Synthesis of 1-methyleneindenes via palladium-catalyzed tandem reactions

Shengqing Ye, ${ }^{\mathrm{a}}$ Ke Gao, ${ }^{\mathrm{a}}$ Haibo Zhou, ${ }^{\text {a }}$ Xiaodi Yang, ${ }^{\mathrm{c}}$ and Jie Wu* ${ }^{\text {a,b }}$
${ }^{a}$ Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China ${ }^{b}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China ${ }^{c}$ Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, China.

jie_wu@fudan.edu.cn

Supporting Information

1. General experimental methods (S2)
2. Condition screening, general experimental procedure and characterization data. (S2-S12).
3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound 2-4 (S13-S48).
4. The crystal structure and other crystallographic data of compound 4a (S49-S51).

General experimental methods:

All reactions were performed in reaction tubes under nitrogen atmosphere. Flash column chromatography was performed using silica gel ($60-\AA$ pore size, $32-63 \mu \mathrm{~m}$, standard grade). Analytical thin-layer chromatography was performed using glass plates pre-coated with $0.25 \mathrm{~mm} 230-400$ mesh silica gel impregnated with a fluorescent indicator (254 nm). Thin layer chromatography plates were visualized by exposure to ultraviolet light. Organic solutions were concentrated on rotary evaporators at ~ 20 Torr (house vacuum) at $25-35^{\circ} \mathrm{C}$. Commercial reagents and solvents were used as received. Nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal tetramethylsilane on the δ scale.

Table 1. Initial Studies for Pd-Catalyzed Reaction of (E)-Ethyl 3-(2-(2-phenylethynyl)phenyl)acrylate 1a

		$\overrightarrow{\mathrm{e}}$			
entry	[Pd]	$\begin{aligned} & \mathrm{CuCl}_{2} \\ & \text { (equiv) } \end{aligned}$	Solvent / T $\left({ }^{\circ} \mathrm{C}\right)$	time (h)	yield $(\%)^{\mathrm{a}}$
1	$\mathrm{PdCl}_{2}(10 \mathrm{~mol} \mathrm{\%})$	2.0	DMAc / 120	6	40
2	$\mathrm{PdCl}_{2}(10 \mathrm{~mol} \%)$	2.0	DMAc / 80	6	41
3	$\mathrm{PdCl}_{2}(10 \mathrm{~mol} \%)$	2.0	DMAc / 50	72	40
4	$\mathrm{PdCl}_{2}(10 \mathrm{~mol} \%)$	2.0	DMAc / rt	72	trace
5	$\mathrm{PdCl}_{2}(10 \mathrm{~mol} \%)$	2.0	toluene / 80	12	trace
6	$\mathrm{PdCl}_{2}(10 \mathrm{~mol} \%)$	2.0	dioxane / 80	12	8
7	$\mathrm{PdCl}_{2}(10 \mathrm{~mol} \%)$	2.0	MeCN / 80	12	11
8	$\mathrm{PdCl}_{2}(10 \mathrm{~mol} \%)$	2.0	DCE / 80	12	25
9	$\mathrm{PdCl}_{2}(10 \mathrm{~mol} \%)$	2.0	THF / 80	12	trace
10	$\mathrm{PdCl}_{2}(10 \mathrm{~mol} \%)$	2.0	DMF / 80	12	39

11	$\mathrm{PdCl}_{2}(10 \mathrm{~mol} \%)$	2.0	DME / 80	12	20
12	$\mathrm{PdCl}_{2}(10 \mathrm{~mol} \%)$	2.0	NMP / 80	6	36
13	$\mathrm{PdCl}_{2}(10 \mathrm{~mol} \%)$	2.0	DMSO / 80	12	NR
14	$\mathrm{PdCl}_{2}(10 \mathrm{~mol} \%)$	4.0	DMAc / 80	3	57
15	$\mathrm{PdCl}_{2}(10 \mathrm{~mol} \%)$	6.0	DMAc / 80	7	54
16	-	4.0	DMAc / 80	24	NR
17	$\mathrm{PdCl}_{2}(5 \mathrm{~mol} \%)$	4.0	DMAc / 80	5	58
18	$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(5 \mathrm{~mol} \%)$	4.0	DMAc / 80	24	53
19	$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$	4.0	DMAc / 80	3	66
20	$\mathrm{Pd}(\mathrm{TFA})_{2}(5 \mathrm{~mol} \%)$	4.0	DMAc / 80	3	57
21	$\mathrm{PdCl}_{2}(\mathrm{dppf})(5 \mathrm{~mol} \%)$	4.0	DMAc / 80	12	33
22	$\mathrm{Pd}(\mathrm{OAc})_{2}(2 \mathrm{~mol} \%)$	4.0	DMAc / 80	12	55

General procedure for Pd-catalyzed reaction of 2-alkenylphenylacetylene 1 in the presence of CuCl_{2}.

2-Alkenylphenylacetylene $\mathbf{1}$ (0.25 mmol) was added to a solution of $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($0.0125 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $\mathrm{CuCl}_{2}(1 \mathrm{mmol}, 4$ equiv) in DMAc (1.0 mL). The solution was then stirred at $80^{\circ} \mathrm{C}$. After completion of reaction as indicated by TLC, the reaction was quenched with aqueous $\mathrm{HCl}(1.0 \mathrm{M})$, extracted with EtOAc (2 x 10 mL), dried by anhydrate $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent followed by purification on silica gel provided the product 2 .

(E)-Ethyl 2-(3-chloro-2-phenyl-1H-inden-1-ylidene)acetate (2a)

Yield: 66% (51 mg), yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H), 4.27 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 6.18 (s, 1H), 7.31-7.49 (m, 8H), 8.64 (d, $J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2,60.9,119.0,120.5,127.0,128.1,128.2$, $128.4,130.3,130.5,131.5,131.7,136.2,137.6,140.8,149.4,165.9$; IR (KBr): $v_{\max } / \mathrm{cm}^{-1} 3060,2979,1713,1619,1449 ; \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 311\left(\mathrm{M}^{+}+1\right), 333\left(\mathrm{M}^{+}+\mathrm{Na}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClNaO}_{2}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 333.0658$, found 333.0668 .

(E)-tert-Butyl 2-(3-chloro-2-phenyl-1H-inden-1-ylidene)acetate (2b)

Yield: 60% (51 mg), yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.53(\mathrm{~s}, 9 \mathrm{H}), 6.13$ (s, $1 \mathrm{H}), 7.30-7.50(\mathrm{~m}, 8 \mathrm{H}), 8.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 28.1, 81.6, 118.9, 122.7, 126.7, 127.9, 128.2, 128.3, 130.0, 130.5, 131.6, 131.9, 135.5, 137.6, 140.7, 147.7, 165.5; IR (KBr): $v_{\max } / \mathrm{cm}^{-1} 3060,2974,1713,1445,1367$; MS (ESI): m/z $339\left(\mathrm{M}^{+}+1\right)$, $361\left(\mathrm{M}^{+}+\mathrm{Na}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{ClNaO}_{2}(\mathrm{M}+$ Na^{+}) 361.0971 , found 361.1007.

(E)-2-(3-Chloro-2-phenyl-1H-inden-1-ylidene)-1-(4-methoxyphenyl)ethanone (2c) Yield: $90 \%(84 \mathrm{mg})$, red oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.84(\mathrm{~s}, 3 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.52$ (m, 4H), 7.87 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.94(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$) ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 55.5,114.0,119.0,125.1,127.3,127.6,128.2,128.4,129.7,130.3,130.4$, $131.3,131.8,131.9,135.0,137.0,140.6,145.5,164.1,191.8 ; \mathrm{IR}(\mathrm{KBr}): v_{\max } / \mathrm{cm}^{-1}$ 3056, 2924, 1658, 1596, 1444; MS (ESI): m/z 373 (${ }^{+}+1$); HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{ClO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 373.0995$, found 373.1025.

(E)-2-(3-Chloro-2-phenyl-1H-inden-1-ylidene)-1-(4-chlorophenyl)ethanone (2d) Yield: 71% (67 mg), red oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.96(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.52(\mathrm{~m}, 9 \mathrm{H}), 7.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$,; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 119.2,125.3,125.7,127.9,128.3,128.5,129.1,130.1$, $130.2,130.4,131.6,131.7,135.8,136.1,137.1,140.1,140.7,147.3,191.5 ;$ IR (KBr): $v_{\max } / \mathrm{cm}^{-1} 3056,2928,1666,1593,1445$; MS (ESI): m/z 377 ($\mathrm{M}^{+}+1$); HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{ClO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 377.0500$, found 377.0524.

Dimethyl 2-(2-butyl-3-chloro-1H-inden-1-ylidene)malonate (2e)

Yield: 95% (79 mg), yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.93(\mathrm{t}, J=7.6 \mathrm{~Hz}$, 3H), $1.33-1.38$ (m, 2H), $1.41-1.47$ (m, 2H), 2.49 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.88 (s, $3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 7.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.43 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.8,22.8,165.3$, 25.7, 31.3, 52.9, 53.2, 118.7, 123.5, 127.2, 130.1, 132.7, 135.6, 139.9, 140.0, 143.2, 165.0; IR (KBr): $v_{\max } / \mathrm{cm}^{-1} 2951,2874,1724,1600,1460 ; \mathrm{MS}(\mathrm{ESI}): m / z 335\left(\mathrm{M}^{+}+1\right)$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ClO}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right) 335.1050$, found 335.1075.

(E)-Ethyl 2-(3-chloro-2-cyclopropyl-1H-inden-1-ylidene)acetate (2f)

Yield: 54% (37 mg), yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.78-0.81(\mathrm{~m}, 2 \mathrm{H})$, $0.96-1.00(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.50-1.56(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{q}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=7.3$
$\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 5.8,6.2,14.3,60.8,117.9,118.4,126.8$, 127.7, 130.0, 131.5, 136.4, 137.0, 141.2, 150.1, 166.1; IR (KBr): $v_{\max } / \mathrm{cm}^{-1} 3072,2975$, 2940, 1717, 1631, 1449; MS (ESI): m/z 275 ($\mathrm{M}^{+}+1$); HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 275.0839$, found 275.0839 .

(E)-Ethyl 2-(3-chloro-6-fluoro-2-phenyl-1H-inden-1-ylidene)acetate (2g)

Yield: $55 \%(45 \mathrm{mg})$, red solid, melting point: $58.5-59.1{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{dt}, J$ $=2.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=5.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=$ $7.5,1 \mathrm{H}), 7.47-7.49(\mathrm{~m}, 2 \mathrm{H}), 8.49(\mathrm{dd}, J=2.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 14.1,61.1,115.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=28.1 \mathrm{~Hz}\right), 116.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=24.0 \mathrm{~Hz}\right), 119.7(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{CF}}=7.8 \mathrm{~Hz}\right), 121.4,128.3,128.4,130.4,131.5,133.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=9.9 \mathrm{~Hz}\right), 135.6$, $136.8,137.5,148.7,163.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=243.7 \mathrm{~Hz}\right), 165.7$; IR (KBr): $v_{\max } / \mathrm{cm}^{-1} 3107$, 2975, 1717, 1584, 1460; MS (ESI): m/z 329 ($\mathrm{M}^{+}+1$); HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClFO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$329.0745, found 329.0742. Elem. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClFO}_{2}$: C, 69.41; H, 4.29; Found: C, 69.46; H, 4.14.

(E)-2-(3-Chloro-6-fluoro-2-phenyl-1H-inden-1-ylidene)-1-(4-methoxyphenyl)etha none (2h)

Yield: 64% (63 mg), red solid, melting point: 124.1-124.5 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 3.84(\mathrm{~s}, 3 \mathrm{H}), 6.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{dt}, J=2.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (s, 1H), $7.30(\mathrm{dd}, J=5.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.53(\mathrm{~m}, 5 \mathrm{H}), 7.76(\mathrm{dd}, J=2.3,9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.5,113.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=\right.$ $26.7 \mathrm{~Hz}), 114.0,116.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=22.9 \mathrm{~Hz}\right), 119.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.6 \mathrm{~Hz}\right), 127.9,128.3$,
$128.5,130.3,130.4,131.3,131.7,133.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=9.5 \mathrm{~Hz}\right), 134.6,136.5,136.9,145.1$, $162.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=245.0 \mathrm{~Hz}\right), 164.1,191.0$; IR (KBr): $v_{\max } / \mathrm{cm}^{-1} 3106,2932,2835,1650$, 1592, 1456; MS (ESI): m/z 391 (${ }^{+}+1$); HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{ClFO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 391.0901, found 391.0930. Elem. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{ClFO}_{2}$: C, 73.75; H, 4.13; Found: C, 73.55; H, 3.97.

(E)-Ethyl 2-(7-chloro-6-phenyl-5H-indeno[5,6-d][1,3]dioxol-5-ylidene)acetate (2i) Yield: 72% (64 mg), red oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), $4.25(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.34(\mathrm{~m}$, 2H), 7.39 (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.44-7.47$ (m, 2H), 8.30 (s, 1H); ${ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,60.8,100.8,101.7,109.2,119.8,125.4,128.0,128.3,130.5$, 131.7, 135.0, 136.5, 136.6, 147.6, 149.1, 165.9; IR (KBr): $v_{\max } / \mathrm{cm}^{-1} 3115,2986,2924$, 1716, 1588, 1460; MS (ESI): m/z 355 (${ }^{+}+1$); HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClO}_{4}(\mathrm{M}$ $\left.+\mathrm{H}^{+}\right)$355.0737, found 355.0767.

(E)-Ethyl 2-(3-chloro-5,6-dimethoxy-2-phenyl-1H-inden-1-ylidene)acetate (2j)

Yield: $78 \%\left(72 \mathrm{mg}\right.$), red solid, melting point: $113.3-113.6{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 4.25(\mathrm{q}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.48(\mathrm{~m}, 5 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2,56.1,56.3,60.7,102.7,112.1,119.3,123.9,128.0,128.2,130.5$, $131.8,134.8,135.5,136.3,148.5,150.1,150.7,166.1$; IR (KBr): $v_{\max } / \mathrm{cm}^{-1} 3122,3048$, 2932, 2831, 1713, 1600, 1483; MS (ESI): m/z 371 (${ }^{+}+1$); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClO}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right) 371.1050$, found 371.1076. Elem. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{ClO}_{4}$: C, 68.02; H, 5.16; Found: C, 68.02; H, 4.96.

General procedure for Pd-catalyzed reaction of 2-alkenylphenylacetylene 1 in the presence of CuBr_{2}.

2-Alkenylphenylacetylene 1 (0.25 mmol) was added to a solution of $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($0.0125 \mathrm{mmol}, 5 \mathrm{~mol} \%$), and CuBr_{2} ($1 \mathrm{mmol}, 4.0$ equiv) in DMAc (1.0 mL). The solution was then stirred at $80^{\circ} \mathrm{C}$. After completion of reaction as indicated by TLC, the reaction was quenched with aqueous $\mathrm{HCl}(1.0 \mathrm{M})$, extracted with EtOAc (2 x 10 mL), dried by anhydrate $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent followed by purification on silica gel provided the product 3 .

(E)-Ethyl 2-(3-bromo-2-phenyl-1H-inden-1-ylidene)acetate (3a)

Yield: 72% (64 mg), yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 4.27$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 6.17 ($\mathrm{s}, 1 \mathrm{H}$), $7.30-7.48(\mathrm{~m}, 8 \mathrm{H}), 8.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,60.9,120.3,120.5,126.9,127.4,128.0$, $128.2,128.3,130.3,130.4,131.7,132.8,141.2,142.0,149.9,166.0$; IR (KBr): $v_{\max } / \mathrm{cm}^{-1} 3060$, 2983, 1717, 1623, 1445; MS (ESI): m/z 355 ($\mathrm{M}^{+}+1$); HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 355.0334$, found 355.0344.

(E)-2-(3-Bromo-2-phenyl-1H-inden-1-ylidene)-1-(4-methoxyphenyl)ethanone (3b)

Yield: 60\% (63 mg), yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.84(\mathrm{~s}, 3 \mathrm{H}), 6.92(\mathrm{~d}$,
$J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.52$ (m, 5H), $7.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 55.5,114.0,120.3,124.9,126.1,127.4,127.6,128.3,128.4,129.8,130.4$, 131.3, 132.1, 132.9, 140.6, 141.8, 146.0, 164.1, 191.8; IR (KBr): $v_{\max } / \mathrm{cm}^{-1} 3060,2932$, 2835, 1654, 1592, 1507; MS (ESI): m/z 417 ($\mathrm{M}^{+}+1$); HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BrO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 417.0490$, found 417.0515 .

Diethyl 2-(3-bromo-2-phenyl-1H-inden-1-ylidene)malonate (3c)
Yield: $84 \%\left(90 \mathrm{mg}\right.$), yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.02(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.39(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.24(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.41(\mathrm{~m}, 7 \mathrm{H}), 7.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.5,13.8,61.6,62.3,120.9,123.7,126.3,127.7,127.8,127.9$, $129.0,130.3,131.5,132.9,133.9,138.7,141.0,143.9,163.8,164.7$; IR (KBr): $v_{\max } / \mathrm{cm}^{-1} 3064,2979,1724,1600,1445$; MS (ESI): m/z $427\left(\mathrm{M}^{+}+1\right)$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrO}_{4}\left(\mathrm{M}+\mathrm{H}^{\dagger}\right) 427.0545$, found 427.0562.

General procedure for Pd-catalyzed cross couplings of 3-chloro-1-methyleneindene $2 a$ with arylboronic acids.

3-Chloro-1-methyleneindene $\mathbf{2 a}(0.2 \mathrm{mmol})$ was added to a solution of arylboronic acids ($0.3 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(2 \mathrm{~mol} \%)$, S - $\mathrm{Phos}\left(4 \mathrm{~mol} \%\right.$), and $\mathrm{K}_{3} \mathrm{PO}_{4}(0.4$ mmol , 2equiv) in toluene $(1 \mathrm{~mL})$. The solution was then stirred at $80^{\circ} \mathrm{C}$. After
completion of reaction as indicated by TLC, the solvent was evaporated and the residue was purified on silica gel provided the desired product 4 .

(E)-Ethyl 2-(2-phenyl-3-p-tolyl-1H-inden-1-ylidene)acetate (4a)

Yield: $92 \%(67 \mathrm{mg})$, yellow solid, melting point: 147.7-147.9 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{~s}$, $1 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.31(\mathrm{~m}, 6 \mathrm{H}), 8.70(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2,21.3,60.6,119.8,120.4,126.9$, $127.2,127.3,128.1,128.9,129.1,129.7,130.8,130.9,133.3,134.2,137.6,139.0$, 144.4, 144.9, 152.2, 166.4; IR (KBr): $v_{\max } / \mathrm{cm}^{-1} 3052,2917,2854,1716,1611,1452 ;$ MS (ESI): m/z $367\left(\mathrm{M}^{+}+1\right)$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 367.1698$, found 367.1727. Elem. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{2}$: C, 85.22; H, 6.05; Found: C, 84.99; H, 5.99.

(E)-Ethyl 2-(3-(4-methoxyphenyl)-2-phenyl-1H-inden-1-ylidene)acetate (4b)

Yield: 70% (54 mg), yellow solid, melting point: $133.7-134.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{~s}$, $1 \mathrm{H}), 6.80$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.15-7.19$ (m, 4H), $7.26-7.32$ (m, 6H), $8.71(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2,55.1,60.6,113.7,119.5,120.4$, $126.0,126.9,127.2,127.3,128.1,129.7,130.6,131.0,133.3,134.2,138.7,144.4$, $144.5,152.2,159.2,166.5$; IR (KBr): $v_{\max } / \mathrm{cm}^{-1} 3056,2959,2835,1709,1608,1507$,

1449; MS (ESI): m/z $383\left(\mathrm{M}^{+}+1\right)$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 383.1647, found 383.1679. Elem. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{3}$: C, 81.65; H, 5.80; Found: C, 81.48; H, 5.50.

(E)-Ethyl 2-(2,3-diphenyl-1H-inden-1-ylidene)acetate (4c)

Yield: 99% (69.7 mg), yellow solid, melting point: 123.1-123.4 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 7.14$ - $7.16(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.30(\mathrm{~m}, 11 \mathrm{H}), 8.71(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 14.2,60.7,120.2,120.4,127.0,127.3,127.8,128.1,128.2,129.2,129.8$, $130.9,133.2,133.8,133.9,139.4,144.3,144.9,152.0,166.4$; IR (KBr): $v_{\max } / \mathrm{cm}^{-1}$ 3052, 2978, 1717, 1623, 1456; MS (ESI): m/z 353 (${ }^{+}+1$); HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 353.1542$, found 353.1563. Elem. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 85.20; H, 5.72; Found: C, 85.40; H, 5.51.

(E)-Ethyl 2-(3-(4-cyanophenyl)-2-phenyl-1H-inden-1-ylidene)acetate (4d)

Yield: 74% (56 mg), yellow solid, melting point: $158.3-159.2{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.12$ (m, 2H), $7.19-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.35$ (m, 7H), 7.57 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 8.71 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2,60.9,111.4,118.6,119.9$, $121.6,127.4,127.6,127.9,128.4,129.9,130.0,130.7,132.0,132.9,133.0,138.8$, 141.1, 142.7, 143.2, 151.3, 166.1; IR (KBr): $v_{\max } / \mathrm{cm}^{-1} 3056,2928,2225,1717,1623$, 1449; MS (ESI): m/z $378\left(\mathrm{M}^{+}+1\right), 400\left(\mathrm{M}^{+}+\mathrm{Na}\right)$; HRMS (ESI) calcd for
$\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{NNaO}_{2}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$400.1313, found 400.1346. Elem. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 82.74; H, 5.07; N, 3.71; Found: C, 82.80; H, 4.77; N, 3.77.

(E)-Ethyl 2-(3-(3-nitrophenyl)-2-phenyl-1H-inden-1-ylidene)acetate (4e)

Yield: $76 \%(61 \mathrm{mg})$, yellow solid, melting point: $167.7-167.9^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.15$ (m, 2H), $7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2,60.9,119.8,121.7,122.6,124.0,127.5$, 127.7, 128.0, 128.4, 129.2, 130.0, 130.7, 132.9, 133.0, 135.3, 135.7, 141.3, 142.1, 143.2, 148.2, 151.3, 166.1; IR (KBr): $v_{\max } / \mathrm{cm}^{-1} 3062,2982,1717,1627,1530,1455 ;$ MS (ESI): m/z $398\left(\mathrm{M}^{+}+1\right)$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NO}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$398.1392, found 398.1425. Elem. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}_{4}$: C, 75.55 ; H, 4.82; N, 3.52; Found: C, 75.66; H, 4.56; N, 3.49.

checkCIF/PLATON report

No syntax errors found. CIF dictionary Interpreting this report

Datablock: wujie090420_0m

Bond precision:	$: \quad C-C=0.0029 \mathrm{~A}$	Wavelength=0.71073
Cell:	$a=10.1464$ (3)	$\mathrm{b}=10.1719(3) \quad \mathrm{c}=10.4892$ (3)
	alpha=72.943(1)	beta=79.827(1) gamma=81.861(1)
Temperature:	296 K	
	Calculated	Reported
Volume	1014.04(5)	1014.04(5)
Space group	P -1	P-1
Hall group	-P 1	?
Moiety formula	C 26 H22 O2	?
Sum formula	C26 H22 O2	C26 H22 O2
Mr	366.44	366.44
Dx, g cm-3	1.200	1.200
Z	2	2
Mu (mm-1)	0.074	0.074
F000	388.0	388.0
F000'	388.17	
h, k, lmax	12,12,12	12,12,12
Nref	3987	3946
Tmin, Tmax	0.963,0.971	$0.864,1.000$
Tmin'	0.954	
Correction meth	hod= MULTI-SCAN	
Data completene	ess $=0.990$	Theta $(\max)=25.990$
$\mathrm{R}($ reflections $)=$	$=0.0567(3197)$	wR2 (reflections) $=0.1593(3946)$
$S=1.058$	Npar=	255

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level C
ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90
Tmin and Tmax reported: $0.864 \quad 1.000$
Tmin(prime) and Tmax expected: 0.954 0.971
RR(prime) = 0.880
Please check that your absorption correction is appropriate.
ABSTY02_ALERT_1_C An _exptl_absorpt_correction_type has been given without

Supplementary Material (ESI) for Chemical Communications
This journal is $@$ The Royal Society of Chemistry 2009

a literature citation. This should be contained in the
_exptl_absorpt_process_details field.
Absorption correction given as multi-scan

Alert level G
ABSTMO2_ALERT_3_G When printed, the submitted absorption T values will be
replaced by the scaled T values. Since the ratio of scaled T^{\prime} s
is identical to the ratio of reported T values, the scaling
does not imply a change to the absorption corrections used in
the study.
Ratio of Tmax expected/reported 0.971
Tmax scaled 0.971 Tmin scaled 0.839
PLAT062_ALERT_4_G Rescale $T(\min) \& T(\max)$ by 0.97
PLAT154_ALERT_1_G The su's on the Cell Angles are Equal (x 10000) 100 Deg.
PLAT180_ALERT_4_G Check Cell Rounding: \# of Values Ending with $0=3$

```
O ALERT level A = In general: serious problem
O ALERT level B = Potentially serious problem
11 ALERT level C = Check and explain
    4 ALERT level G = General alerts; check
6 ~ A L E R T ~ t y p e ~ 1 ~ C I F ~ c o n s t r u c t i o n / s y n t a x ~ e r r o r , ~ i n c o n s i s t e n t ~ o r ~ m i s s i n g ~ d a t a ~
3 \text { ALERT type 2 Indicator that the structure model may be wrong or deficient}
2 ~ A L E R T ~ t y p e ~ 3 ~ I n d i c a t o r ~ t h a t ~ t h e ~ s t r u c t u r e ~ q u a l i t y ~ m a y ~ b e ~ l o w ~
4 ~ A L E R T ~ t y p e ~ 4 ~ I m p r o v e m e n t , ~ m e t h o d o l o g y , ~ q u e r y ~ o r ~ s u g g e s t i o n
O ALERT type 5 Informative message, check
```


Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or \boldsymbol{E}, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals
Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 09/04/2009; check.def file version of 08/04/2009

Datablock wujie090420_0m - ellipsoid plot

