Fluoride Protects Boronic Acids in Copper (I)-mediated Click Reaction

Shan Jin, ^a Gaurav Choudhary, ^a Yunfeng Cheng, ^a Chaofeng Dai, ^a Minyong Li, ^a and Binghe Wang^{*a}

Experimental Section

General methods and materials

¹H and ¹³C NMR spectra were recorded on a Bruker 400 MHz NMR spectrometer in deuterated choloroform (CDCl₃), methanol- d_4 (CD₃OD), and DMSO- d_6 ((CD₃)₂SO) with either tetramethylsilane (TMS) (0.00 ppm) or the NMR solvent as the internal reference unless otherwise specified. HPLC purification was carried out using a Shimadzu LC-10AT VP system, a Pinnacle C8 reverse phase column (10 mm × 250 mm, No. 9413571, for **B-iii** to **I-iii**) and a YMC-Pack SIL normal phase column (10 mm × 250 mm, No. 102505809, for purification and analysis of **A-iii**). HPLC analytical studies (stability and model reaction yield studies except for **A-iii**) were carried out using a Shimadzu LC-10AT VP system and a Pinnacle C8 reverse phase column (4.6 mm × 250 mm, No. 9413575). Boronic acids were obtained from Frontier Scientific and Combi-Blocks, Inc. Chemicals and solvents were bought from Aldrich or Acros and were used as received. Water used for HPLC studies was doubly distilled and further purified with a Milli-Q filtration system.

HPLC conditions for analytical studies (except A-iii, see synthesis section)

The stabilities and click reaction yields of different boronic acids were studied by HPLC (C8 RP analytical column, 260 nm). 20 μ L of 50 μ M boronic acid solution (diluted by methanol) was used for each injection. Elution condition: CH₃CN-H₂O, flow rate = 1.0 mL/min), 0-2 min (CH₃CN 5 %), 2-18 min (CH₃CN 5-95 %), 18-25 min (CH₃CN 95-5 %), 25-30 min (CH₃CN 5 %).

Stability studies

0.05 mmol boronic acid (1.0 equiv), 0.01 mmol TBTA ligand (0.2 equiv), and 0.02 mmol CuBr (0.4 equiv) were dissolved in a mixture of H₂O/DMF/*t*-BuOH (0.2 mL/0.6 mL/0.2 mL) in a 3 mL vial [0.10 mmol CsF (2.0 equiv) was added only for the fluoride protected reactions]. The mixture was stirred at room temperature for 5 h. The solution was diluted by methanol (5 mL) and precipitate was filtered out. 5 μ L of the reaction mixture (50 mM for each boronic acid) was diluted to 5 mL by methanol. 20 μ L of the diluted reaction mixture was used for each injection to the analytical HPLC column. 20 μ L of 50 μ M pure boronic acid was used in HPLC studies for comparison. The ratio of the peak areas between the reaction mixture and pure boronic acid gives the degradation percentage.

Standard curve

After HPLC purification of triazole product (iii), 5-6 vials (20 mL) with different

concentrations (10-60 μ M in methanol) of pure product (iii) were prepared. 20 μ L product solution was used for each injection to HPLC. Standard curves were generated by plotting peak areas against concentrations. 5-6 data points were generated for each curve.

Reaction yield studies

5 μ L of click reaction mixture (50 mM for each boronic acid starting material) was diluted to 5 mL by methanol. 20 μ L of the diluted reaction mixture was used for each injection into HPLC. The peak area of the product (**iii**) was used for yield calculations using standard curves.

Synthesis

General procedure for the model click reaction

0.05 mmol azide (1.0 equiv), 0.05 mmol alkyne (1.0 equiv), 0.01 mmol TBTA ligand (0.2 equiv), and 0.02 mmol CuBr (0.4 equiv) were dissolved in a mixture of $H_2O/DMF/t$ -BuOH (0.2 mL/0.6 mL/0.2 mL) in a 3 mL vial. [0.10 mmol CsF (2.0 equiv) was added only for the fluoride protected click reactions] The mixture was stirred at room temperature for 5 h. The solution was diluted by methanol (5 mL) and precipitate was filtered out. The product was purified by HPLC (260 nm, Sil NP semi-preparation column for **A-iii**, C8 RP semi-preparation column for **B-iii** to **I-iii**).

Tert-butyl 2-(4-(4-bromophenyl)-1H-1,2,3-triazol-1-yl)acetate (A-iii). HPLC elution condition: ethyl acetate-hexane, 0-2 min (hexane 90 %), 2-13 min (hexane 90-0 %), 13-13.5 min (hexane 0 %), 13.5-16 min (hexane 0-90 %), flow rate = 2 mL/min, RT = 11.5 min. This gave A-iii (79% without fluoride protection, 81% with fluoride protection) as a white solid. The same HPLC condition was used for the analytical studies of A-iii. ¹H NMR (CDCl₃) δ 7.93 (s, 1H), 7.75 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 8.4 Hz, 1H), 5.13 (s, 2H), 1.53 (s, 9H); ¹³C NMR (CDCl₃) δ 165.2, 147.2, 132.0, 129.5, 127.4, 122.1, 121.0, 84.1, 51.6, 28.0; MS (ESI+), m/z 340.1 (M+H)⁺.

4-(1-(2-Tert-butoxy-2-oxoethyl)-1H-1,2,3-triazol-4-yl)phenylboronic acid (B-iii). HPLC elution condition: isocratic flow of 30 % ACN in H₂O, flow rate = 2 mL/min, RT = 9 min. This gave **B-iii** (57% without fluoride protection, 96% with fluoride protection) as a white solid. ¹H NMR (CD₃OD) δ 8.37 (s, 1H), 7.84 (m, 3H), 7.73 (s, 1H), 5.28 (s, 2H), 1.53 (s, 9H); ¹³C NMR (CD₃OD) δ 167.5, 135.2, 128.5, 128.2, 128.1, 127.3, 125.6, 123.7, 116.8, 115.4, 84.5, 52.6, 28.2; MS (ESI-), m/z 302.2 (M-H)⁻, 316.1 (M-2H+CH₃)⁻.

4-((2-(4-(4-Bromophenyl)-1H-1,2,3-triazol-1-yl)acetamido)methyl)phenylboronic acid (C-iii). HPLC elution condition: isocratic flow of 50 % ACN in H₂O, flow rate = 3 mL/min, RT = 8 min. This gave **C-iii** (49 % without fluoride protection, 89% with fluoride protection) as a white solid. ¹H NMR (DMSO-*d*₆) δ 8.62 (d, *J* = 7.2 Hz, 1H), 8.01 (t, J = 7.2 Hz, 2H), 7.83 (d, J = 7.6 Hz, 2H), 7.75 (d, J = 7.2 Hz, 2H), 7.67 (t, J = 8.8 Hz, 2H), 7.26 (s, 2H), 5.24 (d, J = 7.6 Hz, 2H), 4.36 (s, 2H); ¹³C NMR (DMSO- d_6) δ 165.6, 145.0, 134.1, 131.8, 129.9, 127.0, 126.3, 123.2, 120.7, 51.7; MS (ESI-), m/z 415.6 (M-H)⁻.

4-((4-(4-Bromophenyl)-1H-1,2,3-triazol-1-yl)methyl)phenylboronic acid (D-iii). HPLC elution condition: isocratic flow of 55 % ACN in H_2O , flow rate = 3 mL/min, RT = 8 min. This gave **D-iii** (60 % without fluoride protection, 71 % with fluoride protection) as a white solid. ¹H NMR (CD₃OD) δ 8.37 (s, 1H), 7.75 (m, 3H), 7.59 (m, 3H), 7.36 (m, 2H), 5.67 (s, 2H); ¹³C NMR (CD₃OD) δ 148.2, 133.2, 130.9, 128.5, 123.1. 122.6. 55.1: (ESI+), m/z 359.5 MS $(M+H)^{+}$. 4-((2-(4-(4-Ethylphenyl)-1H-1,2,3-triazol-1-yl)acetamido)methyl)phenylboronic acid (E-iii). HPLC elution condition: isocratic flow of 50 % ACN in H_2O , flow rate = 3 mL/min, RT = 7.5 min. This gave E-iii (79 % without fluoride protection, 94 % with fluoride protection) as a white solid. ¹H NMR (CD₃OD) δ 8.28 (s, 1H), 7.73 (m, 3H), 7.60 (s, 1H), 7.29 (m, 4H), 5.23 (s, 2H), 4.44 (s, 2H), 2.68 (m, J = 6.8 Hz, 2H), 1.27 (m, 3H); 13 C NMR (CD₃OD) δ 167.8, 146.0, 129.5, 129.1, 127.8, 126.8, 123.6, 53.3, 44.5, 29.7, 16.11; MS (ESI+), m/z 365.3 (M+H)⁺.

4-((2-(4-p-Tolyl-1H-1,2,3-triazol-1-yl)acetamido)methyl)phenylboronic acid (F-iii). HPLC elution condition: isocratic flow of 50 % ACN in H₂O, flow rate = 3 mL/min, RT = 7 min. This gave F-iii (43% without fluoride protection, 77 % with fluoride protection) as a white solid. ¹H NMR (CD₃OD) δ 8.29 (s, 1H), 7.70 (d, *J* = 8.0 Hz, 3H), 7.58 (s, 1H), 7.26 (m, 4H), 5.23 (s, 2H), 4.58 (s, 1H), 4.43 (s, 2H), 2.37 (s, 3H); ¹³C NMR (CD₃OD) δ 137.8, 129.2, 126.4, 125.3, 122.1, 51.8, 19.9; MS (ESI-), m/z 349.3 (M-H)⁻.

4-((2-(4-(4-Fluorophenyl)-1H-1,2,3-triazol-1-yl)acetamido)methyl)phenylboronic acid (G-iii). HPLC elution condition: isocratic flow of 40 % ACN in H₂O, flow rate = 3 mL/min, RT = 8.5 min. This gave **G-iii** (47 % without fluoride protection, 83 % with fluoride protection) as a white solid. ¹H NMR (CD₃OD) δ 8.32 (s, 1H), 7.86 (t, *J* = 8.8 Hz, 2H), 7.72 (s, 1H), 7.59 (s, 1H), 7.29 (s, 2H), 7.18 (t, *J* = 8.8 Hz, 2H), 5.24 (s, 2H), 4.57 (s, 1H), 4.44 (s, 2H); ¹³C NMR (CD₃OD) δ 127.4, 127.3, 126.4, 122.4, 115.5, 115.3, 51.8, 29.3; MS (ESI-), m/z 353.3 (M-H)⁻.

4-((2-(4-(4-Aminophenyl)-1H-1,2,3-triazol-1-yl)acetamido)methyl)phenylboronic acid (H-iii). HPLC elution condition: isocratic flow of 25 % ACN in H₂O, flow rate = 3 mL/min, RT = 7.5 min. This gave H-iii (57 % without fluoride protection, 86 % with fluoride protection) as a white solid. ¹H NMR (CD₃OD) δ 8.16 (s, 1H), 7.60 (m, 4H), 7.30 (s, 2H), 6.77 (s, 2H), 5.23 (s, 2H), 4.45 (s, 2H); ¹³C NMR (CD₃OD) δ 163.5, 133.5, 131.3, 129.3, 126.4, 121.0, 115.1, 51.8, 35.6; MS (ESI+), m/z 366.3 $(M+CH_3)^+$.

4-((2-(4-(4-Boroxophenyl)-1H-1,2,3-triazol-1-yl)acetamido)methyl)phenylboronic acid (I-iii). HPLC elution condition: isocratic flow of 25 % ACN in H₂O, flow rate = 3 mL/min, RT = 7.5 min. This gave **I-iii** (43 % without fluoride protection, 86 % with fluoride protection) as a white solid. ¹H NMR (CD₃OD) δ 8.38 (s, 1H), 7.84 (m, 3H), 7.73 (m, 2H), 7.62 (s, 1H), 7.33 (m, 2H), 5.27 (s, 2H), 4.60 (s, 1H), 4.47 (s, 2H); ¹³C NMR (CD₃OD) δ 167.8, 137.1, 135.6, 127.9, 125.8, 124.1, 53.3, 30.4; MS (ESI+), m/z 395.3 (M+CH₃)⁺, 409.4 (M-H+2CH₃)⁺, 409.4 (M-2H+2CH₃+Na)⁺.

.

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

No title

- C:\shan\11-25-08 20a.dat, SPD-10AVvp Ch1-260nm

(1)

Mass Spectrometer Method Properties

Period 1:

Mate l'arameter botto	tate	ePara	nerer	Editor	t
-----------------------	------	-------	-------	--------	---

Ton Source:	Turine S	C2EV	
Terperaturs Reached			
Ourtain Ges (16) :		20.0	
TonSpary Voltage (13-	:	-457	;
Temperature (CEX) :		2.633	
In Source Gas 1 (32)	12		
in some be i più	.:	3.0	
Interface Scatter (the		or:	
Seclastering Potentia	i (R):		-45.0
Entrance Potential (E	81;		-11.0
Q. Resolution:	Ont		
Ion Bergy 1 (E1):		-1.0	
Deflector (UET):	150.0		
(TN 1776) -	2400 0		

Scans in Period:	594
Relative Start Time:	0.00 msec
Experiments in Period:	1
Porios 1 Experiment	1;
Scan Type:	Q1 M5 (Q1)
Polarity:	Negative
Soan Mode:	Profile
Ian Source:	Turbo Spray
Resolution Q1:	Ur.it
Intensity Three.:	0.00 ops
Settling Time:	0.0000 msec
MR Pause:	5.0070 msec
MCA:	No
Center/Width:	No
Step Size:	0.10 amu

Printing Date: Sunday, November 16, 2008

No title

BRUKER Current Data Parameters NAME JSC	EXPNO 3 PROCNO 1 F2 - Acquisition Parameters Date_ 20081205 Date_ 10.24 INSTRUM spect PULPROG 5 mm PAIBO BB- PULPROG 55536 SOLVENT 290930 TD 5 mm PAIBO BB- PULPROG 55536 SOLVENT 22980.814 Hz D20 12439 SWH 23980.814 Hz FTDRES 0.365918 Hz D0 0.365918 Hz D1 0.365918 Hz TO 0.365918 Hz TO 0.365918 Hz D1 0.3664756 sec D0 20642.5 D1 0.366919 Sec D1 0.0300000 Sec D1 0.0300000 Sec D2 D1 D2 D1 D2 D2 D1 0.0300000 Sec D2 D2 D2 D2 D1 0.0150000 Sec	====== CHANNEL (1 ======== NUC1 13C P1 8.00 usec PL1 100.6228298 MHz SF01 100.6228298 MHz	<pre>====== CHANNEL f2 ======== CPDPRG2 waltz16 NUC2 11 PCPD2 70.00 usec PL2 -1.00 dB PL12 14.00 dB PL13 14.00 dB PL13 SF02 400.1316005 MHz</pre>	F2 - Processing parameters SI 32768 SF 100.6126221 MHZ WDW 5SB 0 LB 1.00 Hz	GB PC 1.40
0.00					40 30 20 10 0 ppm ¹
90.64 91.64 01.22				יני ולאולעק לנייוין אין אלא אין אין איז	110 100 90 80 70 60 50
148.20 133.18 133.18 128.45 128.45 128.45 128.45 122.65				والمعادية المحاجمة المحاجزة المحاجزة معادية المحاجزة المحاجزة المحاجزة المحاجزة المحاجزة المحاجزة المحاجزة الم المحاجزة المحاجزة الم	80 170 160 150 140 130 120
NO TITLE				Landerska de La Maria (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	210 200 190 1

No title

- C:\shan\11-19-08 35c 0000.dat, SPD-10AVvp Ch1-260nm

No title

- C:\shan\12-5-09 45(2) 000.dat, SPD-10AVvp Ch1-260nm

Q.

32

BRANC Current Data Parameters NAME sj-iv-45 (5) c EXPNO PROCNO 1	F2 + Acquisition Parameters Date20090117 Time20090117 Time20090117 Time20090117 Time20090117 INSTRUM spect PROBHD spect PROBHD spect PROBHD spect PULPROG 29930 PULPROG 295930 SOLVENT 17884 NS 17884 SWH 23980.814 SWH 23980.814 SWH 23980.814 PIDRES 0.365918 DW 1.3664756 PC 0.365918 RG 20.850 DW 1.36647756 PE 0.32768 DW 20.3650 DF 2.00000000 SEC 7.00 DELTA 1.899999998 MCMRK 0.0150000	======= CHANNEL f1 ======= NUC1 13C P1 8.00 usec PL1 -3.00 dB SFOL 100.6228298 MHz	====== CHANNEL f2 ======= CPDPRG2 Waltz16 NUC2 1H PCPD2 70.00 usec P1.2 14.00 dB PL13 100.1316005 MHz	MUM F2 - Processing parameters SF 100.6127690 MH2 WDW SSB 100.6127690 MH2 MDW SSB 100.6127690 MH2 MDW LB 1.00 Hz	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29.33 43.04 43.04					40 30 20 1
18.18 8.23 8.48.02 47.59 86.74					70 60 50
					100 90 80
115.238					120 110
92.727			2 		150 140 130
					80 170 160
No title	a				210 200 190 1

52

Supplementary Material (ESI) for Chemical Communications This journal is $\textcircled{\mbox{\scriptsize C}}$ The Royal Society of Chemistry 2009

•

No title

— C:\shan\12-17-09 45(5) 0502.dat, SPD-10AVvp Ch1-260nm

.

.

— C:\shan\12-30-08 80.dat, SPD-10AVvp Ch1-260nm

