Electronic Supplementary Information (ESI)

One-step Formation of Fused Tetracyclic Skeletons from Cyclohexene-diynes and Carbon Monoxide through Rh(I)-Catalyzed [2+2+2+1] Cycloaddition Reaction

Joseph J. Kaloko, Yu-Han Gary Teng and Iwao Ojima*

Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York, 11794-3400

Contents:

General Methods	S2
Materials	S2
Syntheses and characterization data of cyclohexene-diynes 4a-4k	S2-S12
Procedure for [2+2+2+1] cycloaddition reaction	S12
Characterization data of 5a-5k	S13-S18
¹ H and ¹³ C NMR Spectra of 4a-4k and 5a-5k	S19-S44

Supplementary Information

General Methods. All reactions were carried out under nitrogen or carbon monoxide in oven dried glassware using standard Schlenk techniques unless otherwise noted. All reactions were monitored by thin layer chromatography (TLC) using E. Merck 60F254 precoated silica gel plates. Flash chromatography was performed with the indicated solvents using Fisher silica gel (particle size 170-400 Mesh). Yields refer to chromatographically and spectroscopically pure compounds. Analytical high performance liquid chromatography (HPLC) was performed with a Shimadzu LC 2010A system using a phenomenex Jupiter 10µ proteo 90A column (4.5 x 250 mm/mm) and gradient from 100% acetonitrile to 95:5 acetonitrile:water over 24 min with a flow rate of 1mL/min. Preparative HPLC was carried out on a Shimadzu semi-preparative LC-6AD HPLC system using a phenomenex Jupiter 10µ proteo 90A column (21.2 x 250 mm/mm) and gradient from 100% acetonitrile to 95:5 acetonitrile:water over 24 min with a flow rate of 20 mL/min. Melting points were measured with a Thomas Hoover capillary melting point apparatus and are uncorrected. Infrared spectra were recorded on Shimadzu FTIR-84005 spectrophotometer. ¹H NMR spectra were recorded on a Varian Inova-400 (400 MHz) or a Gemini-300 (300 MHz) at ambient temperature using an internal deuterium lock. Chemical shifts are referenced to residual chloroform ($\delta = 7.26$ ppm). ¹³C NMR spectra were recorded on a Varian Inova-400 (100 MHz) or a Gemini-300 (75 MHz) at ambient temperature using an internal deuterium lock. Chemical shifts are referenced to residual chloroform ($\delta = 77.0$ ppm). High resolution mass spectrometry (HRMS) was carried out at the Mass Spectrometry Facility, the University of Illinois Urbana Champaign. Caution: Carbon monoxide is a toxic gas and thus all reactions should be carried out in a fume hood with sufficient ventilation.

Materials. Solvents were reagent grade and freshly distilled before use. Diethyl ether and tetrahydrofuran (THF) were distilled from sodium/benzophenone under nitrogen. Anhydrous N,N-dimethylformamide (DMF) was purchased from DrySolv® and used without further purification. Dichloroethane (DCE) and trifluoroethanol (TFE) were purchased from Aldrich and used without purification. Carbon monoxide was purchased from Liquid Carbonic Specialty Gases, Oak Brook, Illinois and passed through Drierite® before use. [Rh(CO)₂Cl]₂ was prepared by the literature method.¹

1-Aza-1-(cyclohex-2-en-1-yl)-6,6-dicarbethoxy-1-(4-methylbenzenesulfonyl)nona-3,8-diyne (4a)

¹ J. A. McCleverty, and G. Wilkinson, *Inorg. Syn.*, 8, 211-214.

(i) Preparation of N-(cyclohex-2-en-1-yl)-4-methylbenzenesulfonamide (11)

A mixture of triphenylphosphine (4.41 g, 16.83 mmol) and diisopropylazodicarboxylate (DIAD) (3.58 g, 16.83 mmol) in THF (50 cm³) was stirred for 10 min until a precipitate formed. Then, *N*-Boc-*N*-tosylamide (4.15 g, 15.28 mmol) in 30 cm³ of THF was added dropwise, followed by cyclohex-3-enol (1.50 g, 15.28 mmol) in 30 cm³ of THF. The resulting mixture was stirred overnight. The mixture was concentrated and purified by flash chromatography on silica gel using 10% EtOAc in hexanes as eleunt to give **10** (4.57 g, 85%) as a white solid. This product (6.14 g, 17.47 mmol) was dissolved in DMSO (30 cm³) and heated in a microwave reactor at 160 °C for 4 min. Water was added and the mixture extracted with ether (3 x 50 mL). The organic layers were combined, washed with water, brine, dried over MgSO₄, filtered and concentrated. The crude product was purified by flash chromatography on silica gel using 10% EtOAc in hexanes as eleuent to give **11** (4.04 g, 92%) as a white solid; mp 100 -101 °C (lit.^{2,3} 101-102 °C). All spectral data were consistent with that reported in the literature.³ ¹H NMR (CDCl₃, 300 MHz) δ 1.60-1.52 (m, 3H), 1.79-1.76 (m, 1H), 1.93-1.91 (m, 2H), 2.43 (s, 1H), 3.85-3.79 (m, 1H), 4.48 (d, 1H, *J* = 8.4 Hz), 5.37-5.32 (m, 1H), 5.78-5.74 (m, 1H), 7.32 (d, 2H, *J* = 8.7 Hz), 7.78 (d, 2H, *J* = 8.7 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 19.27 (CH₂), 21.51 (CH₃), 24.48 (CH₂), 30.28 (CH₂), 48.96 (CH), 126.97 (CH), 127.03 (CH), 129.68 (CH), 131.59 (CH), 138.37 (C), 143.24 (C).

(ii) Preparation of diethyl 2-(but-2-ynyl)-2-(4-bromobut-2-yn-1-yl)malonate (12):

Diethyl 2-(but-2-ynyl)malonate⁴ (5.00 g, 23.6 mmol) was added dropwise to a suspension of NaH (60% dispersion in mineral oil, 1.00 g, 23.6 mmol) in 80 cm³ of THF. The resulting mixture was stirred for 1 h at room temperature. The mixture was then transferred to a solution of 1,4-dibromobut-2-yne (15.00 g, 70.7 mmol) in 100 cm³ of THF *via* canula over 2.5 h. The mixture was then stirred at room temperature for 18 h. The mixture was diluted with water and extracted with ether. The organic layer was dried over MgSO₄, filtered and concentrated to yield yellow oil. The excess dibromobutyne was recovered by distillation (100 °C/4 mmHg). The residue was purified by flash chromatography on silica gel using 10% EtOAc in hexanes as eluent to give product **12** as yellow oil (6.88 g, 85%); TLC (SiO₂, hexanes:EtOAc = 3:1, R_f = 0.52); ¹H NMR (CDCl₃, 300 MHz) δ 1.28 (t, 6H, *J* = 7.2 Hz), 1.75 (t, 2H, *J* = 2.7 Hz), 2.88 (q, 2H, *J* = 2.7 Hz), 3.02 (t, 2H, *J* = 2.1 Hz), 3.87 (t, 2H, *J* = 2.1 Hz), 4.25 (q, 4H, *J* = 7.2 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ 3.45 (CH₃), 14.02 (CH₃), 14.69 (CH₂), 22.74 (CH₂), 22.99 (CH₂), 56.70 (C), 61.69 (CH₂), 61.87 (CH₂), 72.94 (C), 78.20 (C), 79.14 (C), 82.23 (C), 168.86 (C).

(iii) Preparation of 4a through coupling of 11 and 12:

N-Cyclohexenyl-*N*-tosylamide **11** (0.40 g, 1.59 mmol) in 4 cm³ of DMF was added dropwise to a suspension of NaH, (60% dispersion in mineral oil, 82 mg, 2.07 mol) in 3 cm³ of DMF. The resulting solution was stirred at room temperature for 45 min and then **12** (0.55 g, 1.59 mmol) in 5 cm³ of DMF was added dropwise and the mixture was stirred for an additional 5 h. Water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash chromatography on silica gel using 10% EtOAc in hexanes as eluent gave cyclohexenediyne **4a** as light yellow oil (0.65 g,

² K.B. Sharpless and T. Hori, J. Org. Chem. 1976, **41**, 176-177.

³ J.G. Taylor, N. Whittall and K.K. Hii, Org. Lett. 2006, 8, 3561-3564.

⁴ K.M. Brummond, H. Chen, P. Sill and L. You, J. Am. Chem. Soc. 2002, **124**, 15186-15187.

Supplementary Information

80 %); TLC (SiO₂, hexanes:EtOAc = 3:1, $R_f = 0.46$); ¹H NMR (CDCl₃, 400 MHz) δ 1.24-1.21 (m, 6H), 1.48-1.55 (m, 2H), 1.74-1.67 (m, 5H), 1.94-1.93 (m, 2H), 2.42 (s, 3H) 2.79 (t, 2H, *J* = 2.0 Hz), 2.86 (t, 2H, *J* = 2.0 Hz), 3.90 (dt, 1H, *J* = 2.0 Hz), 4.10 (dt, 1H, *J* = 2.0 Hz), 4.22-4.15 (m, 4H), 4.43-4.40 (m, 1H), 5.30 (d, 1H, *J* = 10.4 Hz), 5.86-5.83 (m, 1H), 7.30 (d, 2H, *J* = 8.8 Hz), 7.78 (d, 2H, *J* = 8.8 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 3.42 (CH₃), 13.95 (CH₃), 21.45 (CH₃), 22.70 (CH₂), 22.75 (CH₂), 22.88 (CH₂), 24.32 (CH₂), 27.86 (CH₂), 32.89 (CH₂), 54.87 (CH), 56.55 (C), 61.66 (CH₂), 61.70 (CH₂), 73.09 (C), 78.42 (C), 78.83 (C), 79.89 (C), 127.28 (CH), 127.35 (CH), 129.39 (CH), 132.74 (CH), 138.13 (C), 142.99 (C), 168.93 (C); IR (neat, cm⁻¹) 2979, 2921, 1734, 1326, 1290, 1209, 1161, 1095, 1051; HRMS (ES) m/z calcd for C₂₈H₃₆NO₆S (M + H)⁺ 514.2263, found 514.2255 (Δ = -0.8 ppm).

6-Aza-1-(4-cyclohex-2-en-1-yl)-6-(4-methylbenzenesulfonyl)-1-oxadeca-3,8-diyne (4b)

1-Tetrahydropyranyl(THP)butyne-1,4-diol⁵ (**13**) (775 mg, 4.56 mmol) in 15 cm³ of THF was added dropwise to a suspension of NaH, (60% dispersion in mineral oil, 237 mg, 5.93 mmol) in THF (5 cm³). The resulting solution was stirred at room temperature for 30 min and then 3-bromocyclohex-1-ene (734 mg, 4.56 mmol) in 10 cm³ of THF was added dropwise and the mixture was stirred overnight. Water was added and the mixture was extracted with ether. The organic layer was washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash chromatography on silica gel using 10% EtOAc in hexanes as eluent gave 1-THP-4-(cyclohex-2-en-1-yl)but-2-yne-1,4-diol (**14**) (1.05 g, 92%) as light yellow oil; TLC (SiO₂, hexanes:EtOAc = 3:1, R_f = 0.64); ¹H NMR (CDCl₃, 300 MHz) δ 1.84-1.49 (m, 10H), 1.98-1.95 (m, 1H), 2.04-2.00 (m, 1H), 3.54-3.49 (m, 1H), 3.86-3.80 (m, 1H), 4.07-4.05 (m, 1H), 4.24-4.23 (m, 2H), 4.28-4.27 (m, 1H), 4.32-4.30 (m, 1H), 4.81 (t, 1H, *J* = 3.2 Hz), 5.79-5.74 (m, 1H), 5.89-5.85 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 19.04 (CH₂), 19.06 (CH₂), 25.15 (CH₂), 25.33 (CH₂), 28.04 (CH₂), 30.23 (CH₂), 54.43 (CH₂), 55.56 (CH₂), 62.01 (CH₂), 71.67 (CH), 81.74 (C), 82.58 (C), 96.83 (CH), 127.13 (CH), 131.41 (CH).

p-Toluenesulfonic acid (*p*-TSA, 372 mg, 1.96 mmol) was added to a solution of eneyne-THP ether **14** (980 mg, 3.91 mmol) in MeOH (50 cm³). The solution was then heated at 50 °C overnight. The solution was cooled to room temperature and then solid NaHCO₃ was added portionwise. The mixture was then diluted with water and extracted with ether. The organic layer was washed with sat. NaHCO₃, water and brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash chromatography on silica gel using 25% EtOAc in hexanes as eluent gave 1-(cyclohex-2-en-1-yl)but-2-yne-1,4-diol (**15**) (559 mg, 86 %) as yellow oil; TLC (SiO₂, hexanes:EtOAc = 3:1, R_f = 0.24); ¹H NMR (CDCl₃, 300 MHz) δ 1.59- 1.54 (m, 1H), 1.83-1.64 (m, 3H),

⁵ A.T. Khan, L.H. Choudhury and S. Ghosh, *Tetrahedron Lett.* 2004, **45**, 7891-7894.

2.04-1.95 (m, 2H), 4.07-4.03 (m, 1H), 4.24-4.17 (m, 2H), 4.31-4.29 (m, 2H), 5.79-5.74 (m, 1H), 5.90-5.85 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 19.01 (CH₂), 25.13 (CH₂), 28.00 (CH₂), 51.11 (CH₂), 55.47 (CH₂), 71.87 (CH), 82.37 (C), 84.07 (C), 126.96 (CH), 131.57 (CH).

Diisopropyl azodicarboxylate (DIAD) (694 mg, 3.26 mmol) was added to a solution of triphenylphosphine (856 mg, 3.26 mmol) in 10 cm³ of THF. After formation of a solid, *N*-(but-2-ynyl)-*N*-(4-methylbenzene)sulfonamide (583 mg, 2.61 mmol) in 10 cm³ of THF was added, followed by the addition of eneynol **15** (434 mg, 2.61 mmol) in 5 cm³ of THF. The resulting mixture was stirred overnight and then concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel using 10% EtOAc in hexanes as eleuent to give **4b** (802 mg, 83%) as colorless oil; TLC (SiO₂, hexanes:EtOAc = 3:1, $R_f = 0.48$); ¹H NMR (CDCl₃, 300 MHz) δ 1.61-1.55 (m, 1H), 1.65-1.63 (m, 4H), 1.75-1.67 (m, 2H), 2.03-1.96 (m, 2H), 2.41 (s, 3H), 3.92 (m, 1H), 4.08 (m, 4H), 4.17(t, 2H, *J* = 1.8 Hz), 5.71-5.66 (1H), 5.88-5.83 (m, 1H), 7.30 (d, 2H, *J* = 8.4 Hz), 7.72 (d, 2H, *J* = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 3.36 (CH₃), 18.97 (CH₂), 21.50 (CH₃), 25.13 (CH₂), 27.99 (CH₂), 36.51 (CH₂), 36.79 (CH₂), 55.28(CH₂), 71.43 (C), 71.59 (C), 78.42 (CH), 81.89 (C), 82.25 (C), 126.96 (CH), 127.97 (CH), 129.33 (CH), 131.50 (CH), 135.48 (C), 143.56 (C); IR (neat, cm⁻¹) 3026, 2929, 2179, 1596, 1350, 1163; HRMS (ES) m/z calcd for C₂₁H₂₆NO₃S (M + H)⁺ 372.1633, found 372.1638 ($\Delta = 0.5$ ppm).

1-(Cyclohex-3-en-1-yl)-1-(4-methylbenzenesulfonyl)-6-oxadeca-3,8-diyne (4c)

1-Tetrahydropyranyl(THP)-butynediol **13** (2.00 g, 11.75 mmol) in 25 cm³ of THF was added dropwise to a suspension of sodium hydride (60% dispersion in mineral oil, 0.611 g, 15.28 mmol) in THF (10 cm³). The resulting solution was stirred at room temperature for 30 min and then 1-bromobut-2-yne (1.56 g, 11.75 mmol) in 15 cm³ of THF was added dropwise and the mixture was stirred overnight. Water was added to quench the reaction and the mixture was extracted with ether. The organic layer was washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash chromatography on silica gel using 10% EtOAc in hexanes as eluent gave 1-THP-*O*-5-oxanona-2,7-diyne (**16**, 2.48 g, 95%) as light yellow oil; TLC (SiO₂, hexanes:EtOAc = 2:1, R_f = 0.66); ⁻¹H NMR (CDCl₃, 300 MHz) δ 1.65 (m, 4H), 1.81 (m, 2H), 1.85 (t, 3H, *J* = 2.4 Hz), 3.55-3.50 (m, 1H), 3.86-3.78 (m, 1H), 4.19 (q, 2H, *J* = 2.4 Hz), 4.31-4.27 (m, 3H), 4.35 (t, 1H, *J* = 1.8 Hz), 4.80 (t, 1H, J = 2.4 Hz); ⁻¹³C NMR (CDCl₃, 100 MHz) δ 3.56 (CH₃), 19.01 (CH₂), 25.32 (CH₂), 30.21 (CH₂), 54.24 (CH₂), 56.63 (CH₂), 57.13 (CH₂), 61.98 (CH₂), 74.31 (C), 81.34 (C), 82.68 (C), 83.08 (C), 96.83 (CH).

p-Toluenesulfonic acid (*p*-TSA) (1.28 g, 6.73 mmol) was added to a solution of **16** (2.35 g, 10.57 mmol) in MeOH (40 cm³). The solution was then heated at 50 °C overnight. The resulting solution was cooled to room temperature and then solid NaHCO₃ was added portionwise. The mixture was diluted

with water and extracted with ether. The organic layer was washed with sat. NaHCO₃, water and brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the crude product by flash chromatography on silica gel using 25% EtOAc in hexanes as eluent gave 1-hydroxy-5-oxanona-2,7-diyne (**17**) (1.32 g, 90%) as yellow oil. TLC (SiO₂, hexanes:EtOAc = 2:1, $R_f = 0.30$); ¹H NMR (CDCl₃, 300 MHz) δ 1.81 (t, 3H, J = 1.2 Hz), 3.01 (bs, 1H), 4.16 (q, 2H, J = 1.2 Hz), 4.22 (t, 2H, J = 1.8 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ 3.53 (CH₃), 50.97 (CH₂), 56.50 (CH₂), 57.17 (CH₂), 74.15 (C), 81.09 (C), 83.23 (C), 84.92 (C).

DIAD (614 mg, 3.04 mmol) was added to a solution of triphenylphosphine (796 mg, 3.04 mmol) in 10 cm³ of THF. After formation of a solid, **11** (637 mg, 2.53 mmol) in 10 cm³ of THF and then hydroxydiyne **17** (350 mg, 2.53 mmol) in 10 cm³ of THF were added. The resulting mixture was stirred overnight and then concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel using 10% EtOAc in hexanes as eleuent to give **4c** (752 mg, 80%) as light yellow viscous oil; TLC (SiO₂, hexanes:EtOAc = 2:1, $R_f = 0.52$); ¹H NMR (CDCl₃, 300 MHz) δ 1.55-1.61 (m, 2H), 1.79-1.69 (m, 2H), 1.87 (t, 3H, J = 2.4 Hz), 1.97-1.93 (m, 2H), 2.42 (s, 3H), 3.99 (dt, 1H, J = 2.1 Hz), 4.09 (q, 2H, J = 2.4 Hz), 4.18-4.12 (m, 3H), 4.55-4.48 (m, 1H), 5.32 (d, 1H, J = 10.3 Hz), 5.85-5.83 (m, 1H), 7.31 (d, 2H, J = 8.4 Hz), 7.81 (d, 2H, J = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 3.57 (CH₃), 21.42 (CH₃), 21.48 (CH₂), 24.34 (CH₂), 27.98 (CH₂), 32.94 (CH₂), 55.03 (CH), 56.52 (CH₂), 56.96 (CH₂), 74.31 (C), 79.19 (C), 82.97 (C), 83.32 (C), 127.19 (CH), 127.38 (CH), 129.40 (CH), 133.01 (CH), 138.12 (C), 143.11 (C); IR (neat, cm⁻¹) 2921, 1627, 1340, 1161, 1095, 1074, 1031; HRMS (ES) m/z calcd for C₂₁H₂₆NO₃S (M + H)⁺ 372.1633, found 372.1648 ($\Delta = 1.5$ ppm).

1-(Cyclohex-2-en-1-yl)-,1,16,6-tetracarbethoxydeca-3,8-diyne (4d)

Diethyl 2-(cyclohex-2-en-1-yl)malonate⁶ (**18**) (0.65 g, 2.73 mmol) in 10 cm³ of THF was added dropwise to a suspension of sodium hydride (60% dispersion in mineral oil, 0.13 g, 3.28 mmol) in THF (10 cm³). The resulting solution was stirred at room temperature for 30 min and then **12** (0.94 g, 2.73 mmol) in 10 cm³ of THF was added dropwise and the mixture was stirred for additional 5 h. Water was added and the mixture was extracted with ether. The organic layer was washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash chromatography on silica gel using 10% EtOAc in hexanes as eluent gave **4d** (1.10 g, 80%) as yellow oil; TLC (SiO₂, hexanes:EtOAc = 3:1, R_f = 0.52); ⁻¹H NMR (CDCl₃, 300 MHz) δ 1.28-1.20 (m, 12H), 1.59-1.52 (m, 2H), 1.74 (t, 3H, *J* = 2.7 Hz), 1.80-1.76 (m, 2H), 1.94-1.90 (m, 2H), 2.82 (dt, 2H, *J* = 2.4 Hz), 2.90-2.85 (m, 4H), 3.08-3.03 (m, 1H), 4.25-4.12 (m, 8H), 5.73 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 3.44 (CH₃), 13.97 (CH₃), 14.01 (CH₃), 14.05 (CH₃), 22.25 (CH₂), 22.70 (CH₂), 22.76 (CH₂), 24.16 (CH₂), 24.89 (CH₂), 38.35 (CH), 56.71 (C), 60.06 (C), 61.16 (CH₂), 61.22 (CH₂), 61.68 (CH₂), 73.24 (C), 77.41 (C), 78.35 (C), 78.72 (C), 128.01 (CH), 128.47 (CH), 169.04 (C), 169.72 (C), 169.88 (C); IR (neat, cm⁻¹) 3033, 2979, 2935, 2181, 1737, 1733, 1367, 1193; HRMS (ES) m/z calcd for C₂₈H₃₉O₈ (M + H)⁺ 503.2645, found 503.2638 (Δ = -0.7 ppm).

⁶ F.A. Hicks, N.M. Kablaoui and S.L. Buchwald, J. Am. Chem. Soc. 1999, **121**, 5881-5898.

6-Aza-1-(cyclohex-2-en-1-yl)-,1,1-dicarbethoxy-6-(4-methylbenzenesulfonyl)deca-3,8-diyne (4e)

N-(But-2-ynyl)-4-methylbenzenesulfonamide (500 mg, 2.24 mmol) in 5 cm³ of DMF was added dropwise to a suspension of NaH (60% dispersion in mineral oil, 107 mg, 2.69 mmol) in 5 cm³ of DMF. The resulting mixture was stirred for 1 h at room temperature. The mixture was then transferred to a solution of 1,4-dibromobut-2-yne (1.50 g, 7.07 mmol) in 5 cm³ of DMF via cannula and the resulting mixture stirred at room temperature for 18 h. The mixture was diluted with water and extracted with ether. The organic layer was washed with brine, dried over MgSO₄, filtered and concentrated to yield yellow oil. The excess dibromobutyne was recovered by distillation (100 °C/4 mmHg). The residue was purified by flash chromatography on silica gel using 10% EtOAc in hexanes as eluent to give bromodiyne **19** as viscous yellow oil (490 mg, 62%). TLC (SiO₂, hexanes:EtOAc = 3:1, R_f = 0.50); ¹H NMR (300 MHz, CDCl₃) δ 1.68 (t, 3 H, *J* = 2.4 Hz), 2.43 (s, 3 H), 3.72 (t, 2 H, *J* = 2.1 Hz), 4.06 (q, 2 H, *J* = 2.4 Hz), 4.21 (d, 2 H, *J* = 2.1 Hz), 7.32 (d, 2 H, *J* = 8.4 Hz), 7.72 (d, 2 H, *J* = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 3.38 (CH₃), 13.69 (CH₂), 21.51 (CH₃), 36.49 (CH₂), 36.96 (CH₂), 71.33 (C), 79.63 (C), 80.43 (C), 82.02 (C), 127.89 (CH), 129.42 (CH), 135.30 (C), 143.72 (C).

Diethyl 2-(cyclohex-2-enyl)malonate 18 (0.41 g, 1.69 mmol) in 5 cm³ of THF was added dropwise to a suspension of NaH (60% dispersion in mineral oil, 88 mg, 2.20 mmol) in THF (5 cm³). The resulting solution was stirred at room temperature for 30 min and then bromodiyne 19 (0.60 g, 1.69 mmol) in 5 cm³ of THF was added dropwise and the mixture was stirred for an additional 5 h. Water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash chromatography on silica gel using 10% EtOAc in hexanes as eluent gave 4e (0.65 g, 75%) as a white solid; mp 69-70 °C; TLC (SiO₂, hexanes:EtOAc = 3:1, $R_f = 0.40$); ¹H NMR (CDCl₃, 300 MHz) δ 1.29-1.19 (m, 7H), 1.54-1.48 (m, 1H), 1.62 (t, 3 H, J = 2.4 Hz), 1.76-1.69 (m, 2H), 1.94-1.91 (m, 2H), 2.41 (s, 3H), 2.69 (dt, 1H, J = 2.1 Hz), 2.78 (dt, 1H, J = 2.1 Hz), 3.02-2.98 (m, 1H), 4.07-4.02 (m, 4H), 4.22-4.12 (m, 4H), 5.70-5.64 (m, 2H), 7.32 (d, 2H, J = 8.7 Hz), 7.70 (d, 2H, J = 8.7 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 3.31 (CH₃), 14.04 (CH₃), 21.47 (CH₃), 22.24 (CH₂), 22.52 (CH₂), 24.16 (CH₂), 24.84 (CH₂), 36.46 (CH₂) 36.52 (CH₂), 38.63 (CH), 59.94 (C), 61.29 (CH₂), 61.33 (CH₂), 71.39 (C), 75.53 (C), 81.30 (C), 81.64 (C), 127.66 (CH), 127.89 (CH), 128.71 (CH), 129.29 (CH), 135.49 (C), 143.47 (C), 169.54 (C), 169.73 (C); IR (in CHCl₃ cm⁻¹) 2979, 2933, 2178, 1726, 1352, 1163; HRMS (ES) m/z calcd for $C_{28}H_{36}NO_6S (M + H)^+$ 514.2263, found 514.2261 (Δ - 0.2 ppm).

1,6-Bis(4-methylphenylsulfonyl)-1-(cyclohex-2-en-1-yl)-1,6-diazadeca-3,8-diyne (4f)

N-(Prop-2-vnvl)-4-methylbenzenesulfonamide⁷ (4.30 g, 20.05 mmol) in 25 cm³ of DMF was added dropwise to a suspension of NaH (60% dispersion in mineral oil, 1.15 g, 28.70 mmol) in 40 cm³ The resulting mixture was stirred for 1 h at room temperature. The mixture was then of DMF. transferred to a solution of 1,4-dibromobut-2-yne (13.05 g, 61.5 mmol) in 20 cm³ of DMF via cannula. The mixture was then stirred at room temperature for 18 h. The reaction mixture was diluted with water and extracted with ether. The organic layer was washed with brine, dried over MgSO₄, filtered and concentrated to yield yellow oil. The excess dibromobutyne was recovered by distillation (100 °C/4 mmHg). The residue was purified by flash chromatography on silica gel using 10% EtOAc in hexanes as eluent to give bromodiyne 20 as a yellow oil (4.23 g, 62%); TLC (SiO₂, hexanes:EtOAc = 3:1, R_f = 0.48); ¹H NMR (300 MHz, CDCl₃) δ 2.08 (t, 1 H, J = 2.4 Hz), 2.43 (s, 3 H), 2.44 (s, 3 H), 3.71 (d, 2 H, J = 6.6 Hz), 3.89 (d, 2 H, J = 2.4 Hz), 3.90 (d, 1 H, J = 2.4 Hz), 3.91 (d, 1 H, J = 2.4 Hz), 3.96 (d, 1 H, J= 2.4 Hz), 3.97 (d, 1 H, J = 2.4 Hz), 5.18 (dd, 1 H, J = 1.5 Hz / J = 11.4 Hz), 5.20 (dd, 1 H, J = 1.5 Hz / J = 17.7 Hz), 5.68 (ddt, 1 H, J = 11.4 Hz / J = 17.7 Hz / J = 6.6 Hz), 7.26 (d, 2 H, J = 12.6 Hz), 7.30 (d, 2 H, J = 16.8 Hz, 7.64 (d, 2 H, J = 13.5 Hz), 7.68 (d, 2 H, J = 13.5 Hz).

Cyclohexenylsulfonamide **11** (1.22 g, 4.84 mmol) in 10 cm³ of DMF was added dropwise to a suspension of NaH (60% dispersion in mineral oil, 0.24 g, 6.05 mmol) in DMF (5 cm³). The resulting solution was stirred at room temperature for 45 min and then bromodiyne **20** (2.06 g, 6.05 mmol) in 10 cm³ of DMF was added dropwise and the mixture was stirred for an additional 5 h. Water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product by flash chromatography on silica gel using 15% EtOAc in hexanes as eluent gave cyclohexenediyne **21** (2.01 g, 81%) as a white solid: mp 96-98 °C; TLC (SiO₂, hexanes:EtOAc = 4:1, R_f = 0.25); ¹H NMR (CDCl₃, 300 MHz) δ 1.69-1.54 (m, 2H), 1.75-1.71 (m, 2H), 1.95-1.92 (m, 2H), 2.09 (t, 1H, *J* = 2.7 Hz), 2.43 (s, 3H), 3.87 (dt, 1H, *J* = 2.4 Hz), 4.02 (dt, 1H, *J* = 2.4 Hz), 4.03 (d, 4H, *J* = 9.0, 2.4 Hz), 7.76 (m 4H); ¹³C NMR (CDCl₃, 100 MHz) δ 21.64 (CH₃), 21.78 (CH₃), 24.59 (CH₂), 28.18 (CH₂), 32.95 (CH₂), 36.34 (CH₂), 36.69 (CH₂), 55.18 (CH), 74.11 (C), 74.16 (C), 76.45 (C), 82.76 (C), 127.37 (CH), 127.52 (CH), 128.06 (CH), 129.79 (CH), 133.25 (CH), 135.45 (CH), 138.22 (CH), 143.57 (C), 144.19 (C); IR (in CHCl₃, cm⁻¹) 3272, 2929, 1596, 1448, 1350, 1163, 1095, 1031.

To a cold solution of **21** (0.50 g, 0.098 mmol) in 10 cm³ of THF was added dropwise 1.2 M LiHMDS (1.63 cm³) in THF at -78 °C. The resulting mixture was stirred at -78 °C for 45 min and then

⁷ S. Cerezo, J. Cortès, D. Galvan, E. Lago, C. Marchi, E. Molins, M. Moreno-Mañas, R.J.T. Pleixats and A. Vallribera, *Eur. J. Org. Chem.* 2001, **2001**, 329-337.

methyl iodide (0.56 g, 3.92 mmol) was added dropwise. The resulting mixture was warmed slowly to - 40 °C and stirred for 4 h. The reaction mixture was diluted with ether, followed by the addition of saturated aqueous NH₄Cl solution. The layers were separated and the organic layer was washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel using 10% EtOAc in hexanes as eleuent to give methyl-terminal cyclohexenediyne **4f** (0.513 g, 100% yield) as viscous yellow oil; TLC (SiO₂, hexanes:EtOAc = 3:1, R_f = 0.31); ¹H NMR (CDCl₃, 400 MHz) δ 1.53-1.46 (m, 5H), 1.67-1.64 (m, 2H), 1.86 (bs, 2H), 2.34 (s, 6H), 3.76 (dt, 1H, *J* = 2.4 Hz), 3.92 (m, 5H), 4.38-4.37 (m, 1H), 5.22 (d, 1H, *J* = 10.0 Hz), 5.78-5.75 (m, 1H), 7.38 (d, 4H, *J* = 8.0 Hz), 7.62 (d, 2H, *J* = 8.0 Hz), 7.69 (d, 2H, *J* = 8.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 3.19 (CH₃), 21.24 (CH₃), 21.36 (CH₃), 24.19 (CH₂), 27.75 (CH₂), 32.62 (CH₂), 36.28 (CH₂), 36.52 (CH₂), 54.77 (CH), 71.11 (C), 76.44 (C), 81.71 (C), 82.03 (C), 126.96 (CH), 127.12 (CH), 127.74 (CH), 129.24 (CH), 129.39 (CH), 132.84 (CH), 135.19 (CH), 137.82 (CH), 143.19 (C), 143.56 (C); IR (in CHCl₃, cm⁻¹) 3028, 2921, 1627, 1596, 1348, 1161, 1095, 1031; HRMS (ES) m/z calcd for C₂₈H₃₃N₂O₄S₂ (M + H)⁺ 525.1882, found 525.1902 (Δ 2.0 ppm).

1-Aza-1-(cyclohex-2-en-1-yl)-6,6,-dicarbethoxy-1-(4-methylbenzenesulfonyl)-9-phenylnona-3,8-diyne (4g)

Diethyl 2-(prop-2-ynyl)malonate⁴ (6.50 g, 32.80 mmol) in 40 cm³ of THF was added dropwise to a suspension of NaH (60% dispersion in mineral oil, 1.70 g, 42.36 mmol) in 30 cm³ of THF. The resulting mixture was stirred for 1 h at room temperature. The mixture was then transferred to a solution of dibromobut-2-yne (17.68 g, 83.43 mmol) in 50 cm³ of THF via cannula over the period of 2.5 h. The mixture was then stirred at room temperature for 18 h. The reaction mixture was diluted with water and extracted with ether. The organic layer was washed with brine, dried over MgSO₄, filtered and concentrated to yield dark oil. The excess dibromobutyne was recovered by distillation (100 °C/4 mmHg). The crude product was purified by flash chromatography on silica gel using 10% EtOAc in hexanes as eluent to give bromodiyne **22** as light yellow oil (9.39 g, 87%); TLC (SiO₂, hexanes:EtOAc = 4:1, R_f = 0.33); ¹H NMR (300 MHz, CDCl₃) δ 1.27 (t, 6 H, *J* = 7.1 Hz), 2.03 (t, 1 H, *J* = 2.7 Hz), 2.97 (d, 2 H, *J* = 2.7 Hz), 3.05 (t, 2 H, *J* = 2.2 Hz), 3.87 (t, 2 H, *J* = 2.5 Hz), 4.24 (q, 4 H, *J* = 7.1 Hz).

Cyclohexenylsulfonamide **11** (2.26 g, 8.99 mmol) in 20 cm³ of DMF was added dropwise to a suspension of NaH (60% dispersion in mineral oil, 0.44 g, 10.9 mmol) in 10 cm³ of DMF. The resulting solution was stirred at room temperature for 45 min and then bromodiyne **22** (2.96 g, 8.99 mmol) in 25 cm³ of DMF was added dropwise and the mixture was stirred for an additional 5 h. Water was added and the reaction mixture was extracted with ethyl acetate. The organic layer was washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the crude product

by flash chromatography on silica gel using 10% EtOAc in hexanes as eluent gave cyclohexenediyne **23** (3.81 g, 85% yield) as yellow oil: TLC (SiO₂, hexanes:EtOAc = 4:1, $R_f = 0.34$); ¹H NMR (CDCl₃, 300 MHz) δ 1.24 (t, 6H, *J* = 7.2 Hz), 1.48-1.55 (m, 2H), 1.72-1.65 (m, 2H), 1.95-1.92 (m, 2H), 1.99 (t, 1H, *J* = 2.4 Hz), 2.39 (s, 3H) 2.79 (t, 2H, *J* = 2.0 Hz), 2.84 (d, 2H, *J* = 2.4 Hz), 2.87 (t, 2H, *J* = 2.1 Hz), 3.90 (dt, 1H, *J* = 2.1 Hz), 4.10 (dt, 1H, *J* = 2.1 Hz), 4.21-4.15 (m, 4H), 4.43-4.40 (m, 1H), 5.29 (dd, 1H, *J* = 10.5, 1.8 Hz), 5.86-5.81 (m, 1H), 7.29 (d, 2H, *J* = 8.7 Hz), 7.77 (d, 2H, *J* = 8.7 Hz). ¹³C NMR (CDCl₃, 100 MHz) δ 13.87 (CH₃), 21.38 (CH₂), 21.39 (CH₃), 22.46 (CH₂), 22.67 (CH₂), 24.26 (CH₂), 27.82 (CH₂), 32.78 (CH₂), 54.82 (CH), 56.15 (C), 61.85 (CH₂), 71.43 (CH), 77.99 (C), 78.46 (C), 80.08 (C), 126.84 (CH), 127.17 (CH), 127.23 (CH), 129.36 (CH), 129.54 (CH), 132.73 (CH), 138.04, (C) 142.97 (C), 168.49 (C); IR (neat, cm⁻¹) 3276, 2935, 1737, 1596, 1444, 1334, 1288, 1209, 1161, 1095, 1053, 1031.

Iodobenzene (0.24 g, 1.20 mmol) in 4 cm³ of CH₂Cl₂ was added to a mixture of Pd(PPh₃)₄ (0.035 g, 0.05 mmol) and CuI (0.02 g, 0.10 mmol) in 10 cm³ of CH₂Cl₂ and 5 cm³ of Et₃N. Then cyclohexenediyne 23 (0.50 g, 1.0 mmol) in 4 cm³ of CH_2Cl_2 was added dropwise via syringe. The resulting mixture was stirred at room temperature overnight. The reaction mixture was diluted with CH₂Cl₂ and then washed with saturated NH₄Cl solution. The organic layer was washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel using 10% EtOAc in hexanes as eluent to yield phenyl-terminal cyclohexenediyne 4g (0.32 g, 55% yield) as yellow oil; TLC (SiO₂, hexanes:EtOAc = 3:1, $R_f = 0.47$); ¹H NMR (CDCl₃, 400 MHz) δ 1.29 (dt, 6H, J = 7.2. 0.8 Hz), 1.56-1.54 (m, 2H), 1.77-1.71 (m, 2H), 1.95-1.92 (m, 2H), 2.35 (s, 3H) 2.95 (t, 2H, J = 2.0 Hz), 3.10 (s, 2H), 3.95 (dd, 1H, J = 18.4, 1.6 Hz), 4.14 (dd, 1H, J = 18.4, 1.6 Hz), 4.27-4.20 (m, 4H), 4.45-4.41 (m, 1H), 5.25 (d, 1H, J = 10.4 Hz), 5.89-5.86 (m, 1H), 7.30 (m, 5H), 7.37 (m, 2H), 7.81 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.01 (CH₃), 21.38 (CH₂), 21.46 (CH₃), 22.95 (CH₂), 23.49 (CH₂), 24.35 (CH₂), 27.90 (CH₂), 32.90 (CH₂), 54.90 (CH), 56.63 (C), 61.89 (CH₂), 78.30 (C), 80.15 (C), 83.58 (C), 84.00 (C), 123.05 (C), 127.29 (CH), 127.32 (CH), 128.02 (CH), 128.19 (CH), 129.40 (CH), 131.57 (CH), 132.78 (CH), 138.11 (C), 143.06 (C), 168.74 (C); IR (neat, cm⁻¹) 3026, 2935, 1733, 1730, 1652, 1596, 1558, 1490, 1423, 1328, 1193, 1161, 1095, 1051, 1031; HRMS (ES) m/z calcd for $C_{33}H_{38}NO_6S (M + H)^+$ 576.2420, found 576.2410 $(\Delta - 1.0 \text{ ppm}).$

1-Aza-1-(cyclohex-2-en-1-yl)-6,6,-dicarbethoxy-9-dimethylphenylsilyl-1-(4-methylbenzene-sulfonyl)nona-3,8-diyne (4h)

To a cold solution of cyclohexenyldiyne **23** (0.93 g, 1.85 mmol) in 20 cm³ of THF was added dropwise 1 M LiHMDS (2.80 cm³) in THF at -78 °C. The resulting mixture was stirred at -78 °C for 45 min and then dimethylphenylsilyl chloride (0.47 g, 2.78 mmol) in 10 cm³ of THF was added dropwise. The resulting mixture was then warmed slowly to -40 °C and stirred for 4 h. The reaction mixture was diluted with ether, followed by the addition of saturated aqueous NH₄Cl solution. The layers were separated and the organic layer was washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel using

Supplementary Information

10% EtOAc in hexanes as eleuent to afford silyl-terminal cyclohexenediyne **4h** (1.07 g, 92% yield) as yellow oil; TLC (SiO₂, hexanes:EtOAc = 4:1, $R_f = 0.40$); ¹H NMR (CDCl₃, 300 MHz) δ 0.37 (s, 6H), 1.25 (t, 6H, *J* = 7.2), 1.56-1.54 (m, 2H), 1.77-1.71 (m, 2H), 1.95-1.92 (m, 2H), 2.38 (s, 3H) 2.91 (t, 2H, *J* = 1.8 Hz), 2.95 (s, 2H), 3.93 (dd, 1H, *J* = 14.1, 2.1 Hz), 4.19-4.05 (m, 5H), 4.42-4.40 (m, 1H), 5.31 (d, 1H, *J* = 10.2 Hz), 5.87-5.83 (m, 1H), 7.34-7.41 (m, 5H), 7.57-7.61 (m, 2H), 7.76-7.79 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ – 0.84 (CH₃), 13.98 (CH₃), 21.47 (CH₃), 22.88 (CH₂), 24.05 (CH₂), 24.37 (CH₂), 27.92 (CH₂), 32.91 (CH₂), 54.91 (CH), 56.54 (C), 61.91 (CH₂), 78.22 (C), 80.14 (C), 86.23 (C), 102.88 (C), 127.28 (CH), 127.34 (CH), 127.81 (CH), 129.37 (CH), 129.44 (CH), 132.81 (CH), 133.59 (CH), 136.89 (C), 138.12 (C), 143.07 (C), 168.59 (C); IR (neat, cm⁻¹) 2979, 2937, 2358, 2179, 1735, 1334, 1207, 1161; HRMS (ES) m/z calcd for C₃₅H₄₄NO₆SSi (M + H)⁺ 634.2659, found 634.2687 (Δ 2.8 ppm).

In the same manner other 9-silyl derivatives of **21** and **23** were synthesized.

1,6-Bis(4-methylbenzenesulfonyl)-1-(cyclohex-2-en-1-yl)-1,6-diaza-9-dimethylphenylsilylnona-3,8-diyne (4i):

85% yield; yellow oil; TLC (SiO₂, hexanes:EtOAc = 3:1, $R_f = 0.43$); ¹H NMR (CDCl₃, 300 MHz) δ 0.27 (s, 6H), 1.60-1.56 (m, 2H), 1.74-1.71 (m, 2H), 1.92-1.90 (m, 2H), 2.34 (s, 3H), 2.40 (s, 3H), 3.88 (dt, 1H, J = 2.1 Hz), 4.00-4.13 (m, 5H), 4.46-4.40 (m, 1H), 5.28 (dd, 1H, J = 12.0, 1.5 Hz), 5.87-5.81 (m, 1H), 7.21 (d, 2H, J = 8.1 Hz), 7.48-7.37 (m, 7 H), 7.69 (d, 2H, J = 8.1 Hz), 7.78 (d, 2H, J = 8.1 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ – 1.15 (CH₃), 21.38 (CH₃), 21.49 (CH₃), 24.34 (CH₂), 27.94 (CH₂), 32.76 (CH₂), 36.51 (CH₂), 37.13 (CH₂), 54.92 (CH), 76.36 (C), 82.36 (C), 89.27 (C), 99.14 (C), 127.15 (CH), 127.28 (CH), 127.78 (CH), 127.88 (CH), 129.56 (CH), 129.59 (CH), 129.68 (CH), 133.01 (CH), 133.49 (CH), 135.27 (C), 136.20 (C), 137.98 (C), 143.35 (C), 143.80 (C); IR (neat, cm⁻¹) 2952, 2929, 2177, 1597, 1429, 1334, 1163; HRMS (ES) m/z calcd for C₃₅H₄₁N₂O₄S₂Si (M + H)⁺ 645.2277, found 645.2247 (Δ - 3.0 ppm).

1-Aza-1-(cyclohex-2-en-1-yl)-6,6,-dicarbethoxy-9-trimethylsilyl-1-(4-methylbenzene-sulfonyl)nona-3,8-diyne (4j):

91% yield; yellow oil; TLC (SiO₂, hexanes:EtOAc = 3:1, $R_f = 0.52$); ¹H NMR (CDCl₃, 400 MHz) δ 0.12 (s, 9H), 1.26 (t, 6H, *J* = 7.2 Hz), 1.48-1.55 (m, 2H), 1.74-1.65 (m, 2H), 1.95-1.92 (m, 2H), 2.43 (s, 3H) 2.89 (m, 4H), 3.91 (dt, 1H, *J* = 2.0 Hz), 4.11 (dt, 1H, *J* = 2.0 Hz), 4.21-4.14 (m, 4H), 4.44-4.41 (m, 1H), 5.31 (dd, 1H, *J* = 10.0, 2.0 Hz), 5.89-5.84 (m, 1H), 7.32 (d, 2H, *J* = 8.0 Hz), 7.79 (d, 2H, *J* = 8.0

Supplementary Information

Hz); ¹³C NMR (CDCl₃, 100 MHz) δ -0.06 (CH₃), 14.03 (CH₃), 21.52 (CH₃), 22.79 (CH₂), 23.94 (CH₂), 24.39 (CH₂), 27.92 (CH₂), 32.94 (CH₂), 54.92 (CH), 56.57 (C), 61.87 (CH₂), 78.29 (C), 80.04 (C), 88.19 (C), 100.97 (C), 127.29 (CH), 127.36 (CH), 129.45 (CH), 132.79 (CH), 138.14 (C), 143.05 (C), 168.61 (C); IR (neat, cm⁻¹) 2979, 2937, 2177, 1739, 1336, 1207, 1163; HRMS (ES) m/z calcd for C₃₀H₄₂NO₆SSi (M + H)⁺ 572.2502, found 572.2501 (Δ - 0.1 ppm).

1,6-Bis(4-methylbenzenesulfonyl)-1-(cyclohex-2-en-1-yl)-1,6-diaza-9-trimethylsilylnona-3,8-diyne (4k):

100% yield; white solid; mp = 88-89 °C; TLC (SiO₂, hexanes:EtOAc = 3:1, $R_f = 0.43$); ¹H NMR (CDCl₃, 300 MHz) δ 0.07 (s, 9H), 1.56-1.51 (m, 2H), 1.71-1.62 (m, 2H), 1.89 (bs, 2H), 2.36 (s, 3H), 2.38 (s, 3H), 3.83 (dt, 1H, J = 2.4 Hz), 4.00 (m, 5H), 4.43-4.40 (m, 1H), 5.24 (dd, 1H, J = 12.0, 1.5 Hz), 5.82-5.78 (m, 1H), 7.38 (m, 4H), 7.64 (d, 2H, J = 8.4 Hz), 7.72 (d, 2H, J = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ -0.40 (CH₃), 21.41 (CH₃), 21.53 (CH₃), 24.36 (CH₂), 27.93 (CH₂), 32.76 (CH₂), 36.43 (CH₂), 37.06 (CH₂), 54.91 (CH), 76.46 (C), 82.25 (C), 91.18 (C), 97.34 (C), 127.21 (CH), 127.32 (CH), 127.85 (CH), 129.59 (CH), 133.04 (CH), 135.39 (CH), 138.04 (C), 143.36 (C), 143.78 (C); IR (in CHCl₃, cm⁻¹) 3026, 2958, 2177, 1647, 1596, 1494, 1350, 1249, 1163, 1095, 1032; HRMS (ES) m/z calcd for C₃₀H₃₉N₂O₄S₂Si (M + H)⁺ 583.2121, found 583.2104 (Δ - 1.7 ppm).

[2+2+2+1] Cycloaddition Reactions

Typical procedure is described for the reaction of cyclohexene-diyne **4a**: A 25 cm³ round bottomed flask charged with **4a** (100 mg, 0.19 mmol) in DCE/TFE (10:1) (3.90 cm³, [0.05 M] and $[Rh(CO)_2Cl]_2$ (3.8 mg, 0.009 mmol) was transferred to a 125 cm³ stainless steel autoclave and purged with CO and released (4x) (**Caution must be done in a well ventilated fume hood**) and then charged with CO to 2 atm. The autoclave was immersed in an oil bath at 60 °C for 20 h. The autoclave was allowed to cool to room temperature, followed by release of the gas in a well ventilated fume hood. The reaction mixture was concentrated under reduced pressure and the resulting crude product was purified by column chromatography on silica gel using EtOAc/hexanes (15/85) as eluent to give fused tetracyclic product **5a-1** (86 mg, 82%) as light yellow oil.

For **5h-5k** arising from 9-silyl-cyclohexene-diynes **4h-4k**, two regioisomers were separated by preparative HPLC using a phenomenex Jupiter 10 μ proteo 90A column (21.2 x 250 mm/mm) and gradient from 100% acetonitrile to 95:5 acetonitrile:water over 24 min with a flow rate of 20 cm³/min.

Diethyl-7-methyl-2-[(4-methylphenyl)sulfonyl]-6-oxo-2,2a,3,4,5,5a,6,8,10,10c-dec ahydroazuleno[4,5,6-*cd*]indole-9,9(1*H*)-dicarboxylate (5a-1):

82% yield; yellow oil; TLC (SiO₂, hexanes:EtOAc = 2:1, $R_f = 0.36$); ¹H NMR (CDCl₃, 300 MHz) δ 1.28-1.22 (m, 6H), 1.45-1.38 (m, 2H), 1.71-1.63 (m, 3H), 1.85 (s, 3H), 1.96-1.87 (m, 1H), 2.41 (s, 3H), 2.65-2.62 (m, 1H), 2.84-2.80 (m, 2H), 3.16-3.00 (m, 3H), 3.97-3.94 (m, 1H), 4.08 (s, 2H), 4.24-4.15 (m, 4H), 7.31 (d, 2H, *J* = 8.4 Hz), 7.72 (d, 2H, *J* = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 13.99 (CH₃), 17.12 (CH₃), 21.52 (CH₂), 22.39 (CH₃), 23.79 (CH₂), 28.19 (CH₂), 39.86 (CH₂), 41.89 (CH₂), 43.76 (CH), 50.51 (CH₂), 50.72 (CH), 57.03 (C), 60.69 (CH), 61.95 (CH₂), 127.02 (CH), 129.95 (CH), 130.23 (C), 130.65 (C), 136.29 (C), 136.92 (C), 143.68 (C), 145.03 (C), 170.47 (C), 170.86 (C), 200.72 (C); IR (neat, cm⁻¹) 2979, 2860, 1730, 1734, 1652, 1596, 1444, 1344, 1261, 1161, 1093; HRMS (ES) m/z calcd for C₂₉H₃₆NO₇S (M + H)⁺ 542.2212, found 542.2206 (Δ - 0.6 ppm).

7-Methyl-9-[(4-methylphenyl)sulfonyl]-1,2a,3,4,5,5a,8,9,10,10c-decahydro-6*H*-[1]b enzofuro[3',4':3,4,5]cyclohepta[1,2-*c*]pyrrol-6-one (5b-1):

91% yield; white solid; mp = 182-183 °C; TLC (SiO₂, hexanes:EtOAc = 3:1, $R_f = 0.12$); ¹H NMR (CDCl₃, 300 MHz) δ 1.28-1.18 (m, 3H), 1.44-1.38 (m, 1H), 1.69-1.63 m, 1H), 1.81 (s, 3H), 2.45-2.39 (m, 4H), 2.79-2.72 (m, 1H), 3.23 (bs, 1H), 3..67-3.61 (m, 1H), 4.38-3.95 (m, 5H), 7.36 (d, 2H, *J* = 7.8 Hz), 7.74 (d, 2H, *J* = 7.8 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 16.55 (CH₃), 21.56 (CH₂), 21.92 (CH₃), 23.84 (CH₂), 26.57 (CH₂), 44.27 (CH), 49.86 (CH), 51.91 (CH₂), 53.90 (CH2), 68.91 (CH₂), 79.10 (CH), 124.37 (C), 127.79 (CH), 129.74 (C), 129.87 (C), 129.95 (CH), 141.34 (C), 141.77 (C), 144.24 (C), 199.41 (C); IR (in CHCl₃, cm⁻¹) 2939, 2864, 1724, 1596, 1346, 1163; HRMS (ES) m/z calcd for C₂₂H₂₆NO₄S (M + H)⁺ 400.1583, found 400.1569 (Δ - 1.4 ppm).

7-Methyl-2-[(4-methylphenyl)sulfonyl]-2,2a,3,4,5,5a,10,10c-octahydro-1*H*-furo[3', 4':6,7]cyclohepta[1,2,3-*cd*]indol-6(8*H*)-one (5c-1):

74% yield; white solid; mp = 191-193 °C; TLC (SiO₂, hexanes:EtOAc = 2:1, Rf = 0.24); ¹H NMR (CDCl₃, 300 MHz) δ 1.30-1.22 (m, 2H), 1.52-1.46 (m, 2H), 1.75 (s, 3H), 2.01-1.96 (m, 2H), 2.42 (s, 3H), 2.74-2.66 (m, 1H), 2.88 (bs, 1H), 4.07-3.94 (m, 3H), 4.38 (dt, 1H, *J* = 2.1 Hz)), 4.67-4.49 (m, 3H), 7.31 (d, 2H, *J* = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 15.97 (CH₃), 21.51 (CH₃), 22.35 (CH₂), 23.99 (CH₂), 28.31 (CH₂), 43.99 (CH), 49.69 (CH), 50.48 (CH₂), 60.42 (CH), 72.18(CH₂),

Supplementary Information

73.58(CH₂), 127.0 (CH), 127.85 (C), 129.63 (C), 130.00 (CH), 135.05 (C), 136.14 (C), 143.81 (C), 144.46 (C), 199.74 (C); IR (in CHCl₃, cm⁻¹) 2929, 2856, 1721, 1654, 1596, 1342, 1159; HRMS (ES) m/z calcd for $C_{22}H_{26}NO_4S$ (M + H)⁺ 400.1583, found 400.1569 (Δ - 1.4 ppm).

Tetraethyl-7-methyl-6-oxo-1,2a,3,4,5,5a,6,8,10,10c-decahydrobenzo[*cd*]cyclopenta[*h*]azulene-2,2,9,9-tetracarboxylate (5d-1):

85% yield; light yellow oil; TLC (SiO₂, hexanes:EtOAc = 3:1, $R_f = 0.30$); ¹H NMR (CDCl₃, 400 MHz) δ 1.26-1.21 (m, 13H), 1.46-1.37 (m, 3H), 1.78-1.70 (m, 2H), 1.86 (s, 3H), 2.76 (m, 2H), 2.86 (d, 1H, J =20 Hz), 2.97 (d, 1H, J = 16.4 Hz), 3.25-3.06 (m, 4H), 3.43 (d, 1H, J = 20 Hz), 4.24- 4.10 (m, 8H); ¹³C NMR (CDCl₃, 100 MHz) δ 13.93 (CH₃), 13.97 (CH₃), 14.07 (CH₃), 16.87 (CH₃), 23.69 (CH₂), 23.87 (CH₂), 23.90 (CH₂), 38.36 (CH₂), 40.33 (CH₂), 42.49 (CH₂), 44.07 (CH), 45.22 (CH), 51.16 (CH), 57.02 (C), 1.62 (CH₂), 61.69 (CH₂), 61.75 (CH₂), 62.29 (C), 129.25 (C), 129.97 (C), 140.69 (C), 146.49 (C), 169.12 (C), 170.87 (C), 170.98 (C), 171.18 (C), 201.13 (C); IR (neat, cm⁻¹) 2979, 2935, 1731, 1367, 1257, 1159; HRMS (ES) m/z calcd for C₂₉H₃₉O₉ (M + H)⁺ 531.2594, found 531.2576 (Δ - 1.8 ppm).

Diethyl-7-methyl-9-[(4-methylphenyl)sulfonyl]-6-oxo-2a,3,4,5,5a,6,8,9,10,10c-dec ahydrobenzo[1,8]azuleno[4,5-c]pyrrole-2,2(1*H*)-dicarboxylate (5e-1):

83% yield; white solid; mp = 86-88 °C; TLC (SiO₂, hexanes:EtOAc = 3:1, R_f = 0.28); ¹H NMR (CDCl₃, 400 MHz) δ 1.27-1.21 (m, 8H), 1.42-1.39 (m, 2H), 1.71-1.67 (m, 2H), 1.78 (s, 3H), 2.43 (s, 3H), 2.79-2.71 (m, 3H), 3.21 (d, 1H, J = 12.0 Hz), 3.32 (d, 1H, J = 12.0 Hz), 3.89 (d, 1H, J = 13.2 Hz), 4.02 (d, 1H, J = 16 Hz), 4.26-4.09 (m, 6H), 7.36 (d, 2H, J = 8.0 Hz), 7.75 (d, 2H, J = 8.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 13.91 (CH₃), 14.06 (CH₃), 16.29 (CH₃), 21.51 (CH₃), 23.59 (CH₂), 23.65 (CH₂), 23.75 (CH₂), 37.79 (CH₂), 44.16 (CH), 45.04 (CH), 50.62 (CH₂), 52.81 (CH₂), 54.34 (CH), 61.79 (CH₂), 61.87 (CH₂), 62.31 (C), 126.64 (C), 127.79 (CH), 128.75 (C), 129.84 (CH), 132.63 (C), 141.37 (C), 141.85 (C), 144.06 (C), 168.70 (C), 170.69 (C), 200.04 (C); IR (in CHCl₃, cm⁻¹) 2983, 2906, 2255, 1741, 1731, 1373, 1266, 1096, 1046; HRMS (ES) m/z calcd for C₂₉H₃₆NO₇S (M + H)⁺ 542.2212, found 542.2192 (Δ - 2.0 ppm).

7-Methyl-2,9-bis[(4-methylphenyl)sulfonyl]-2,2a,3,4,5,5a,8,9,10,10c-decahydropyr rolo[3',4':6,7]cyclohepta[1,2,3-*cd*]indol-6(1*H*)-one (5f-1):

Supplementary Information

85% yield; white solid; mp = 200 -201 °C; TLC (SiO₂, hexanes:EtOAc = 2:1, R_f = 0.20); ¹H NMR (CDCl₃, 400 MHz) δ 1.22-1.11 (m, 3H), 1.40-1.38 (m, 1H), 1.71-1.62 (m, 1H), 1.77 (s, 3H), 1.95-1.91 (m, 2H), 2.42 (s, 3H), 2.43 (s, 3H), 2.65-2.62 (m, 1H), 2.79 (bs, 1H), 3.37 (d, 1H, *J* = 10 Hz), 3.99-3.89 (m, 3H), 4.10 (d, 1H, *J* = 14 Hz), 4.24 (d, 1H, *J* = 14 Hz), 7.32 (d, 2H, *J* = 8.4 Hz), 7.36 (d, 2H, *J* = 8.4 Hz), 7.71 (d, 2H, *J* = 8.4 Hz), 7.73 (d, 2H, *J* = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 16.58 (CH₃), 21.55 (CH₃), 22.17 (CH₃), 23.64 (CH₂), 27.95 (CH₂), 29.67 (CH₂), 43.92 (CH), 50.06 (CH₂), 52.20 (CH), 53.81 (CH₂), 60.44 (CH), 126.83 (C), 127.07 (CH), 127.79 (CH), 129.97 (CH), 130.02 (CH), 130.25 (C), 132.39 (C), 136.08 (C), 137.58 (C), 140.73 (C), 143.91 (C), 144.33 (C), 199.52 (C); IR (in CHCl₃, cm⁻¹) 2923, 2854, 1733, 1596, 1346, 1163; HRMS (ES) m/z calcd for C₂₉H₃₃N₂O₅S₂ (M + H)⁺ 553.1831, found 553.1818 (Δ - 1.3 ppm).

Diethyl-7-phenyl-2-[(4-methylphenyl)sulfonyl]-6-oxo-2,2a,3,4,5,5a,6,8,10,10c-dec ahydroazuleno[4,5,6-*cd*]indole-9,9(1*H*)-dicarboxylate (5g-1):

44% yield; light yellow oil; TLC (SiO₂, hexanes:EtOAc = 3:1, $R_f = 0.23$); ¹H NMR (CDCl₃, 300 MHz) δ 1.23 (t, 6H, *J* = 7.2 Hz), 1.66-1.56 (m, 4H), 1.79-1.75 (m, 1H), 2.01-1.97 (m, 1H), 2.44 (s, 3H), 2.75-2.67 (m, 1H), 2.94-2.87 (m, 4H), 3.09 (d, 1H, *J* = 14.0 Hz), 4.03-3.99 (m, 1H), 4.19-4.12 (m, 6H), 7.04 (dd, 2H, *J* = 8.4, 1.5 Hz), 7.37-7.27 (m, 5H), 7.75 (d, 2H, *J* = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 13.93 (CH₃), 13.99 (CH₃), 21.54 (CH₃), 22.23 (CH₂), 23.69 (CH₂), 28.37 (CH₂), 40.05 (CH₂), 42.62 (CH), 44.24 (CH₂), 50.19 (CH₂), 50.82 (CH), 57.32 (CH), 60.66 (C), 61.89 (CH₂), 127.04 (CH), 127.43 (CH), 128.42 (CH), 128.68 (CH), 130.01 (CH), 130.15 (C), 136.08 (C), 136.21 (C), 138.66 (C), 138.71 (C), 143.77 (C), 145.31 (C), 170.22 (C), 170.59 (C), 200.37 (C); IR (neat, cm⁻¹) 2960, 2860, 2358, 1735, 1728, 1723, 1650, 1444, 1365, 1344, 1263, 1159, 1093, 1053, 1016; HRMS (ES) m/z calcd for C₃₄H₃₈NO₇S (M + H)⁺ 604.2369, found 604.2348 (Δ - 2.1 ppm).

Diethyl-7-[dimethyl(phenyl)silyl]-2-[(4-methylphenyl)sulfonyl]-6-oxo decahydroazuleno[4,5,6-*cd*]indole-9,9(1*H*)-dicarboxylate (5h-1):

2,2a,3,4,5,5a,6,8,10,10c-

Colorless oil; TLC (SiO₂, hexanes:EtOAc = 3:1, $R_f = 0.28$); ¹H NMR (CDCl₃, 300 MHz) δ 0.46 (d, 6H, J = 6.6 Hz), 1.02-0.83 (m, 2H), 1.22-1.13 (m, 6H), 1.64-1.56 (m, 3H), 2.15-1.97 (m, 3H), 2.42 (s, 3H), 2.90-2.58 (m, 3H), 3.06-2.99 (m, 1H), 3.43 (d, 1H, J = 11.4 Hz), 3.81 (d, 1H, J = 11.4 Hz), 7.33-7.29 (m, 1H), 3.43 (d, 1H, J = 11.4 Hz), 3.81 (d, 1H, J = 11.4 Hz), 7.33-7.29 (m, 1H), 3.43 (d, 1H, J = 11.4 Hz), 3.81 (d, 1H, J = 11.4 Hz), 7.33-7.29 (m, 1H), 3.81 (d, 1H, J = 11.4 Hz), 7.33-7.29 (m, 1H), 3.43 (d, 1H), 3.44 (d, 1H), 3.

5H), 7.53 (d, 2H, J = 8.1 Hz), 7.76 (d, 2H, J = 8.1 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ -2.53 (CH₃), -1.76 (CH₃), 13.88 (CH₃), 21.45 (CH₃), 28.66 (CH₂), 29.97 (CH₂), 36.40 (CH₂), 36.85 (CH₂), 40.33 (CH), 41.27(CH₂), 46.87 (CH₂), 55.92 (CH), 58.47 (CH₂), 59.86 (C), 61.77 (CH₂), 62.21 (CH), 127.15 (CH), 127.74 (CH), 127.83 (CH), 129.17 (CH), 129.71 (CH), 133.93 (CH), 134.94 (C), 136.09 (C), 137.39 (C), 142.48 (C), 143.33 (C), 143.37 (C), 170.73 (C), 171.27 (C), 200.71 (C); IR (neat, cm⁻¹) 2941, 1762, 1731, 1348, 1251, 1164; HRMS (ES) m/z calcd for C₃₆H₄₄NO₇SiS (M + H)⁺ 662.2608, found 662.2609 (Δ 0.1 ppm).

Diethyl-7-[dimethyl(phenyl)silyl]-2-[(4-methylphenyl)sulfonyl]-6-oxo-2,2a,3,4,5,5a,6,7,8,10-decahydroazuleno[4,5,6-*cd*]indole-9,9(1*H*)-dicarboxylate (5h-2):

Colorless oil; TLC (SiO₂, hexanes:EtOAc = 3:1, $R_f = 0.28$); ¹H NMR (CDCl₃, 300 MHz) δ 0.40 (d, 6H, J = 7.8 Hz), 1.28-1.10 (m, 8H), 1.61-1.45 (m, 4H), 1.76-1.72 (m, 1H), 2.09-2.02 (m, 1H), 2.43 (s, 3H), 2.53-2.49 (m, 1H), 2.87-2.70 (m, 4H), 4.15-3.92 (m, 6H), 7.33-7.29 (m, 5H), 7.54 (d, 2H, J = 8.7 Hz), 7.72 (d, 2H, J = 8.7 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ -1.49 (CH₃), -1.15 (CH₃), 13.86 (CH₃), 13.94 (CH₃), 21.52 (CH₃), 21.62 (CH₂), 23.72 (CH₂), 28.76 (CH₂), 39.25 (CH), 42.17 (CH₂), 44.98 (CH₂), 48.97 (CH₂), 50.79 (CH), 57.35 (C), 60.51 (CH), 61.77 (CH₂), 61.81 (CH₂), 127.00 (CH), 127.92 (CH), 129.16 CH), 129.99 (CH), 132.07 CH), 133.85 (CH), 136.04 (C), 137.25 (C), 137.82 (C), 143.74 (C), 150.55 (C), 179.18 (C), 170.57 (C), 207.10 (C); IR (neat, cm⁻¹) 2977, 2929, 1734, 1731, 1664, 1251, 1161; IR (neat, cm⁻¹) 2935, 1743, 1731, 1662, 1301, 1251, 1161; HRMS (ES) m/z calcd for C₃₆H₄₄NO₇SiS (M + H)⁺ 662.2608, found 662.2609 (Δ 0.1 ppm).

7-[Dimethyl(phenyl)silyl]-2,9-bis[(4-methylphenyl)sulfonyl]-2,2a,3,4,5,5a,8,9,10,10c-decahydropyrrolo[3',4':6,7]cyclohepta[1,2,3-*cd*]indol-6(1*H*)-one (5i-1):

Colorless oil; TLC (SiO₂, hexanes:EtOAc = 3:1, $R_f = 0.24$); ¹H NMR (CDCl₃, 400 MHz) δ 0.40 (s, 3H), 0.43 (s, 3H), 1.13-0.85 (m, 3H), 1.54 (t, 1H, J = 9.6 Hz), 1.62-1.59 (m, 1H), 2.04-1.93 (m, 2H), 2.17-2.13 (m, 1H), 2.42 (s, 3H), 2.45 (s, 3H), 3.27 (d, 1H, J = 11.2 Hz), 3.68-3.63 (m, 1H), 3.89-3.75 (m, 5H), 7.23 (d, 2H, J = 8.0 Hz), 7.43-7.27 (m, 9H), 7.73 (d, 2H, J = 8.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ - 3.11 (CH₃), -1.43 (CH₃), 21.54 (CH₃), 28.49 (CH₂), 30.12 (CH₂), 36.93 (CH₂), 41.16 (CH), 47.00 (CH₂), 50.34 (CH), 53.69 (CH₂), 55.44 (CH₂), 58.39 (C), 61.39 (CH), 127.05 (CH), 127.15 (CH), 128.14 (CH), 129.62 (CH), 129.87 (CH), 133.71 (CH), 134.02 (C), 135.61 (C), 136.72 (C), 140.12 (C), 141.35 (C), 143.59 (C), 143.86 (C), 199.65 (C); HRMS (ES) m/z calcd for C₃₆H₄₁N₂O₅SiS₂ (M + H)⁺ 673.2226, found 673.2242 (Δ 1.6 ppm).

7-[Dimethyl(phenyl)silyl]-2,9-bis[(4-methylphenyl)sulfonyl]-2,2a,3,4,5,5a,7,8,9,10decahydropyrrolo[3',4':6,7]cyclohepta[1,2,3-*cd*]indol-6(1*H*)-one (5i-2):

Colorless oil; TLC (SiO₂, hexanes:EtOAc = 3:1, $R_f = 0.24$); ¹H NMR (CDCl₃, 300 MHz) δ 0.34 (s, 3H), 0.45 (s, 3H), 1.22-1.09 (m, 3H), 1.52-1.48 (m, 1H), 1.66-1.62 (m, 1H), 2.01-1.96 (m, 1H), 2.41 (s, 3H), 2.43 (s, 3H), 2.54-2.48 (m, 1H), 2.67 (bs, 1H), 3.53 (s, 2H), 3.64-3.55 (m, 1H), 3.80-3.73 (m, 1H), 3.96-3.85 (m, 2H), 7.23 (d, 2H, *J* = 7.8 Hz), 7.35-7.29 (m, 4H), 7.53-7.38 (m, 5H), 7.70 (d, 2H, J = 7.8 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ -2.14 (CH₃), -1.69 (CH₃), 21.44 (CH₃), 21.54 (CH₃), 23.31(CH₂), 28.48 (CH₂), 45.12 (CH), 48.67 (CH), 50.21 (CH₂), 51.33 (CH₂), 53.78 (CH₂), 60.17 (CH), 127.03 (CH), 127.79 (CH), 128.28 (CH), 128.93 (CH), 129.66 (CH), 129.74 (CH), 130.05 (CH), 131.86 (CH), 134.02 (C), 135.76 (C), 136.88 (C), 137.21 (C), 138.40 (C), 143.96 (C), 146.45 (C), 206.12 (C); IR (neat, cm⁻¹) 3066, 2941,1718,1666, 1596, 1448, 1305, 1163; HRMS (ES) m/z calcd for C₃₆H₄₁N₂O₅SiS₂ (M + H)⁺ 673.2226, found 673.2205 (Δ - 2.1 ppm).

Diethyl-2-[(4-methylphenyl)sulfonyl]-6-oxo-7-(trimethylsilyl)-2,2a,3,4,5,5a,6,8,10,10c-decahydroazuleno[4,5,6-*cd*]indole-9,9(1*H*)-dicarboxylate (5j-1):

Colorless oil; TLC (SiO₂, hexanes:EtOAc = 3:1, $R_f = 0.37$); ¹H NMR (CDCl₃, 300 MHz) δ 0.15 (s, 9H), 1.07-0.85 (m, 3H), 1.26 (t, 6H, *J* = 7.2 Hz), 1.64 (t, 2H, *J* = 9.6 Hz), 2.01 (m, 2H), 2.16-2.09 (m, 1H), 2.43 (s, 3H), 2.83-2.77 (m, 2H), 3.06 (dd, 1H, *J* = 1.8 Hz), 3.35 (dd, 1H, *J* = 1.8 Hz), 3.40 (d, 1H, *J* = 11.4 Hz), 3.79 (d, 1H, *J* = 11.4 Hz), 3.96-3.87 (m, 1H), 4.22-4.13 (m, 4H), 7.33 (d, 2H, *J* = 8.4 Hz), 7.75 (d, 2H, *J* = 8.4 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ -1.02 (CH₃), 13.97 (CH₃), 21.65 (CH₃), 28.54 (CH₂), 30.14 (CH₂), 36.43 (CH₂), 40.33 (CH₂), 41.32 (CH), 46.87 (CH₂), 55.76 (CH), 58.41(CH₂), 60.16 (C), 61.88 (CH₂), 61.95 (CH₂), 62.25 (CH), 127.16 (CH), 129.73 (CH), 136.03 (C), 142.78 (C), 143.41(C), 143.52 (C), 170.98 (C), 171.27 (C), 201.15 (C); IR (neat, cm⁻¹) 2948, 2869, 2256, 1766, 1728, 1598, 1463, 1348, 1251, 1164, 1093, 1058; HRMS (ES) m/z calcd for C₃₁H₄₂NO₇SiS (M + H)⁺ 600.2451, found 600.2454 (Δ 0.3 ppm).

Diethyl-2-[(4-methylphenyl)sulfonyl]-6-oxo-7-(trimethylsilyl)-2,2a,3,4,5,5a,6,7,8,10-decahydroazuleno[4,5,6-*cd*]indole-9,9(1*H*)-dicarboxylate (5j-2):

Supplementary Information

Colorless oil; TLC (SiO₂, hexanes:EtOAc = 3:1, $R_f = 0.37$); ¹H NMR (CDCl₃, 300 MHz) δ 0.16 (s, 9H), 1.28-1.18 (m, 8H), 1.52-1.32 (m, 2H), 1.70-1.68 (m, 1H), 2.02-1.98 (m, 1H), 2.42 (s, 3H), 2.49-2.45 (m, 1H), 2.93-2.67 (m, 3H), 3.04 (d, 1H, J = 16.5 Hz), 3.21 (d, 1H, J = 16.5 Hz), 4.00-3.89 (m, 3H), 4.24-4.14 (m, 4H), 7.31 (d, 2H, J = 8.1 Hz), 7.71 (d, 2H, J = 8.1 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 0.03 (CH₃), 13.97 (CH₃), 14.03 (CH₃), 21.49 (CH₂), 21.54 (CH₃), 23.58 (CH₂), 28.74 (CH₂), 39.35 (CH), 42.01 (CH₂), 44.98 (CH₂), 48.81 (CH₂), 50.74 (CH), 57.69 (C), 60.45 (CH), 61.94 (CH₂), 61.97 (CH₂), 126.99 (CH), 129.97 (CH), 131.85 (C), 136.03 (C), 137.18 (C), 139.13 (C), 143.70 (C), 148.84 (C), 170.22 (C), 170.69 (C), 207.64 (C); IR (neat, cm⁻¹) 2937, 2538, 1734, 1731, 1662, 1446, 1346, 1249, 1161; HRMS (ES) m/z calcd for C₃₁H₄₂NO₇SiS (M + H)⁺ 600.2451, found 600.2438 (Δ - 1.3 ppm).

2,9-Bis[(4-methylphenyl)sulfonyl]-7-(trimethylsilyl)-2,2a,3,4,5,5a,8,9,10,10c-decahydropyrrolo-[3',4':6,7]cyclohepta[1,2,3-*cd*]indol-6(1*H*)-one (5k-1):

Colorless oil; TLC (SiO₂, hexanes:EtOAc = 3:1, $R_f = 0.20$); ¹H NMR (CDCl₃, 300 MHz) δ 0.09 (s, 9H), 1.03-0.82 (m, 3H), 1.63-1.51 (m, 2H), 1.94-1.89 (m, 2H), 2.15-2.10 (m, 1H), 2.43 (s, 3H), 2.46 (m, 3H), 3.29 (d, 1H, *J* = 11.4 Hz), 3.77 (d, 1H, *J* = 11.4 Hz), 3.89-3.84 (m, 2H), 4.15-4.06 (m, 2H), 4.31-4.24 (m, 1H), 7.32 (d, 2H, *J* = 7.8 Hz), 7.36 (d, 2H, *J* = 7.5 Hz), 7.63 (d, 2H, *J* = 7.5 Hz), 7.74 (d, 2H, *J* = 7.8 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ -1.04 (CH₃), 21.53 (CH₃), 28.35 (CH₂), 30.11 (CH₂), 36.44 (CH₂), 41.12 (CH), 47.07 (CH₂), 50.54 (CH), 53.66 (CH₂), 55.16 (CH₂), 58.24 (CH), 61.40 (CH), 127.10 (CH), 127.16 (CH), 129.83 (CH), 129.93 (CH), 134.21 (C), 135.63 (C), 140.68 (C), 141.22 (C), 143.77 (C), 143.94 (C), 199.92 (C); IR (neat, cm⁻¹) 2948, 2867, 1770, 1596, 1346, 1163, 1091; HRMS (ES) m/z calcd for C₃₁H₃₉N₂O₅SiS₂ (M + H)⁺ 611.2070, found 611.2042 (Δ - 2.8 ppm).

2,9-Bis[(4-methylphenyl)sulfonyl]-7-(trimethylsilyl)-2,2a,3,4,5,5a,7,8,9,10-decahydropyrrolo-[3',4':6,7]cyclohepta[1,2,3-*cd*]indol-6(1*H*)-one (5k-2):

Colorless oil; TLC (SiO₂, hexanes:EtOAc = 3:1, $R_f = 0.20$); ¹H NMR (CDCl₃, 300 MHz) δ 0.14 (s, 9H), 1.18-1.05 (m, 3H), 1.45-1.41 (m, 1H), 1.63-1.59 (m, 1H), 2.01-1.93 (m, 1H), 2.49-2.43 (m, 7H), 2.64 (bs, 1H), 3.71-3.65 (m, 1H), 3.96-3.87 (m, 5H), 4.23 (d, 1H, 15.3 Hz), 7.35-7.29 (m, 4H), 7.71-7.67 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ -0.05 (CH₃), 21.38 (CH₃), 21.49 (CH₃), 23.18 (CH₂), 28.49 (CH₂), 45.23 (CH), 48.55 (CH₂), 50.19 (CH), 51.47 (CH₂), 53.45 (CH₂), 60.11 (CH), 127.06 (CH), 127.84 (CH), 128.89 (CH), 129.95 (CH), 130.06 (CH), 132.41 (C), 135.78 (C), 137.85 (C), 138.92 (C), 143.96 (C), 144.30 (C), 145.10 (C), 206.69 (C); IR (neat, cm⁻¹) 2945, 2358, 1662, 1346, 1163; HRMS (ES) m/z calcd for C₃₁H₃₉N₂O₅SiS₂ (M + H)⁺ 611.2070, found 611.2079 (Δ 0.9 ppm).

