.479749118 \quad-0.905510678 \quad 17.243461042$
H $13.667789292-2.205760090 \quad 19.785414050$
H $13.685840488-0.42682664419 .779882976$
H $14.570476944-1.348240417 \quad 21.050773423$
H $\quad 15.091714762 \quad 7.455415212 \quad 19.851710061$
H $\quad 15.607008246 \quad 5.773625589 \quad 20.128765846$
H $\quad 13.865226269 \quad 6.226605411 \quad 20.214696546$
$\begin{array}{lllll}\mathrm{H} & 16.413028405 & 7.429887316 & 17.933329173\end{array}$
H $\quad 15.964511171 \quad 6.61204505416 .428837607$
H $\quad 16.806532165 \quad 5.703552369 \quad 17.727487752$
H $\quad 14.881399500 \quad 4.183964616 \quad 14.065476019$
H $\quad 15.871862788 \quad 5.003035857 \quad 15.285092020$
$\begin{array}{lllll}\mathrm{H} & 14.229161763 & 5.612284051 & 14.897089273\end{array}$
H $\quad 16.279419263 \quad 2.874759475 \quad 16.069236629$
H $13.037444166 \quad 2.75609292714 .557813973$
H $\quad 12.218221322 \quad 4.128033593 \quad 15.348300430$

H	12.384013077	2.553223785	16.198308445
H	14.981572329	1.632956206	15.916233798
Cl	17.190753784	3.620742606	19.152137878
H	15.152986416	3.646177912	20.767648046
Cl	13.154880875	1.141941861	18.052772684

G2

Ir			
	16.	0.	97
	14.	4.4	
Si	15.00236855	1.2	
Si	12.804205119	3.24263470	
N	14.472432545	2.532869310	20.
	15.6615505	2.05178672	
	14	2.60430575	23.944672265
	16	2.	
	16.0	1.3	24
C	13.5	0.0	22.362391262
H	12.879741620	0.632718800	23.043065009
	13.957150132	-0.770608933	22.926648676
	12.9629		
C	16.4415795	. 29083	
H	17.338619	0.8	21
H	16.5130	-0.761	21.344648359
C	15.675160684	-1.115347798	18.504656276
	18.477619	0.258666545	18.878342998
C	12.429279	889321	22
	13.2099532	. 586208	22.
	12.350261	.	
H	11.468916212	4.433303	
C	11.469242311	1.99149105	20.266765058
	11.724089632	1.397379508	001
	10.523624743	2.521789	0.059440540
	11.27811408	1.297632992	21
	12.945546	4.738317	19.
	11.972825	5.0	
	13.327250269	5.563753672	20.202306725
	14.78169515	. 234762666	
	13.58777473	7.0780002	7.
	13.93241	8.108302	
	12.7	7.145125	
	13.153758179	6.68214754	16.364966600
	13.312182693	3.46272044	16.872412776
	16.341547038	-2.44818093	
	15.55768298	-1.057124181	6.967340912
	14.257688	-1.1068120	
	19.103887406	-0.7874697	
	19.163256869	1.60926933	19.165116785
	18.779871615	-0.135906813	17.417457650
	13.798545459	3.790851768	15.449389233
	11.778260008	3.531787978	16.895574253
	13.910419471	2.095577920	17.369508144
	15.380575272	6.853617237	19.072007286
	15.893142089	6.193159048	16.720059412
H	20.251893190	1.477239033	19.018

H $\quad 18.999862398 \quad 1.956010047 \quad 20.196711337$
H $\quad 18.808160918 \quad 2.399723436 \quad 18.489765341$
H $20.185893269-0.83771186519 .608026004$
H $18.698808913-1.800945141 \quad 19.705081935$
H $19.008555146-0.503005929 \quad 20.888205000$
H $19.872055210-0.069091542 \quad 17.259695953$
H $\quad 18.294546853 \quad 0.549700109 \quad 16.706358607$
H $18.486133333-1.17244887317 .187042523$
H $\quad 15.670591619-3.277236110 \quad 18.608444161$
H $16.509213710-2.537989626 \quad 19.987938752$
H $\quad 17.299814342$-2.610965763 18.385859106
H $14.948506437-1.91388295916 .625096812$
H 16.532274628 -1.120291418 16.465140306
H $\quad 15.067542236-0.134817748 \quad 16.631477882$
H $\quad 13.636638301-1.86474853318 .600915415$
H $13.766448272-0.12827444318 .995517570$
H 14.278895447 -1.369391219 20.181373977
H $\quad 15.838215374 \quad 7.824619646 \quad 18.809711901$
H $\quad 16.159701553 \quad 6.20694863919 .508174649$
H $\quad 14.619359896 \quad 7.05951325319 .843464899$
H $\quad 16.277661190 \quad 7.219962815 \quad 16.578757654$
$\begin{array}{lllll}\mathrm{H} & 15.530417127 & 5.835236952 & 15.746099686\end{array}$
H $\quad 16.726855378 \quad 5.54511453317 .029439088$
H $\quad 13.357719256 \quad 3.052902221 \quad 14.754248554$
H $\quad 14.892559713 \quad 3.71397335415 .367741165$
H $13.470693946 \quad 4.791368762 \quad 15.118484797$
H $\quad 14.3141867131 .547719881 \quad 16.503205834$
H $\quad 11.374265810 \quad 2.813731389 \quad 16.158945325$
H $\quad 11.410656845 \quad 4.534604257 \quad 16.613162690$
H $\quad 11.349423182 \quad 3.271059998 \quad 17.874622011$
H $\quad 13.125344377 \quad 1.476854209 \quad 17.837938719$
$\begin{array}{lllll}\text { Cl } & 16.865433618 & 2.836577102 & 16.738754898\end{array}$
$\begin{array}{lllll}\text { Cl } & 17.057200614 & 3.862655534 & 20.316734609\end{array}$
H $\quad 15.119205775 \quad 3.308897596 \quad 21.000537640$
H

C $12.883453508 \quad 4.283404246 \quad 22.206841924$
H $\quad 13.647129472 \quad 5.075835381 \quad 22.277031491$
H $\quad 12.939497978 \quad 3.685103439 \quad 23.131172578$
H $\quad 11.892675300 \quad 4.770476778 \quad 22.194579919$
C $\quad 11.709049127 \quad 1.944829970 \quad 20.562264649$
H $\quad 11.796055417 \quad 1.34697105419 .638640787$
H $\quad 10.717712002 \quad 2.431605465 \quad 20.561094704$
H $\quad 11.739795399 \quad 1.247870627 \quad 21.415456633$
C $\quad 12.871829094 \quad 4.353623716 \quad 19.105732999$
H $\quad 11.969627560 \quad 3.997885002 \quad 18.580227723$
$\begin{array}{lllll}\text { H } & 12.699038765 & 5.413835625 & 19.357541033\end{array}$
C $\quad 15.418728196 \quad 5.67230532318 .293452278$
C $\quad 14.792305517 \quad 7.000378436 \quad 17.827999253$
H $\quad 15.434642189 \quad 7.835497899 \quad 18.163727515$
$\begin{array}{lllll}\mathrm{H} & 13.791517687 & 7.167332945 & 18.261510020\end{array}$
H $\quad 14.713355465 \quad 7.069989074 \quad 16.732324516$
C $\quad 13.510626053 \quad 4.240534626 \quad 16.199481052$
C $16.648491036-2.573604720 \quad 19.606579795$
C $15.644172265-1.51916311317 .547987317$
C 14.477432713-1.319034457 19.759213023
C $19.410391932-0.517604619 \quad 20.056183081$
C $\quad 19.032709487 \quad 1.761232203 \quad 19.067774651$
C $18.856478425-0.290106024 \quad 17.624277417$
C $\quad 12.355029538 \quad 5.263096415 \quad 16.140340145$
C $12.947655113 \quad 2.830682283 \quad 15.911505686$
C $\quad 14.548583655 \quad 4.591753376 \quad 15.113946948$
C $\quad 15.641505554 \quad 5.749881522 \quad 19.820464426$
C $\quad 16.790895456 \quad 5.465407235 \quad 17.617705636$
H $\quad 20.1263082791 .809446004 \quad 18.911454128$
H $\quad 18.820053204 \quad 2.238888502 \quad 20.041212398$
$\begin{array}{lllll}\text { H } & 18.541043222 & 2.343485010 & 18.272459155\end{array}$
H 20.468333028 -0.491048822 19.737176756
H $\quad 19.112582417-1.57467689320 .117141777$
H $\quad 19.372094822-0.093601566 \quad 21.071908138$
H $19.920744914-0.118869239 \quad 17.377959302$
H $\quad 18.243933112 \quad 0.203599975 \quad 16.855496098$
H 18.688071298 -1.378743189 17.584496009
H $\quad 16.040182518$-3.487997361 19.479752911
H $\quad 16.880492930-2.484075577 \quad 20.681428502$
H $\quad 17.591181004-2.730839957 \quad 19.059629315$
H $\quad 15.041321054-2.426625480 \quad 17.361414481$
H $\quad 16.590274532-1.62572362716 .997880818$
H $\quad 15.112939983-0.653703576 \quad 17.122955542$
H $\quad 13.896134608$-2.210259430 19.460992748
H $\quad 13.908164956-0.42069863719 .469821103$
H $14.562939532-1.332864773 \quad 20.857966098$
$\begin{array}{lllll}\mathrm{H} & 16.392122624 & 6.534145046 & 20.028402215\end{array}$
$\begin{array}{lllll}\mathrm{H} & 16.006697640 & 4.797944726 & 20.237767571\end{array}$
H $\quad 14.721596650 \quad 6.023078946 \quad 20.363006833$
H $\quad 17.450198220 \quad 6.314586700 \quad 17.876577466$
H $\quad 16.723944143 \quad 5.408011277 \quad 16.521735148$
H $\quad 17.269968735 \quad 4.534580186 \quad 17.962113959$
H $\quad 11.941840770 \quad 5.260008198 \quad 15.115316191$
H $\quad 12.681667358 \quad 6.290171688 \quad 16.359996563$
H $\quad 11.527562686 \quad 5.014694765 \quad 16.823414709$
H $\quad 14.067621034 \quad 4.492375029 \quad 14.123401435$

H	15.412105531	3.910718345	15.146699431
H	14.903299450	5.631702837	15.197129530
H	12.401454702	2.851699798	14.950791050
H	12.238530692	2.496099761	16.689175323
H	13.760675164	2.092246924	15.836629337
Cl	16.548122304	2.017023674	16.400463851
H	14.468788065	1.249749437	17.867349541

I

	15.502053206	2.6	
	16.5	0.501235370	
	14.2	4.4	
Si	15.0		
	12.		
	14.4		
	13.61		
	8156	. 57	
	. 035440	-0.839281	
	12.97	-0.3084836	21
	16.4660195	0.3271816	
	17.3551568	. 88954	21.3
		-0.71732	
	15.62		
	,	0.332	
	12.235673267	3.9502309	
		4.6766	
	12.132	3.16025	
	11.265082		
	11.4611252	1.948	
	11.750621031	1.3797839	
	,	2.45	
		1.23034	
	12.898096160	4.688609	
	11.92430509	. 957	
	13.2140440	5.5532032	
	832	6.2000682	
	. 7194	,	
	14.0862612	8.066207	
	12.8288165	7.11543	
	,	, 626	
	13.4162	3.459569	
	16.3604	-2.424661056	
	15.403	-1.1202667	
	14.2	-1.137981680	
	19.1	-0.683474663	19.6092
	19.055040872	, 711218586	18.9248
	18.576062223	-0.046625160	
	14.062779776	3.756552992	15.45
	11.889765329	3.54665112	
	13.		

C $\quad 16.068860813 \quad 6.088586226 \quad 16.915800111$
$\begin{array}{lllll}\text { H } & 20.128139874 & 1.628641484 & 18.669281705\end{array}$
$\begin{array}{lllll}\text { H } & 18.973659022 & 2.070718993 & 19.961260426\end{array}$
$\begin{array}{lllll}\mathrm{H} & 18.594682844 & 2.480918354 & 18.287932954\end{array}$
$\begin{array}{lllll}\text { H } & 20.213304571 & -0.680170103 & 19.326584015\end{array}$
H $18.781064360-1.714691051 \quad 19.502000886$
H 19.093990908 -0.410560247 20.675402866
$\begin{array}{lllll}\text { H } & 19.640576791 & 0.072842290 & 16.959827734\end{array}$
$\begin{array}{lllll}\text { H } & 17.989537268 & 0.614010895 & 16.572391303\end{array}$
$\begin{array}{lllll}\text { H } & 18.303954872 & -1.092765155 & 17.021650435\end{array}$
H $\quad 15.694957899-3.28182435718 .716884293$
H $\quad 16.614796824-2.474139424 \quad 20.003580550$
H $\quad 17.281394992-2.578014078 \quad 18.348554313$
$\begin{array}{llllll}\text { H } & 14.840184855 & -2.031449948 & 16.746184324\end{array}$
H $16.340339543-1.12892617716 .446949308$
H $\quad 14.814157486-0.25272585716 .698648961$
H $\quad 13.621365466-1.926637790 \quad 18.782387264$
H $\quad 13.723855498-0.17634904719 .123267046$
H $\quad 14.338366817-1.368023987 \quad 20.308639676$
$\begin{array}{lllll}\text { H } & 15.792131092 & 7.813516488 & 18.912609604\end{array}$
$\begin{array}{lllll}\text { H } & 15.991550632 & 6.220800781 & 19.704132142\end{array}$
$\begin{array}{lllll}\text { H } & 14.435558675 & 7.112429740 & 19.812361938\end{array}$
$\begin{array}{lllll}\text { H } & 16.505203942 & 7.094477142 & 16.777724938\end{array}$
$\begin{array}{lllll}\text { H } & 15.824477982 & 5.693262967 & 15.919317689\end{array}$
$\begin{array}{lllll}\mathrm{H} & 16.832192547 & 5.438452148 & 17.373124425\end{array}$
$\begin{array}{lllll}\mathrm{H} & 13.679577309 & 3.025208147 & 14.722457912\end{array}$
$\begin{array}{lllll}\text { H } & 15.157133498 & 3.641417609 & 15.501332586\end{array}$
$\begin{array}{lllll}\text { H } & 13.822513729 & 4.763062157 & 15.075603826\end{array}$
H $\quad 14.318254083 \quad 1.49149744316 .510045109$
H $\quad 11.543569224 \quad 2.827334310 \quad 15.929582146$
$\begin{array}{lllll}\text { H } & 11.557879506 & 4.551808498 & 16.377785337\end{array}$
H $\quad 11.374415897 \quad 3.293866265 \quad 17.634629864$
$\begin{array}{lllll}\mathrm{H} & 13.139049066 & 1.518745262 & 17.843976689\end{array}$
$\begin{array}{lllll}\text { H } & 16.370476121 & 2.798273072 & 17.427114026\end{array}$
$\begin{array}{llllll}\text { Cl } & 17.052516189 & 3.885594059 & 20.366772958\end{array}$
H $\quad 15.0635862523 .312840554 \quad 21.075589734$

EPR of (PNP)IrCl, $\mathbf{2 2}^{\circ} \mathrm{C}$ (sim at bottom)

EPR of (PNP)IrCl at -90 ${ }^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (sim at bottom)

All EPR at $9.3466 \mathrm{GHz}: 22^{\circ} \mathrm{Cg}=2.005 ;-90^{\circ} \mathrm{Cg}=1.742,2.32,3.13$ all in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

All spectra shown below were made at $25^{\circ} \mathrm{C}$. NMR spectra were recorded with a Varian Unity INOVA instrument ($400 \mathrm{MHz}{ }^{1} \mathrm{H} ; 162 \mathrm{MHz}^{31} \mathrm{P}$). Solvents are either $\mathrm{C}_{6} \mathrm{D}_{6}$ (impurity at 7.15 ppm) or $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (5.32 ppm).

[^0]: 1 SAINT, Bruker Analytical X-Ray Systems, Madison, WI, current version.
 2 An empirical correction for absorption anisotropy. R. Blessing, Acta Cryst. A51, 33-38 (1995).

 3 Sir2004, A Program for Automatic Solution and Refinement of Crystal Structures.
 M. C. Burla, R. Caliandro, M. Carnalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Sagna. Vers. 1.0 (2004).

 4 SHELXTL-Plus, Bruker Analytical X-Ray Systems, Madison, WI, current version.

