Non-Coplanar 9,9-Diphenyl-Substituted Oligofluorenes with Large Two-Photon Absorption Enhancement

Po Lam Wu ${ }^{a, c}$, Ping Fang Xia ${ }^{a, b}$, Zhong Hui Li ${ }^{\text {b }}$, Xin Jiang Feng ${ }^{\text {a, }{ }^{\text {b }} \text {, Hoi Lam }}$ Tam ${ }^{\text {a, }}$, King Fai Lia ${ }^{\text {a, }}$, Yong Jiao ${ }^{\text {d }}$, Man Shing Wong ${ }^{\text {a, } \mathrm{b}, ~ * ~ a n d ~ K o k ~ W a i ~}$ Cheah ${ }^{\text {a, }{ }^{\text {, }} \text {. }}$
${ }^{\text {a }}$ Centre for Advanced Luminescence Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
${ }^{b}$ Department of Chemistry, Hong Kong Baptist University
${ }^{\text {c D Department of Physics, Hong Kong Baptist University }}$
${ }^{d}$ Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China

Email: mswong@hkbu.edu.hk; kwcheah@hkbu.edu.hk

Contents

1. Synthesis of (Bu)-OF(5)-NPh and (Ph)-OF(n)-NPhs
2. Experimental procedures of (Bu)-OF(5)-NPh and (Ph)-OF(n)-NPhs
3. Results of B3LYP/6-31G* calculations for (Ph)-OF(3)-NPh and (Bu)-OF(3)-NPh
4. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of (Ph)-OF(n)-NPhs and (Bu)-OF(5)-NPh
5. References

1. Synthesis

Syntheses of (Bu)-OF(n)-NPh, $n=2-4^{1}$ and (Ph)-OF(3)-NPh ${ }^{2}$ reported previously were followed. The synthetic routes for (Bu)-OF(5)-NPh and (Ph)-OF(n)-NPh $n=2,4-5$ are outlined in Scheme 1 and Scheme 2, respectively. Double palladium-catalyzed Suzuki cross-coupling of 2,7-dibromofluorene 1 with 2-(trimethylsilyl)-7-fluorenylboronic acid 2 using $\mathrm{Pd}(\mathrm{OAc})_{2} / 2 \mathrm{P}(o$ tolyl) $)_{3}$ as a catalyst afforded TMS-substituted terfluorene $\mathbf{3}$ in 74% yield. Iododesilylation of 3 was carried out in the presence of silver trifluoroacetate at $80{ }^{\circ} \mathrm{C}$ affording the corresponding iodide 4 in an excellent yield. Double palladium-catalyzed Suzuki cross-coupling of 7-diphenylamino-9,9-di-n-butyl-fluorenyl-2-boronic acid 5 and diiodoterfluorene $\mathbf{4}$ using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ as a catalyst gave (Bu)-OF(5)-NPh in a moderate yield (50 \%).

1 $+$

$\mathrm{N}_{2}, 75{ }^{\circ} \mathrm{C}$
2

3

4 91\%

(Bu)-OF(5)-NPh

Scheme 1. Synthesis of (Bu)-OF(5)-NPh

Scheme 2. Synthesis of (Ph)-OF(n)-NPh, $n=2,4$, and 5
By adapting a similar convergent approach ${ }^{2}$, 9,9-diphenyl-substituted oligofluorenes were synthesized accordingly. Palladium-catalyzed Suzuki cross-coupling of 7-diphenylamino-9,9-diphenylfluorenyl-2-boronic acid 7 and its precursor bromide 6 afforded (Ph)-OF(2)-NPh in 71\% yield. In addition, (Ph)-OF(4)-NPh and (Ph)-OF(5)-NPh were synthesized by double palladium-catalyzed Suzuki cross-coupling of boronic acid 7 and the corresponding diiodobifluorene 8a and diiodoterfluorene $\mathbf{8 b}$ which afforded the desirable oligofluorenes in 81% and 84% yields, respectively

2. Experimental procedures

General: Fluorescence quantum yields were measured by the relative method using either quinine sulfate in 1.0 M aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}\left(\phi_{334}=0.56\right)$ or 9,10 -diphenylanthrancene in cyclohexane $\left(\phi_{360}=0.90\right)$ or fluorescein in $0.1 \mathrm{M} \mathrm{NaOH}\left(\phi_{436}=0.92\right)$ as a reference. In these measurements, the slit widths were adjusted so that the spectral bandwidth of the absorption and emission instruments were identical at 1.0 nm , and the absorbance of the sample and the
reference were chosen so they were in the 0.1-0.2 range and nearly identical at the same excitation wavelength. Emission quantum yields were then calculated according to the method described by Crosby and Demas, taking into account the differences between the refractive indices of the sample and reference solutions. Thermal stabilities were determined by thermal gravimetric analyzer with heating rate of $10{ }^{\circ} \mathrm{C} / \mathrm{min}$ under N_{2}. For the femto-second-pulse experiment, a self mode-locked Ti-sapphire laser (pulsed width $80-100 \mathrm{fs}$, repetition rate 82 MHz in quasi-continuous-wave) was used as the excitation source to measure the two-photon cross sections. The scanning range can be tuned from 750 to 850 nm . The fundamental wavelength 800 nm was modulated by a chopper for focused on the material in a quartz cell. These respond signals are collected by PMT and transferred to Lock-in-Amplifier for recording the results by computer. In addition, regenerative amplifier can amplify the energy up to ten thousand times of peak energy $(1 \mathrm{~mJ})$ to perform further experiments. Rhodamine 6 G in methanol $\left(\sigma_{800}=134 \mathrm{GM}\right)$ was used as the reference standard. The concentrations of the all solutions were diluted in the range 10^{-4} to $10^{-6} \mathrm{M}$. The experimental uncertainty of the absolute TPA cross-sections has been determined to be $\pm 15 \%$ which was estimated from several independent measurements.
3. A mixture of 2,7-dibromo-9,9-bis(n-butyl)fluorene, 2 ($1.12 \mathrm{~g}, 2.57 \mathrm{mmol}$), 9,9 -di(n-butyl)-7-(trimethylsilyl)-2-fluorenylboronic acid 1 ($3.0 \mathrm{~g}, 7.72 \mathrm{mmol}$), palladium (II) acetate ($29 \mathrm{mg}, 0.13$ $\mathrm{mmol})$, tri-(o-tolyl)phosphine ($79 \mathrm{mg}, 0.26 \mathrm{mmol}$), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(15 \mathrm{~mL})$ in toluene $(30 \mathrm{~mL})$ and methanol (15 mL) was stirred under a nitrogen atmosphere at $80^{\circ} \mathrm{C}$ for overnight. After cooling to room temperature, the reaction mixture was poured into water and extracted with dichloromethane $(3 \times 50 \mathrm{~mL})$. The combined organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of volatiles gave a brown solid which was purified by silica gel column chromatography using petroleum ether/dichloromethane as gradient eluent affording 3 in 74% yield $(1.95 \mathrm{~g})$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.67(\mathrm{~m}, 8 \mathrm{H}), 7.48-7.51(\mathrm{~m}, 4 \mathrm{H}), 2.00-2.11(\mathrm{~m}, 12$
4. A mixture of $3(1.31 \mathrm{~g}, 1.34 \mathrm{mmol})$, silver trifluoroacetate $(0.71 \mathrm{~g}, 3.22 \mathrm{mmol})$ in chloroform $(20 \mathrm{~mL})$ was refluxed for 0.5 h . Iodine was then added in one portion in the solution mixture. The solution mixture was refluxed for another 2 h . After cooling to room temperature, the reaction mixture was poured into a large amount of water and extracted with dichloromethane $(3 \times 50$ $\mathrm{mL})$. The combined organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was purified by silica gel column chromatography using petroleum ether as eluent. The diiodide 4 was obtained as a white solid with an isolated yield of $91 \%(1.32 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.68(\mathrm{~m}, 12$ H), $7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-2.11(\mathrm{~m}, 12 \mathrm{H}), 1.08-1.17(\mathrm{~m}, 12 \mathrm{H}), 0.63-0.73(\mathrm{~m}, 30 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 153.4,151.8,150.9,141.0,140.4,140.2,140.1,139.3,135.9,132.0$, $126.2,126.1,121.5,121.4,121.3,120.1,120.0,92.5,55.3,55.2,40.2,40.1,26.1,25.9,23.1,23.0$, 13.8. MS (FAB) m/z $1082.8\left(\mathrm{M}^{+}\right)$.
(Bu)-OF(5)-NPh. To a solution of $4(0.38 \mathrm{~g}, 0.35 \mathrm{mmol}), 9,9$-bis(n-butyl)-2- diphenylamino-7fluorenylboronic acid $5(0.52 \mathrm{~g}, 1.06 \mathrm{mmol})$, and $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{~mL})$ in THF $(25 \mathrm{~mL})$ was added tetrakis(triphenylphosphine)palladium(0) ($40 \mathrm{mg}, 0.035 \mathrm{mmol}$) under N_{2}. After heating at $80^{\circ} \mathrm{C}$ overnight, the reaction mixture was poured into cool water and extracted with chloroform (3×50 $\mathrm{mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness. The crude product was purified by silica gel column chromatography using petroleum ether/ $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as gradient eluent affording the desired product as a pale yellow solid in $50 \%(0.30$ g) yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.82-7.85(\mathrm{~m}, 6 \mathrm{H}), 7.65-7.72(\mathrm{~m}, 16 \mathrm{H}), 7.61(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 4 \mathrm{H}), 7.23-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.15(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 10 \mathrm{H}), 7.00-7.07(\mathrm{~m}, 6 \mathrm{H}), 2.13-2.15(\mathrm{~m}, 10 \mathrm{H})$,
$1.87-2.03(\mathrm{~m}, 8 \mathrm{H}), 1.06-1.20(\mathrm{~m}, 20 \mathrm{H}), 0.72-0.89(\mathrm{~m}, 52 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $152.40,151.81,151.78,151.42,147.99,147.13,140.45,140.42,140.36,140.19,140.07,140.03$, $139.90,139.61,135.95,129.16,126.09,126.02,123.83,123.49,122.49,121.43,121.32,121.19$, $120.38,119.97,119.39,119.35,55.26,55.09,40.25,40.01,26.11,23.11,23.02,13.91,13.85$.

HRMS (MALDI-TOF) calcd. for $\mathrm{C}_{129} \mathrm{H}_{140} \mathrm{~N}_{2}$: 1718.1045; Found: 1718.1071. Anal. calc. For $\mathrm{C}_{129} \mathrm{H}_{140} \mathrm{~N}_{2}: \mathrm{C} 90.16, \mathrm{H} 8.21, \mathrm{~N} 1.63$; found: C 90.14, H 8.22, N 1.60 .
(Ph)-OF(2)-NPh. A mixture of 2-bromo-7-diphenylamino-9,9-diphenylfluorene, 6 ($452 \mathrm{mg}, 0.8$ mmol), 7 -diphenyl-amino-9,9-diphenylfluorenyl-2-boronic acid, 7 ($517.0 \mathrm{mg}, 1.0 \mathrm{mmol}$), 1:2 palladium (II) acetate:tri(o-toyl)phosphine (5 mole \%), toluene (20 mL), methanol (10 mL) and 2 $\mathrm{M} \mathrm{K} \mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{~mL})$ was heated at $75^{\circ} \mathrm{C}$ for overnight. After the reaction mixture was cooled to room temperature, it was poured into water and extracted with dichloromethane $(3 \times 50 \mathrm{~mL})$. The combined organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was further purified by silica gel column chromatography using $2: 1$ petroleum ether:dichloromethane as eluent. The product was a light yellow solid with an isolated yield of $71 \% .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 7.64(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.00 \mathrm{~Hz}, 2 \mathrm{H})$, 7.48-7.50 (m, 4 H), 7.13-7.20 (m, 30 H$), ~ 7.02-7.04(\mathrm{~m}, 8 \mathrm{H})$, 6.94-6.99 (m, 6 H$).{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) \quad 152.7,151.3,147.6,147.5,145.8,139.9,139.1,134.2,129.1,128.2,126.6$, $126.5,124.7,124.2,123.0,122.8,121.5,120.7,119.7,65.4 . \operatorname{MS}(\mathrm{FAB}) m / z 969.8\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{74} \mathrm{H}_{52} \mathrm{~N}_{2}$: C, 91.70; H, 5.41; N, 2.89. Found: C, $91.77 ; \mathrm{H}, 5.50 ; \mathrm{N}, 3.06$.
(Ph)-OF(4)-NPh. A mixture of 7,7'-diiodo-2, ${ }^{\prime}$ '-bi(9,9-diphenylfluorene) 8a (443 mg, 0.50 mmol), 7-(diphenylamino)-9,9-diphenylfluorenyl-2-boronic acid 7 ($776 \mathrm{mg}, 1.50 \mathrm{mmol}$), 1:2 palladium (II) acetate:tri(o-toyl)phosphine (5 mole \%), toluene (30 mL), methanol (15 mL) and 2 $\mathrm{M}_{2} \mathrm{CO}_{3}(4 \mathrm{~mL})$ was heated at $75^{\circ} \mathrm{C}$ for overnight. After the reaction mixture was cooled to room temperature, it was poured into water and extracted with dichloromethane $(3 \times 50 \mathrm{~mL})$.

The combined organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The pure product was separated by silica gel column chromatography using 2:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: petroleum ether as eluent affording $649 \mathrm{mg}(81 \%)$ of a light-yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right)$ $7.74(\mathrm{~d}, J=8.00 \mathrm{~Hz}, 4 \mathrm{H}), 7.65(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.57(\mathrm{~m}, 12 \mathrm{H}), 7.13-7.24(\mathrm{~m}, 50 \mathrm{H})$, 7.02-7.05 (m, 10 H$),$ 6.94-6.99 (m, 6 H$)$. MS (FAB) $m / z 1601.9\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{124} \mathrm{H}_{84} \mathrm{~N}_{2}$: C, $92.97 ;$ H, 5.29 ; N, 1.75. Found: C, $92.73 ; H, 5.27 ;$ N, 1.67.
(Ph)-OF(5)-NPh. The Suzuki cross-coupling procedure for the preparation of (Ph)-OF(4)-NPh was followed using 7-(diphenylamino)-9,9-diphenyl-2-boronic acid 7 ($150 \mathrm{mg}, 0.30 \mathrm{mmol}$) and 7,7"-diiodo-2,2"-ter(9,9-diphenylfluorene) 8b ($120 \mathrm{mg}, 0.10 \mathrm{mmol}$). The pure product was separated by silica gel column chromatography using $2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$:petroleum ether as eluent affording $163 \mathrm{mg}(84 \%)$ of a light-yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) $7.74(\mathrm{~d}, J=7.60$ $\mathrm{Hz}, 6 \mathrm{H}), 7.65(\mathrm{~d}, ~ J=8.80 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.57(\mathrm{~m}, 16 \mathrm{H}), 7.17-7.21(\mathrm{~m}, 64 \mathrm{H}), 7.03(\mathrm{~d}, J=8.00$ $\mathrm{Hz}, 8 \mathrm{H})$, 6.94-6.96 (m, 6 H$)$. MS (FAB) m/z $1918.1\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{149} \mathrm{H}_{100} \mathrm{~N}_{2}$: C, 93.29; H, 5.25; N, 1.46. Found: C, 93.12; H, 5.43; N, 1.62.

3. Results of B3LYP/6-31G* calculations 3

Calculated spatial distributions of selected frontier molecular oribitals of (Ph)-OF(3)-NPh and (Bu)-OF(3)-NPh, and their energy levels obtained by B3LYP/6-31G* calculations.

FMOs	FMO of (Bu)-OF(3)-NPh and Energy level	FMO of (Ph)-OF(3)-NPh and Energy level
номо		
Lumo		
LUMO+1		
LUMO+2		- 0 \& 8 \& con $\because 00^{8} 0^{8}$ arge8 0 $-0.53 \mathrm{eV}$
LUMO+3		

Generally, the molecular orbital coefficients, c_{i} of molecular orbitals (MOs) can be used to evaluate the contributions of related atomic orbitals (AOs) to these MOs. We have calculated the values of Σc_{i}^{2} of the two substituents, 9,9-diphenyl and 9,9-dibutyl groups, respectively, which can be used to evaluate the contributions of related AOs of the two substituents to the corresponding MOs.

The results of Σc_{i}^{2} show that the relative contributions of the related AOs of 9,9-diphenyl groups to the HOMO, LUMO and LUMO $+\mathrm{i}(\mathrm{i}=1,2,3,4)$ of $(\mathrm{Ph})-\mathrm{OF}(3)-\mathrm{NPh}$ are 0.0043 , $0.0519,0.0601,0.2877,0.3185$, and 0.1633 , respectively. All of these are larger to a different extent than those of 9,9-dibutyl groups to the HOMO, LUMO and LUMO $+\mathrm{i}(\mathrm{i}=1,2,3,4)$ of (Bu) $-\mathrm{OF}(3)-\mathrm{NPh}, 0.0012,0.0351,0.0250,0.0376,0.0946$, and 0.0907 , respectively.

In brief, the greater the contributions of the related atomic orbitals of 9,9-diphenyl groups to the frontier orbitals of $(P h)-\mathrm{OF}(3)-\mathrm{NPh}$, the lower the energies of these MOs, and the more stable these MOs are.
4. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

160	140	120	100	80				

 ।

Figure 1 Two-photon excited photoluminescence spectra of (Bu)-OF(n)-NPh and (Ph)-OF(n)-NPh.

5. References

1 Z. H. Li, M. S. Wong, Y. Tao, J. P. Lu, Chem. -Eur. J., 2005, 11, 3285.
2 Z. Q. Gao, Z. H. Li, P. F. Xia, M. S. Wong, K. W. Cheah, C. H. Chen, Adv. Funct. Mater., 2007, 17, 3194.
3 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Baror - • . nnnucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CT, 2004.

