Supporting Information

PPh₃-Catalyzed Unexpected α-Addition Reaction of 1-(*o*-Hydroxyaryl)-1,3-diketones to Terminal Alkynoates: A Straightforward Synthesis of Multifunctional Vinylesters

Ling-Guo Meng,^b Bin Hu,^a Quan-Ping Wu,^a Mao Liang,^a and Song Xue^{*a}

^aDepartment of Applied Chemistry, Tianjin University of Technology, Tianjin 300384, P.R.China ^bDepartment of Chemistry, University of Science and Technology of China, Hefei 230026,

P.R.China

xuesong@ustc.edu.cn

List of Contents

(1) General Remark	S2
(2) General procedure	S2
(3) Characterization data for compounds 3a , 3b , 3c	
(4) Characterization data for compounds 3d , 3e , 3f	
(5) Characterization data for compounds 3g , 3h	
(6) Characterization data for compounds 5a , 5b , 5c	
(7) Characterization data for compounds 5d , 5e , 5f	S7
(8) Characterization data for compounds 5g, 5h, 5i	S8
(9) Characterization data for compounds 7a , 7b , 7c	S9
(10)Characterization data for compounds 7d, 7e	S10
(11)Copies of ¹ H and ¹³ C NMR spectra	S11-S32
(12)X-ray crystal structures and data of the compound 3a	

General Remarks

All reactions were conducted in oven-dried glassware with magnetic stirring. Dichloromethane was dried and freshly distilled from calcium hydride under nitrogen atmosphere. Chromatographic purification was performed on silica gel (100~200 mesh) and analytical thin layer chromatography (TLC) on silica gel 60-F₂₅₄ (Qindao), which was detected by fluorescence. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were measured with a Bruker AC 300 spectrometer using tetramethylsilane (TMS) as an internal standard. ¹H NMR data are reported as follows: δ , chemical shift; coupling constants (*J* are given in Hertz, Hz) and integration. Abbreviations to denote the multiplicity of a particular signal were s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sext (sextet), m (multiplet), and br (broad singlet). High resolution mass spectra were obtained with a Micromass GCT-TOF mass spectrometer. IR spectra were recorded as thin films or as solids in KBr pellets on a Perkin-Elmer FT210 spectrophotometer. Melting points were determined on a digital melting point apparatus and temperatures were uncorrected.

General Procedure

General procedure for the reaction of 1-(2-hydroxyphenyl)-3-aryl-1,3-diones with terminal alkynoates catalyzed by PPh₃ (Tables 2 and 3)

To a solution of 1-(2-hydroxyphenyl)-3-aryl-1,3-diones (0.3 mmol) and terminal alkynoates (0.33 mmol) in dry CH₂Cl₂ (2 mL) was added PPh₃ (24 mg, 0.09 mmol). The mixture was stirred at room temperature for 12 h. Then the solvent was removed in vacuo and the residue was purified by column chromatography on silica gel (10:1 petroleum ether/EtOAc) to give the desired product. (The **5b** and **5c** were purified by column chromatography on silica gel (2:1-5:1 dichloromethane/petroleum) to give the desired products.)

General procedure for the reaction of 1-(2-hydroxyphenyl)-3-alkyl-1,3-diones with terminal alkynoates catalyzed by PPh₃ (Table 4).

To a solution of 1-(2-hydroxyphenyl)-3-alkyl-1,3-diones (0.3 mmol) with terminal alkynoates (0.33 mmol) in dry CH_2Cl_2 (2 mL) was added PPh₃ (24 mg, 0.09 mmol) at 0 . The resulting mixture was stirred at 0 for 24 h. Then the solvent was removed in vacuo and the residue was purified by column chromatography on silica gel (10:1 petroleum ether/EtOAc) to give the desired product.

Benzoic acid 2-(3-ethoxycarbonyl-but-3-enoyl)-phenyl ester (3a)

White solid. Mp: 79-81°C. ¹H NMR (300 MHz, CDCl₃), δ, ppm, 8.20-8.17 (m, 2H), 7.89-7.86 (m, 1H), 7.63-7.47 (m, 4H), 7.39-7.34 (m, 1H), 7.26-7.23 (m, 1H), 6.32 (s, 1H), 5.60 (d, J = 0.9 Hz, 1H), 4.16 (q, J = 7.2 Hz, 2H), 3.89 (s, 2H), 1.23 (t, J =7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ, ppm, 196.9, 166.2, 165.1, 149.1, 134.6, 133.8, 133.2, 131.4, 130.4, 130.0, 129.3, 128.7, 126.2, 123.9, 61.0, 44.7, 14.1. IR (KBr) v 1735, 1719, 1699, 1638 cm⁻¹. HRMS (EI) calcd for C₂₀H₁₈O₅ (M⁺): 338.1154; Found: 338.1152.

4-Methoxy-benzoic acid 2-(3-ethoxycarbonyl-but-3-enoyl)-phenyl ester (3b)

White solid. Mp: 78-79°C. ¹H NMR (300 MHz, CDCl₃), δ , ppm, 8.16 (d, *J* = 8.7 Hz, 2H), 7.87-7.85 (m, 1H), 7.58-7.53 (m, 1H), 7.37-7.32 (m, 1H), 7.26-7.22 (m, 1H), 6.99 (d, *J* = 8.7 Hz, 2H), 6.32 (s, 1H), 5.59 (s, 1H), 4.16 (q, *J* = 7.2 Hz, 2H), 3.89 (s, 2H), 3.87 (s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ , ppm, 197.0, 166.2, 164.7, 164.2, 149.3, 134.6, 133.1, 132.5, 131.5, 130.0, 128.6, 126.0, 123.9, 121.5, 114.0, 61.0, 55.6, 44.9, 14.1. IR (KBr) *v* 1732, 1716, 1699, 1637 cm⁻¹. HRMS (EI) calcd for C₂₁H₂₀O₆ (M⁺): 368.1260; Found: 368.1257.

3,4-Dimethoxy-benzoic acid 2-(3-ethoxycarbonyl-but-3-enoyl)-phenyl ester (3c)

Pale yellow oil. ¹H NMR (300 MHz, CDCl₃), δ , ppm, 7.88-7.85 (m, 2H), 7.67 (s, 1H), 7.59-7.54 (m, 1H), 7.38-7.33 (m, 1H), 7.26 (d, J = 8.1 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 6.32 (s, 1H), 5.60 (s, 1H), 4.17 (q, J = 7.2 Hz, 2H), 3.96 (s, 3H), 3.95 (s, 3H), 3.90 (s, 2H), 1.24 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ , ppm, 196.9, 166.1, 164.6, 153.8, 149.2, 148.8, 134.5, 133.1, 131.4, 129.9, 128.5, 126.0, 124.6, 123.8, 121.5, 112.5, 110.5, 60.9, 56.1, 56.0, 44.8, 14.0. IR (neat) v 1725, 1691, 1638 cm⁻¹. HRMS (EI) calcd for C₂₂H₂₂O₇ (M⁺): 398.1366; Found: 398.1358.

4-Methyl-benzoic acid 2-(3-ethoxycarbonyl-but-3-enoyl)-phenyl ester (3d)

White solid. Mp: 106-108°C. ¹H NMR (300 MHz, CDCl₃), δ , ppm, 8.09 (d, *J* = 8.4 Hz, 2H), 7.87 (d, *J* = 7.8 Hz, 1H), 7.59-7.53 (m, 1H), 7.37-7.22 (m, 4H), 6.31 (s, 1H), 5.58 (s, 1H), 4.16 (q, *J* = 7.2 Hz, 2H), 3.88 (s, 2H), 2.43 (s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ , ppm, 197.0, 166.2, 165.1, 149.2, 144.8, 134.6, 133.2, 131.5, 130.4, 130.0, 129.5, 128.7, 126.5, 126.1, 123.9, 61.0, 44.9, 21.8, 14.1. IR (KBr) *v* 1734, 1715, 1686, 1637 cm⁻¹. HRMS (EI) calcd for C₂₁H₂₀O₅ (M⁺): 352.1311; Found: 352.1317.

4-Fluoro-benzoic acid 2-(3-ethoxycarbonyl-but-3-enoyl)-phenyl ester (3e)

White solid. Mp: 84-86°C. ¹H NMR (300 MHz, CDCl₃), δ , ppm, 8.23-8.18 (m, 2H), 7.90-7.87 (m, 1H), 7.60-7.55 (m, 1H), 7.40-7.35 (m, 1H), 7.26-7.14 (m, 3H), 6.33 (s, 1H), 5.62 (d, J = 0.9 Hz, 1H), 4.17 (q, J = 7.2 Hz, 2H), 3.88 (s, 2H), 1.24 (t, J =7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ , ppm, 196.8, 168.0, 166.3, 164.7, 149.1, 134.6, 133.3, 133.1, 131.2, 130.1, 128.8, 126.3, 125.7, 123.9, 116.1, 61.1, 44.6, 14.1. IR (KBr) ν 1736, 1716, 1689, 1638 cm⁻¹. HRMS (EI) calcd for C₂₀H₁₇O₅F(M⁺): 356.1060; Found: 356.1064.

4-Chloro-benzoic acid 2-(3-ethoxycarbonyl-but-3-enoyl)-phenyl ester (3f)

White solid. Mp: 110-112°C. ¹H NMR (300 MHz, CDCl₃), δ , ppm, 8.13 (d, *J* = 8.1 Hz, 2H), 7.90 (d, *J* = 7.8 Hz, 1H), 7.60-7.55 (m, 1H), 7.49 (d, *J* = 8.1 Hz, 2H), 7.40-7.35 (m, 1H), 7.25 (d, *J* = 8.1 Hz, 1H), 6.33 (s, 1H), 5.61 (s, 1H), 4.17 (q, *J* = 7.2 Hz, 2H), 3.88 (s, 2H), 1.24 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ , ppm, 196.8, 166.2, 164.4, 149.0, 140.4, 134.5, 133.4, 131.8, 131.1, 130.1, 129.1, 128.8, 127.8, 126.4, 123.9, 61.1, 44.5, 14.1. IR (KBr) *v* 1736, 1714, 1686, 1635 cm⁻¹; HRMS (EI) calcd for C₂₀H₁₇O₅³⁵Cl (M⁺): 372.0765; Found: 372.0769.

4-Bromo-benzoic acid 2-(3-ethoxycarbonyl-but-3-enoyl)-phenyl ester (3g)

White solid. Mp: $124-126^{\circ}$ C. ¹H NMR (300 MHz, CDCl₃), δ , ppm, 8.05 (d, *J* = 8.4 Hz, 2H), 7.90-7.88 (m, 1H), 7.66-7.56 (m, 3H), 7.40-7.35 (m, 1H), 7.25 (d, *J* = 8.1 Hz, 1H), 6.33 (s, 1H), 5.62 (s, 1H), 4.17 (q, *J* = 7.2 Hz, 2H), 3.88 (s, 2H), 1.24 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ , ppm, 196.7, 166.2, 164.5, 149.0, 134.5, 133.4, 132.1, 131.9, 131.1, 130.1, 129.1, 128.8, 128.3, 126.4, 123.9, 61.1, 44.5, 14.1. IR (KBr) *v* 1736, 1711, 1686, 1636 cm⁻¹. HRMS (EI) calcd for C₂₀H₁₇O₅⁷⁹Br (M⁺): 416.0259; Found: 416.0256.

Thiophene-2-carboxylic acid 2-(3-ethoxycarbonyl-but-3-enoyl)-phenyl ester (3h)

White solid. Mp: 87-90 °C. ¹H NMR (300 MHz, CDCl₃), δ , ppm, 8.00

(d, J = 3.3 Hz, 1H), 7.88 (d, J = 7.5 Hz, 1H), 7.68 (d, J = 4.8 Hz, 1H), 7.59-7.54 (m, 1H), 7.39-7.34 (m, 1H), 7.28 (d, J = 7.2 Hz, 1H), 7.19-7.17 (m, 1H), 6.35 (s, 1H), 5.63 (s, 1H), 4.19 (q, J = 7.2 Hz, 2H), 3.92 (s, 2H), 1.25 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ , ppm, 196.9, 166.3, 160.3, 148.7, 135.3, 134.6, 134.0, 133.2, 132.5, 131.4, 130.1, 128.8, 128.3, 126.4, 123.8, 61.1, 45.0, 14.2. IR (KBr) v 1719, 1714, 1691, 1636 cm⁻¹. HRMS (EI) calcd for C₁₈H₁₆O₅S (M⁺): 344.0718; Found: 344.0720.

3,4-Dimethoxy-benzoic acid **2-(3-ethoxycarbonyl-but-3-enoyl)-4-methyl-phenyl** ester (5a)

Pale yellow oil. ¹H NMR (300 MHz, CDCl₃), δ, ppm, 7.84-7.82 (m,

1H), 7.65-7.63 (m, 2H), 7.35 (d, J = 8.1 Hz, 1H), 7.12 (d, J = 8.1 Hz, 1H), 6.94 (d, J = 8.4 Hz, 1H), 6.29 (s, 1H), 5.57 (s, 1H), 4.15 (q, J = 7.2 Hz, 2H), 3.94 (s, 3H), 3.93 (s, 3H), 3.86 (s, 2H), 2.39 (s, 3H), 1.22 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ , ppm, 197.1, 166.2, 164.9, 153.8, 148.9, 147.0, 135.8, 134.7, 133.8, 131.1, 130.3, 128.5, 124.6, 123.6, 121.7, 112.6, 110.5, 60.9, 56.1, 56.1, 44.9, 20.8, 14.1. IR (neat) v 1730, 1694, 1637 cm⁻¹. HRMS (EI) calcd for C₂₃H₂₄O₇ (M⁺): 412.1522; Found: 412.1516.

3,4-Dimethoxy-benzoic acid **5-chloro-2-(3-ethoxycarbonyl-but-3-enoyl)-phenyl** ester (5b)

Pale yellow oil. ¹H NMR (300 MHz, CDCl₃), δ , ppm, 7.87-7.83 (m, 2H), 7.66 (s, 1H), 7.37-7.28 (m, 2H), 6.98 (d, J = 8.7 Hz, 1H), 6.34 (s, 1H), 5.62 (s, 1H), 4.18 (q, J = 7.2 Hz, 2H), 3.98 (s, 3H), 3.96 (s, 3H), 3.87 (s, 2H), 1.26 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ , ppm, 195.9, 166.2, 164.4, 154.1, 149.9, 149.0, 138.8, 134.4, 131.1, 129.9, 128.8, 126.4, 124.9, 124.4, 121.1, 112.6, 110.6, 61.1, 56.2, 56.1, 44.9, 14.1. IR (neat) v 1733, 1701, 1637 cm⁻¹. HRMS (EI) calcd for C₂₂H₂₁O₇³⁵Cl (M⁺): 432.0976; Found: 432.0981.

3,4-Dimethoxy-benzoic acid 2-(3-ethoxycarbonyl-but-3-enoyl)-5-methoxy-phenyl ester (5c)

MeO Pale yellow oil. ¹H NMR (300 MHz, CDCl₃), δ , ppm, 7.93-7.85 (m, 2H), 7.67 (d, J = 1.8 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 6.89-7.85 (m, 1H), 6.74 (d, J = 2.4 Hz, 1H), 6.30 (s, 1H), 5.58 (s, 1H), 4.17 (q, J = 7.2 Hz, 2H), 3.97 (s, 3H), 3.95 (s, 3H), 3.86 (s, 3H), 3.86 (s, 2H), 1.24 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ , ppm, 195.0, 166.4, 164.7, 163.7, 153.9, 151.7, 149.0, 135.0, 132.2, 128.4, 124.8, 123.6, 121.7 112.7, 112.1, 110.6, 109.3, 61.0, 56.2, 56.2, 55.8, 44.5, 14.1. IR (neat) v 1730, 1684, 1636 cm⁻¹. HRMS (EI) calcd for C₂₃H₂₄O₈ (M⁺): 428.1471; Found: 428.1464..

Benzoic acid 2-(3-ethoxycarbonyl-but-3-enoyl)-4-methyl-phenyl ester (5d)

Me Coloress oil. ¹H NMR (300 MHz, CDCl₃), δ , ppm, 8.20 (d, J = 7.5 Hz, 2H), 7.66-7.60 (m, 2H), 7.52-7.47 (m, 2H), 7.38 (d, J = 8.4 Hz, 1H), 7.13 (d, J = 8.1 Hz, 1H), 6.31 (s, 1H), 5.58 (s, 1H), 4.16 (q, J = 7.2 Hz, 2H), 3.88 (s, 2H), 2.41 (s, 3H), 1.23 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ , ppm, 197.1, 166.3, 165.3, 147.0, 136.0, 134.7, 133.9, 133.8, 131.1, 130.4, 129.4, 128.7, 128.6, 123.6, 61.0, 44.9, 20.9, 14.1. IR (neat) v 1740 cm⁻¹, 1724, 1695, 1638 cm⁻¹. HRMS (EI) calcd for C₂₁H₂₀O₅ (M⁺): 352.1311; Found: 352.1309

Benzoic acid 5-chloro-2-(3-ethoxycarbonyl-but-3-enoyl)-phenyl ester (5e)

Pale yellow oil. ¹H NMR (300 MHz, CDCl₃), δ , ppm, 8.19-8.16 (m, 2H), 7.86 (d, J = 8.4 Hz, 1H), 7.68-7.62 (m, 1H), 7.54-7.49 (m, 2H), 7.37-7.34 (m, 1H), 7.29 (d, J = 1.8 Hz, 1H), 6.32 (s, 1H), 5.61 (d, J = 0.9 Hz, 1H), 4.17 (q, J = 7.2 Hz, 2H), 3.85 (s, 2H), 1.24 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ , ppm, 195.8, 166.2, 164.8, 149.9, 138.9, 134.4, 134.1, 131.1, 130.5, 129.8, 129.2, 128.9, 128.8, 126.6, 124.5, 61.1, 44.8, 14.1. IR (neat) v 1745, 1717, 1697, 1639 cm⁻¹. HRMS (EI) calcd for C₂₀H₁₇O₅³⁵Cl (M⁺): 372.0765; Found: 372.0762.

Benzoic acid 2-(3-ethoxycarbonyl-but-3-enoyl)-5-methoxy-phenyl ester (5f)

Pale yellow oil. ¹H NMR (300 MHz, CDCl₃), δ, ppm, 8.20-8.18

(m, 2H), 7.93 (d, J = 8.7 Hz, 1H), 7.65-7.60 (m, 1H), 7.52-7.47 (m, 2H), 6.89-6.85 (m, 1H), 6.73 (d, J = 2.4 Hz, 1H), 6.30 (s, 1H), 5.57 (s, 1H), 4.16 (q, J = 7.2 Hz, 2H), 3.86 (s, 3H), 3.85 (s, 2H), 1.23 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ , ppm, 194.9, 166.4, 165.1, 163.8, 151.6, 134.9, 133.8, 132.2, 130.4, 129.4, 128.7, 128.4, 123.5, 112.1, 109.4, 61.0, 55.8, 44.3, 14.1. IR (neat) v 1736, 1718, 1685, 1637 cm⁻¹. HRMS (EI) calcd for C₂₁H₂₀O₆ (M⁺): 368.1260; Found: 368.1263.

Benzoic acid 1-(3-ethoxycarbonyl-but-3-enoyl)-naphthalen-2-yl ester (5g)

Coloress oil. ¹H NMR (300 MHz, CDCl₃), δ , ppm, 8.22 (d, J = 7.5 Hz, 2H), 7.97-7.88 (m, 3H), 7.70-7.65 (m, 1H), 7.60-7.51 (m, 4H), 7.42 (d, J = 9.0 Hz, 1H), 6.32 (s, 1H), 5.52 (s, 1H), 4.18 (q, J = 7.2 Hz, 2H), 3.94 (s, 2H), 1.23 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ , ppm, 201.5, 166.2, 164.9, 144.8, 134.2, 133.9, 131.7, 131.1, 130.4, 130.3, 130.0, 129.1, 128.9, 128.4, 127.8, 126.4, 124.9, 121.4, 61.1, 48.2, 14.1. IR (neat) v 1736, 1718, 1708, 1638 cm⁻¹. HRMS (EI) calcd for C₂₄H₂₀O₅ (M⁺): 388.1311; Found: 388.1304.

Benzoic acid 2-(3-methoxycarbonyl-but-3-enoyl)-phenyl ester (5h)

Coloress oil. ¹H NMR (300 MHz, CDCl₃), δ , ppm, 8.20 (d, J = 8.1 Hz, 2H), 7.88 (d, J = 7.5 Hz, 1H), 7.66-7.48 (m, 4H), 7.39-7.34 (m, 1H), 7.26-7.23 (m, 1H), 6.32 (s, 1H), 5.61 (s, 1H), 3.90 (s, 2H), 3.66 (s, 3H). ¹³C NMR (75 MHz, CDCl₃), δ , ppm, 196.9, 166.8, 165.1, 149.2, 134.3, 133.9, 133.3, 131.4, 130.4, 130.0, 129.3, 129.1, 128.8, 126.2, 123.9, 52.1, 44.8. IR (neat) v 1735, 1719, 1686, 1638 cm⁻¹. HRMS (EI) calcd for C₁₉H₁₆O₅ (M⁺): 324.0998; Found: 324.1006.

Benzoic acid 2-(3-benzyloxycarbonyl-but-3-enoyl)-phenyl ester (5i)

Coloress oil. ¹H NMR (300 MHz, CDCl₃), δ , ppm, 8.19-8.16

(m, 2H), 7.82-7.79 (m, 1H), 7.64-7.45 (m, 4H), 7.34-7.22 (m, 7H), 6.37 (s, 1H), 5.63 (s, 1H), 5.11 (s, 2H), 3.90 (s, 2H). 13 C NMR (75 MHz, CDCl₃), δ , ppm, 196.8, 166.0, 165.1, 149.1, 135.8, 134.3, 133.8, 133.2, 131.3, 130.4, 130.0, 129.4, 128.7, 128.5, 128.2, 128.1, 126.2, 123.9, 66.8, 44.8. IR (neat) v 1735, 1719, 1691, 1638 cm⁻¹. HRMS (EI) calcd for C₂₅H₂₀O₅ (M⁺): 400.1311; Found: 400.1307.

Ethyl 2-(2-methyl-4-oxo-4H-chromen-3-yl)acrylate (7a)

White solid. Mp: 68-71 °C. ¹H NMR (300 MHz, CDCl₃), δ , ppm, 8.19 (d, *J* = 7.8 Hz, 1H), 7.66-7.61 (m, 1H), 7.43-7.34 (m, 2H), 6.68 (s, 1H), 5.79 (s, 1H), 4.27 (q, *J* = 7.2 Hz, 2H), 2.38 (s, 3H), 1.30 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ , ppm, 176.4, 165.7, 163.7, 155.9, 134.2, 133.5, 130.9, 126.1, 124.9, 123.0, 120.1, 117.6, 61.2, 19.3, 14.2. IR (KBr) *v* 1719, 1644 cm⁻¹. HRMS (EI) calcd for C₁₅H₁₄O₄ (M⁺): 258.0892; Found: 258.0898.

Ethyl 2-(4-oxo-2-phenethyl-4H-chromen-3-yl)acrylate (7b)

Pale yellow solid. Mp: 57-58 . ¹H NMR (300 MHz, CDCl₃), δ, ppm,

8.20-8.17 (m, 1H), 7.69-7.63 (m, 1H), 7.45-7.35 (m, 2H), 7.30-7.14 (m, 5H), 6.57 (d, J = 1.2 Hz, 1H), 5.40 (d, J = 1.2 Hz, 1H), 4.24 (q, J = 7.2 Hz, 2H), 3.09-3.06 (m, 2H), 2.97-2.92 (m, 2H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ , ppm, 176.6, 165.7, 165.3, 155.9, 140.0, 133.8, 133.6, 131.0, 128.6, 128.4, 126.6, 126.2, 125.0, 123.1, 120.3, 117.7, 61.2, 34.6, 33.2, 14.2. IR (KBr) v 1720, 1645 cm⁻¹. HRMS (EI) calcd for C₂₂H₂₀O₄ (M⁺): 348.1362; Found: 348.1358.

Ethyl 2-(2-cyclohexyl-4-oxo-4H-chromen-3-yl)acrylate (7c)

Pale yellow oil. ¹H NMR (300 MHz, CDCl₃), δ, ppm, 8.20-8.16 (m,

1H), 7.67-7.61 (m, 1H), 7.45 (d, J = 8.1 Hz, 1H), 7.39-7.34 (m, 1H), 6.68 (d, J = 1.5 Hz, 1H), 5.75 (d, J = 1.5 Hz, 1H), 4.27 (q, J = 7.2 Hz, 2H), 2.76-2.69 (m, 1H), 1.85-1.72 (m, 7H), 1.30-1.24 (m, 6H). ¹³C NMR (75 MHz, CDCl₃), δ , ppm, 176.9, 169.7, 166.0, 156.1, 134.1, 133.4, 130.7, 126.1, 124.9, 123.2, 118.6, 117.7, 61.2, 41.6, 29.9, 25.9, 25.7, 14.2. IR (neat) v 1721, 1646 cm⁻¹. HRMS (EI) calcd for C₂₀H₂₂O₄ (M⁺): 326.1518; Found: 326.1516.

Ethyl 2-(2,6-dimethyl-4-oxo-4H-chromen-3-yl)acrylate (7d)

White solid. Mp: 74-76°C ¹H NMR (300 MHz, CDCl₃), δ, ppm, 7.96 (s, 1H), 7.46-7.43 (m, 1H), 7.32-7.26 (m, 1H), 6.68 (d, J = 1.2 Hz, 1H), 5.78 (d, J = 1.2 Hz, 1H), 4.27 (q, J = 7.2 Hz, 2H), 2.43 (s, 3H), 2.36 (s, 3H), 1.30 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ, ppm, 176.5, 165.9, 163.5, 154.3, 134.9, 134.8, 134.4, 130.8, 125.5, 122.8, 120.0, 117.5, 61.3, 21.0, 19.3, 14.2. IR (KBr) v 1721, 1645 cm⁻¹. HRMS (EI) calcd for C₁₆H₁₆O₄ (M⁺): 272.1049; Found: 272.1045.

Ethyl 2-(6-chloro-2-methyl-4-oxo-4H-chromen-3-yl)acrylate (7e)

White solid. Mp: 103-105 °C ¹H NMR (300 MHz, CDCl₃), δ, ppm, 8.14-8.13 (m, 1H), 7.60-7.56 (m, 1H), 7.39 (d, J = 8.7 Hz, 1H), 6.70 (s, 1H), 5.79 (s, 1H), 4.27 (q, J = 7.2 Hz, 2H), 2.38 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃), δ, ppm, 175.3, 165.6, 164.1, 154.3, 133.9, 133.8, 131.3, 131.0, 125.6, 124.1, 120.2, 119.5, 61.4, 19.3, 14.2. IR (KBr) v 1721, 1650 cm⁻¹. HRMS (EI) calcd for C₁₅H₁₃O₄³⁵Cl (M⁺): 292.0502; Found: 292.0498.

S17

ррм 200 - 175 - 150 - 125 - 100 - 75 - 50 - 28 - 0

Figure 1. X-ray crytal structure and data for compound 3a

The crystal data of 3a has been deposited in CCDC with number 711329. Empirical Formula: $C_{20}H_{18}O_5$; Formula Weight: 338.34; Crystal color, Habit: colorless, prismatic; Crystal Dimensions: $0.42 \times 0.40 \times 0.34$ mm; Crystal System: monoclinic; Lattice Type: primitive; Lattice Parameters: a = 11.165(5)Å, b = 6.291(5)Å, c = 13.510 (5) Å, $\alpha = 90.000(5)^\circ$, $\beta = 114.011(5)^\circ$, $\gamma = 90.000(5)^\circ$, $V = 866.8(9) Å^3$; Space group: P 21; Z = 2; $D_{calc} = 1.296 \text{ g/cm}^3$; $F_{000} = 356$; Diffractometer: Gemini s ultra oxford diffraction; Residuals: R; Rw: 0.0222, 0.0597.

Table 1. Crystal data and structure refinement for 081121-CU2.

Identification code	081121-cu2
Empirical formula	C20 H18 05
Formula weight	338. 34
Temperature	297(2) K
Wavelength	1.54184 A
Crystal system, space group	Monoclinic, P 21
Unit cell dimensions	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Volume	866.8(9) A ³
Z, Calculated density	2, 1.296 Mg/m^3
Absorption coefficient	0.768 mm ⁻¹
F (000)	356
Crystal size	0.42 x 0.40 x 0.34 mm
Theta range for data collection	4.36 to 61.14 deg.
Limiting indices	$-12 \le h \le 12$, $-6 \le k \le 6$, $-14 \le 1 \le 15$
Reflections collected / unique	6079 / 2246 [R(int) = 0.0103]
Completeness to theta = 61.14 $$	97.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7802 and 0.7385
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2246 / 1 / 298
Goodness-of-fit on F^2	1.038
Final R indices [I>2sigma(I)]	R1 = 0.0222, $wR2 = 0.0597$
R indices (all data)	R1 = 0.0225, wR2 = 0.0600
Absolute structure parameter	-0.02(13)
Largest diff. peak and hole	0.078 and -0.080 e.A^-3

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for 081121-CU2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
0(2)	3958(1)	4125(2)	6438(1)	49(1)
0(3)	2743(1)	7197(2)	7102(1)	61(1)
0(1)	5589(1)	6457(2)	7215(1)	68(1)
0(5)	21(1)	9239(2)	7957(1)	59(1)
C(13)	2734(1)	7121(2)	5340(1)	46(1)
C(15)	1388(1)	9821(3)	5904(1)	55(1)
C(14)	2329(1)	7956(2)	6197(1)	46(1)
0(4)	-307(1)	7321(2)	6487(1)	83(1)
C(5)	4940(1)	1433(3)	8180(1)	58(1)
C(10)	3407(1)	5611(3)	3686(1)	58(1)

C(4) C(3) C(9) C(8) C(12) C(16) C(18) C(1) C(18) C(1) C(19) C(19) C(2) C(2) C(20) C(11)	$\begin{array}{c} 5466(1)\\ 6452(2)\\ 3841(1)\\ 3515(1)\\ 5044(1)\\ 2314(1)\\ 984(1)\\ 170(1)\\ 6348(2)\\ 5387(2)\\ 1281(2)\\ -749(2)\\ 6883(2)\\ -893(3)\\ 2655(1)\end{array}$	$\begin{array}{c} 3429(2)\\ 4112(4)\\ 4559(2)\\ 5323(2)\\ 4867(2)\\ 8151(2)\\ 10434(2)\\ 8836(2)\\ 815(4)\\ 126(3)\\ 12264(3)\\ 7739(3)\\ 2780(5)\\ 8637(5)\\ 7413(3)\\ \end{array}$	8223 (1) 9184 (1) 4667 (1) 5479 (1) 7275 (1) 4337 (1) 6798 (1) 7045 (1) 10022 (2) 9075 (1) 7305 (2) 8261 (2) 10082 (1) 9224 (2) 3522 (1)	$\begin{array}{c} 48(1)\\ 68(1)\\ 54(1)\\ 47(1)\\ 48(1)\\ 52(1)\\ 51(1)\\ 52(1)\\ 75(1)\\ 68(1)\\ 75(1)\\ 68(1)\\ 72(1)\\ 88(1)\\ 107(1)\\ 56(1)\end{array}$
Table 3. E	Bond lengths	[A] and angl	es [deg] for	081121-CU2.
$\begin{array}{c} 0(2) - C(7) \\ 0(2) - C(8) \\ 0(3) - C(14) \\ 0(1) - C(7) \\ 0(5) - C(18) \\ 0(5) - C(19) \\ 0(5) - C(19) \\ C(13) - C(2) \\ C(13) - C(12) \\ C(13) - C(14) \\ C(15) - C(16) \\ C(15) - C(16) \\ C(15) - C(16) \\ C(5) - C(6) \\ C(10) - C(11) \\ C(10) - C(9) \\ C(10) - C(11) \\ C(10) - C(9) \\ C(10) - C(11) \\ C(10) - C(11) \\ C(10) - C(12) \\ C(10) - C(12) \\ C(10) - C(12) \\ C(1) - C(12) \\ C(1) - C(6) \\ C(19) - C(20) \\ \end{array}$		$\begin{array}{c} 1.\ 36\\ 1.\ 40\\ 1.\ 21\\ 1.\ 19\\ 1.\ 33\\ 1.\ 44\\ 1.\ 39\\ 1.\ 39\\ 1.\ 50\\ 1.\ 50\\ 1.\ 50\\ 1.\ 51\\ 1.\ 19\\ 1.\ 37\\ 1.\ 37\\ 1.\ 37\\ 1.\ 37\\ 1.\ 38\\ 1.\ 48\\ 1.\ 39\\ 1.\ 37\\ 1.\ 38\\ 1.\ 48\\ 1.\ 36\\ 1.\ 36\\ 1.\ 48\\ 1.\ 36\\$	04 (16) 35 (16) 52 (16) 06 (19) 33 (17) 4 (2) 33 (2) 97 (19) 01 (18) 2 (2) 6 (2) 7 (2) 6 (2) 7 (2) 6 (2) 8 (2) 4 (2) 1 (2) 5 (2) 0 (3) 5 (2) 3 (2) 2 (2) 0 (3) 5 (2) 0 (3) 4 (3) 6 (3)	
$\begin{array}{c} C(7) - 0(2) - \\ C(18) - 0(5) \\ C(8) - C(13) \\ C(8) - C(13) \\ C(12) - C(13) \\ C(12) - C(13) \\ C(16) - C(15) \\ 0(3) - C(14) \\ 0(3) - C(14) \\ C(13) - C(14) \\ C(6) - C(5) - \\ C(11) - C(10) \\ C(5) - C(4) - \\ C(13) - C(10) - \\ C(11) - C(12) \\ C(17) - C(16) \\ C(17) - C(16) \\ C(18) - C(16) \\ O(4) - C(18) \\ O(4) - C(18) \\ \end{array}$	$\begin{array}{c} C(8) \\ -C(19) \\ -C(12) \\ -C(14) \\ 0) -C(14) \\ -C(13) \\ -C(15) \\ 0) -C(15) \\ 0) -C(15) \\ 0 \\ -C(15) \\ 0 \\ -C(15) \\ 0 \\ -C(17) \\ -C(2) \\ -C(10) \\ -C(2) \\ -C(10) \\ -C(10) \\ -C(13) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 116.\ 29\\ 116.\ 81\\ 116.\ 85\\ 123.\ 30\\ 119.\ 85\\ 113.\ 04\\ 121.\ 92\\ 120.\ 42\\ 117.\ 65\\ 120.\ 81\\ 120.\ 14\\ 118.\ 95\\ 122.\ 76\\ 118.\ 28\\ 119.\ 5(\\ 119.\ 70\\ 121.\ 99\\ 116.\ 13\\ 121.\ 80\\ 122.\ 67\\ 125.\ 48\\ 111.\ 82\\ 121.\ 51\\ 121.\ 74\\ 123.\ 42\\ 114.\ 81\\ 122.\ 87\\ 123.\ 69\end{array}$	$\begin{array}{c} (10) \\ (13) \\ (11) \\ (11) \\ (12) \\ (11) \\ (12) \\ (11) \\ (12) \\ (11) \\ (11) \\ (12) \\ (11) \\ (16) \\ (14) \\ (12) \\ (12) \\ (14) \\ (12) \\ (12) \\ (11) \\ (12) \\ (12) \\ (11) \\ (12) \\ (12) \\ (11) \\ (12) \\ (12) \\ (11) \\ (12) \\ (12) \\ (11) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (12) \\ (13) \\ (13) \\ (13) \\ (13) \\ (13) \\ (11) \\ (11) \\ (12) \\ (1$	

0(5)-C(18)-C(16)	113.44(12)
C(2)-C(1)-C(6)	120.22(18)
C(1)-C(6)-C(5)	120.0(2)
0 (5) -C (19) -C (20)	106.80(17)
C(1)-C(2)-C(3)	120.56(18)
C(10)-C(11)-C(12)	119.79(14)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å^2 x 10^3) for 081121-CU2. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	111.1	1100	119.9	110.9	111.0	U10
			033	023		012
0(2)	48(1)	41(1)	51(1)	6(1)	14(1)	0(1)
0(3)	72(1)	63(1)	50(1)	10(1)	26(1)	15(1)
0(1)	66 (1)	58(1)	73(1)	7(1)	22(1)	-18(1)
0(5)	62 (1)	56(1)	62(1)	-5(1)	29(1)	-8(1)
C(13)	44(1)	44(1)	47(1)	3(1)	17(1)	1 (1)
C(15)	59(1)	53(1)	53(1)	7(1)	24(1)	11 (1)
C(14)	47(1)	43(1)	47 (1)	2(1)	18(1)	-1(1)
O(4)	88(1)	77(1)	95 (1)	-40(1)	48(1)	-36(1)
C(5)	61(1)	56(1)	58(1)	6(1)	24(1)	-1(1)
C(10)	59(1)	63(1)	56(1)	-5(1)	29(1)	1(1)
C(4)	43(1)	53(1)	50(1)	0(1) -4(1)	21(1)	2(1)
C(3)	56(1)	80(1)	59(1)		14(1)	-4(1)
C(9)	53(1)	49(1)	59(1)	-1(1)	22(1)	-1(1)
C(8)	44(1)	43(1)	50(1)	4(1)	15(1)	
C(7)	45(1)	45(1)	54(1)	-1(1)	21(1)	
C(12) C(16)	52(1) 49(1)	52(1) 48(1)	52(1) 55(1)	7(1)	21(1) 21(1) 20(1)	8(1) 5(1)
C(18)	45(1)	52(1)	56(1)	$-\hat{8}(\hat{1})$	18(1)	-1 (1)
C(1)	86(1)	102(2)	65(1)	26(1)	37(1)	28 (1)
C(6)	83(1)	73(1)	77(1)	25(1)	43(1)	13(1)
C(17)	79(1)	51(1)	85(1)	-10(1)	44(1)	-7(1)
C(19)	69(1)	68(1)	89(1)	4(1)	41(1)	-9(1)
C(2)	68(1)	130(2)	50(1)	-1(1)	9(1)	15(1)
C(20)	127(2)	108(2)	124(2)	-6(2)	90(2)	-17(2)
C(11)	60(1)	63(1)	47(1)	5(1)	23(1)	3(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for 081121-CU2.

	x	у	z	U(eq)
H(12) H(3) H(15B) H(19B) H(10) H(5) H(11) H(17B) H(1) H(15A) H(19A) H(19A) H(19A) H(17A) H(20B) H(6) H(2) H(20C)	1760 (15) 6803 (18) 621 (16) -250 (19) 3612 (15) 4250 (17) 2380 (14) 1729 (18) 6706 (19) 1838 (16) 80 (40) 4339 (14) -1565 (18) 997 (16) -1350 (30) -1350 (30) -1350 (30)	$\begin{array}{c} 9410(30)\\ 5380(40)\\ 9390(30)\\ 6420(40)\\ 5060(30)\\ 950(40)\\ 8160(30)\\ 13330(40)\\ -170(40)\\ 11060(40)\\ 8650(60)\\ 3360(30)\\ 7510(30)\\ 12560(40)\\ 7550(60)\\ -1230(50)\\ 3360(50)\\ 10040(60) \end{array}$	4191 (12) 9162 (14) 5263 (14) 8498 (15) 3130 (13) 7514 (14) 2844 (13) 7087 (14) 10673 (18) 5748 (13) 9850 (30) 4776 (12) 7653 (14) 7881 (14) 9510 (20) 9057 (18) 10680 (20) 9030 (20)	$\begin{array}{c} 56 \ (4) \\ 71 \ (5) \\ 70 \ (5) \\ 86 \ (6) \\ 74 \ (5) \\ 79 \ (5) \\ 59 \ (4) \\ 79 \ (5) \\ 95 \ (6) \\ 72 \ (5) \\ 143 \ (11) \\ 58 \ (4) \\ 71 \ (5) \\ 75 \ (5) \\ 140 \ (10) \\ 100 \ (7) \\ 128 \ (9) \\ 130 \ (10) \end{array}$

C(8) - C(13) - C(14) - 0(3) $C(12) - C(13) - C(14) - 0(3)$ $C(8) - C(13) - C(14) - C(15)$ $C(12) - C(13) - C(14) - C(15)$ $C(16) - C(15) - C(14) - C(13)$ $C(6) - C(5) - C(4) - C(3)$ $C(6) - C(5) - C(4) - C(3)$ $C(6) - C(5) - C(4) - C(3)$ $C(5) - C(4) - C(3) - C(2)$ $C(7) - C(4) - C(3) - C(2)$ $C(7) - C(4) - C(3) - C(2)$ $C(10) - C(9) - C(8) - C(13)$ $C(10) - C(9) - C(8) - C(13)$ $C(10) - C(9) - C(8) - C(2)$ $C(12) - C(13) - C(8) - C(2)$ $C(12) - C(13) - C(8) - C(2)$ $C(14) - C(13) - C(8) - O(2)$ $C(14) - C(13) - C(8) - O(2)$ $C(14) - C(13) - C(8) - O(2)$ $C(7) - 0(2) - C(8) - C(13)$ $C(8) - 0(2) - C(7) - 0(1)$ $C(8) - 0(2) - C(7) - 0(1)$ $C(8) - 0(2) - C(7) - 0(1)$ $C(3) - C(4) - C(7) - 0(1)$ $C(3) - C(4) - C(7) - 0(1)$ $C(3) - C(4) - C(7) - 0(2)$ $C(3) - C(4) - C(7) - 0(1)$ $C(13) - C(16) - C(18) - 0(4)$ $C(17) - C(16) - C(18) - 0(5)$ $C(10) - C(18) - 0(5)$ $C(2) - C(1) - C(6) - C(5)$ $C(4) - C(5) - C(6) - C(1)$ $C(18) - 0(5) - C(19) - C(20)$ $C(6) - C(1) - C(2) - C(3)$ $C(4) - C(3) - C(2) - C(1)$	$\begin{array}{c} 5.\ 64\ (19)\\ -174.\ 97\ (13)\\ -175.\ 12\ (12)\\ 4.\ 28\ (18)\\ -4.\ 4\ (2)\\ 176.\ 32\ (12)\\ -0.\ 3\ (2)\\ 178.\ 26\ (13)\\ -0.\ 3\ (2)\\ 178.\ 94\ (14)\\ 0.\ 1\ (2)\\ 1.\ 1\ (2)\\ 178.\ 01\ (12)\\ -1.\ 25\ (18)\\ 178.\ 01\ (12)\\ -1.\ 25\ (18)\\ 178.\ 16\ (12)\\ -177.\ 95\ (11)\\ 1.\ 47\ (18)\\ 100.\ 88\ (14)\\ -82.\ 23\ (14)\\ 0.\ 99\ (18)\\ -176.\ 98\ (10)\\ -168.\ 12\ (14)\\ 10.\ 88\ (14)\\ -82.\ 23\ (14)\\ 0.\ 99\ (18)\\ -176.\ 98\ (10)\\ -168.\ 12\ (14)\\ 10.\ 5\ (2)\\ 9.\ 79\ (17)\\ -171.\ 59\ (12)\\ 0.\ 17\ (19)\\ -179.\ 26\ (12)\\ 115.\ 12\ (17)\\ -67.\ 14\ (16)\\ 0.\ 3\ (2)\\ -179.\ 32\ (13)\\ 166.\ 87\ (16)\\ -10.\ 92\ (19)\\ -13.\ 47\ (19)\\ 168.\ 75\ (11)\\ -1.\ 0\ (3)\\ 1.\ 0\ (2)\\ -174.\ 07\ (18)\\ 0.\ 4\ (3)\\ 0.\ 2\ (3)\\ \end{array}$
$\begin{array}{c} C(6) - C(1) - C(2) - C(3) \\ C(4) - C(3) - C(2) - C(1) \\ C(9) - C(10) - C(11) - C(12) \\ C(13) - C(12) - C(11) - C(10) \end{array}$	0. 4 (3) 0. 2 (3) -1. 1 (2) 1. 0 (2)

Table 6. Torsion angles [deg] for 081121-CU2.

Symmetry transformations used to generate equivalent atoms:

7 Table 7. Hydrogen bonds for 081121-CU2 [A and deg.].

D-	H.		A	

 $d\left(D\text{-}H\right) \qquad \quad d\left(H,\ldots A\right) \qquad d\left(D,\ldots A\right) \qquad <\left(DHA\right)$