Supplementary Information for

Metal oxide sensitized TiO₂ and TiO_{2-x}N_x with efficient charge transport conduits

Xin Shu, Zhe An, Lianying Wang and Jing He*

State Key Laboratory of Chemical Resource Engineering, Beijing UniVersity of Chemical Technology, Beijing

100029, China

Layered Metal Hydroxides.

Ni-Ti layered hydroxides with CO_3^{2-} as charge balancing anion: 0.5 mL of TiCl₄ solution (the solution was prepared from TiCl₄ and HCl with a volume ratio of 1:1, in which TiCl₄ is 0.002 mol), 0.005 mol of Ni(NO₃)₂, and 0.1 mol of urea were dissolved in 100 mL of deionized water under vigorous stirring. The resulting suspension was stirred for 1 h at refluxing temperature. Then the solid was filtered, washed with deionized water until pH=8. The filter cake was re-dispersed in 80 mL of deionized water, and 0.0085 mol of Na₂CO₃ was added to the suspension under stirring. The resulting slurry was transferred into a Teflon-lined autoclave and heated at 100 °C for 10 h. The precipitate was then filtered, washed well with deionized water and anhydrous ethanol, and dried at room temperature.

Ni-Ti layered hydroxides with CNO⁻ as charge balancing anion: 0.5 mL of TiCl₄ solution (the solution was prepared from TiCl₄ and HCl with a volume ratio of 1:1, in which TiCl₄ is 0.002 mol), 0.005 mol of Ni(NO₃)₂, and 0.1 mol of urea were dissolved in 100 mL of deionized water under vigorous stirring. The resulting suspension was stirred for 10 h at refluxing temperature. The solid was filtered, washed with deionized water and anhydrous ethanol, and dried at 60 °C.

Fig. S1 Powder XRD patterns of Ni-Ti layered hydroxides. The (00*l*) reflections correspond to the layer stacking along the *c* axis. The (110) reflections originate from the layers of metal hydroxides. $a=2d_{110}$ reflects the distance between two metal cations in the layers. The value of d_{003} suggests that the interlayer anions balancing the layer charges are (a) carbonate^[1] and (b) cyanate^[2].

Photocatalysts.

The NiO-sensitized TiO₂ and TiO_{2-x}N_x are synthesized by calcination of Ni-Ti layered hydroxides with CO_3^{2-} and CNO^- as charge-balancing anions, respectively, in air at 500 °C for 4 h. The temperature-programmed rate was 10 °C/min. To remove NiO, 1.0 g of calcined solids was treated with 100 mL of sulfuric acid solution (5 mol/L) for 24 h under moderate stirring.

Pure NiO powder: 0.005 mol of Ni(NO₃)₂ and 0.1 mol of urea were dissolved in 100 mL of deionized water and stirred for 10 h at refluxing temperature. The resulting solid was filtered, washed with deionized water, dried at 60 °C, and then calcined in air at 800 °C for 4 h.

Pure TiO₂ powder: 0.5 mL of TiCl₄ solution (the solution was prepared from TiCl₄ and HCl with a volume ratio of 1:1, in which TiCl₄ is 0.002 mol), and 0.1 of mol urea were dissolved in 100 mL of deionized water and stirred for 10 h at refluxing temperature. The resulting solid was filtered, washed with deionized water, dried at 60 °C, and then calcined in air at 500 °C for 4 h.

NiO+TiO₂ or NiO+TiO_{2-x}N_x as reference: physically mixing pure powders of NiO (81.5 wt %) and TiO₂ (18.5 wt %) or NiO (81.5 wt %) and TiO_{2-x}N_x (18.5 wt %).

 $TiO_{2-x}N_x$ was prepared following the procedure in ref. 7 in article.

Fig. S2 Powder XRD patterns of NiO-sensitized TiO₂ (a) and NiO-sensitized TiO_{2-x}N_x (b). The reflection characteristic of (101) plane of anatase TiO₂ (JCPDS no. 21-1272), as well as the (111), (200) and (220) reflections of bunsenite NiO (JCPDS no. 47-1049) are observed.

Table S1. The Crystallite Sizes of the Photocatalysts Determined by the Scherrer Equation.

Sample	crystallite size TiO _{2 (101)} (nm)	crystallite size NiO (111) (nm)	crystallite size NiO (200) (nm)	crystallite size NiO (220) (nm)
NiO-sensitized TiO ₂	8.1	9.9	5.9	7.6
NiO-sensitized TiO _{2-x} N _x	9.2	7.2	6.6	8.3

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

Fig. S3 (A) UV-vis diffuse reflectance spectra of NiO-sensitized TiO₂, NiO-sensitized TiO_{2-x}N_x and pure NiO. (B) UV-vis diffuse reflectance spectra of the remaining TiO₂ after removal of NiO and the reference sample of TiO_{2-x}N_x.

Fig. S4 Powder XRD pattern of the remaining TiO_2 after removal of NiO from NiO-sensitized $TiO_{2-x}N_x$. The basal reflections of (101), (112), (200), (211) and (204) planes are characteristic of anatase TiO_2 (JCPDS no. 21-1272).

Fig. S5 The Ti $2p_{3/2}$ (A) and Ni $2p_{3/2}$ (B) XPS spectra of NiO sensitized TiO₂. In (A), the peaks at 458.9 and

458.4 eV correspond to the O-Ti-O-Ni and O-Ti-O-Ti structure. In (B), the peaks at 855.7 and 854.2 eV correspond to the O-Ni-O-Ni and O-Ti-O-Ni structure. The Ti $2p_{3/2}$ and Ni $2p_{3/2}$ XPS spectra display the formation of Ti-O-Ni linkage.

Fig. S6 TOC reduction in the photocatalytic degradation of MB (NT: NiO sensitized TiO_2 ; NNT: NiO sensitized $TiO_{2-x}N_x$).

Photocatalytic Activity.

Under visible light irradiation: the photocatalytic activity was evaluated by the degradation of methylene blue (MB) under visible light irradiation using a 300 W Xe lamp with the 400 nm cutoff filter. In each experiment, a mixture of MB solution $(1 \times 10^{-5} \text{ mol/L}; 100 \text{ mL})$ and 30 mg of catalyst were vigorously stirred for 30 min to establish an adsorption/desorption equilibrium. Then light irradiation was started. 3 mL aliquots were sampled at intervals and centrifuged to remove the particles. The filtrates were analyzed by measuring the absorption at 665 nm on a Shimadzu UV-2501PC UV-vis spectrophotometer. The blank reaction was carried out following the same procedure without catalyst added.

Under 450 nm monochromatic irradiation: the photocatalytic activity was evaluated by the degradation of methylene blue (MB) under visible light irradiation using a 300 W Xe lamp with the 450 ± 15 nm filter. In each experiment, a mixture of MB solution (2×10^{-6} mol/L; 100 mL) and 40 mg of catalyst were vigorously stirred for 30 min to establish an adsorption/desorption equilibrium. Then light irradiation was then started. 3 mL aliquots were sampled at intervals and centrifuged to remove the particles. The filtrates were analyzed by measuring the absorption at 665 nm on a Shimadzu UV-2501PC UV-vis spectrophotometer.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

Fig. S7 Temporal course of MB photocatalytic degradation under monochromatic irradiation with 450 ± 15 nm (2.66-2.85 eV). The physical mixture of NiO and TiO₂ shows slightly higher photocatalytic activity than bare TiO₂, meaning that NiO shows weak oxidization on MB. However, both of bare TiO₂ and NiO+TiO₂ (physical mixture) are apparently inferior to the NiO sensitized TiO₂. This fact further indicates the efficient electron transfer through Ti-O-Ni linkage has achieved a highly effective photosensitization in the visible light. The weak oxidizing ability of NiO on MB is quite important for the recovery of electron-injecting NiO.

Supplementary References.

- [1] F. Cavani, F. Trifiro, A. Vaccari, Catal. Today 1991, 11, 173.
- [2] X. Shu, W. H. Zhang, J. He, F. X. Gao, Y. X. Zhu, Solid State Sci. 2006, 8, 634.