Supplemently Information

A new restriction effect of hard templates for the shrinkage of

mesoporous polymer during carbonization

Mingbo Zheng,^a Guangbin Ji,^a Yongwen Wang,^a Jian Cao,^a Shaoqing Feng,^a Lei Liao,^b Qinglai Du,^a Lifeng Zhang,^a Zongxin Ling,^a Jinsong Liu,^a Ting Yu,^b Jieming Cao^{*a} and Jie Tao^a

Nanomaterials Research Institute, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore

^a Nanjing University of Aeronautics and Astronautics.

^b Nanyang Technological University.

*E-mail: jmcao@nuaa.edu.cn

Experimental Details:

Preparation of anodic aluminum oxide (AAO) membrane:

The AAO membranes with average pore diameters of 50, 90, and 200 nm were prepared by ourselves.

The aluminium foil (purity 99.5%) was anodized in 0.5 mol/L of oxalic acid solution or 0.36 mol/L of

phosphoric acid solution. The AAO membranes with an average pore diameter of 300 nm was purchased

from Whatman Ltd.

Preparation of SiO₂ colloidal crystal:

Nearly monodisperse SiO₂ microspheres with an average diameter of 220 nm were synthesized by hydrolyzing tetraethyl orthosilicate (TEOS) and subsequent seed growth polymerization under basic conditions.^[1] SiO₂ colloidal crystal was obtained by self-assembling SiO₂ microspheres using a vertical deposition technique. The SiO₂ colloidal crystal was heat-treated at 800 °C for 3 h. The heat treatment

endows the colloidal crystal with high mechanical strength and forms small necks between neighboring SiO₂ spheres.

Preparation of resol precursor:

The preparation of resol precursor is similar to that reported by Meng. Y et al^[2,3]. 2.44 g of phenol was melted at 41 °C in a rockered flask. 2.6 g of 20 wt % NaOH solution was added to the flask. Then 4.2 g of formalin (37 wt % formaldehyde) was added dropwise at 41 °C and the reaction mixture was stirred at 70 °C for 1 h. After cooling to the room temperature, the pH of the mixture was adjusted to 7.0 using 0.6 mol/L of HCl solution. Water was then removed by vacuum evaporation at 43 °C. The final product was dissolved in 36.0 g of ethanol. 40.0 g of resol–ethanol solution was obtained.

Preparation of Pluronic F127 (EO₁₀₆PO₇₀EO₁₀₆)-resol mixture solution for AAO template:

1.0 g of Pluronic F127 was dissolved in 20.0 g of ethanol. Then, 20.0 g of resol-ethanol solution was added. After stirring for 10 min, a homogeneous mixture solution was obtained.^[2,3]

Preparation of Pluronic F127-resol mixture solution for SiO₂ colloidal crystal template:

1.0 g of Pluronic F127 was dissolved in 20.0 g of ethanol. Then, 10.0 g of resol-ethanol solution was added. After stirring for 10 min, a homogeneous mixture solution was obtained.^[2,3]

Preparation of mesoporous-macroporous carbon (MMC) and mesoporous-macroporous polymer (MMP):

The precursor solution was transferred to an evaporating dish. Then, SiO₂ colloidal crystal template was added to the solution. After ethanol evaporated thoroughly at room temperature, the complex of SiO₂-resol-F127 was taken out and heated at 100 °C for 24 h. Some of the complex were carbonized at 900 °C in N₂ for 3 h (heating rate: 1 °C/min). Some of the complex were carbonized at 700 °C in N₂ for 3

h. The others were heat treated at 350 °C in N_2 for 3 h. The SiO₂ templates were then etched away with 10% aqueous HF. The corresponding products were MMC-900, MMC-700, and MMP-350, respectively. Furthermore, some of MMP-350 were carbonized at 700 °C in N_2 for 3 h and the obtained product was MMC-350-700.

Instrumentations:

The morphologies of the mesoporous nanofibers were examined by transmission electron microscopy (FEI TECNAI-20) and scanning electron microscopy (Gemini, LEO1530). The N₂ adsorption–desorption analysis was measured on a Micromeritics ASAP 2010 instrument. The plan-view TEM sample of AAO–MCNF-700 was prepared by dimple grinding followed by ion polishing (Gatan PIPS 691) and characterized by transmission electron microscopy (JEOL JEM-2010FEF). The Raman spectra was carried out with a WITEC CRM200 confocal Raman system.

sample name	mesopore	BET	micropore	pore	micropore
	size	surface area	area	volume ^a	volume ^b
	[nm]	$[m^2 g^{-1}]$	$[m^2 g^{-1}]$	$[cm^{3}g^{-1}]$	$[cm^{3}g^{-1}]$
MCNF-700 (90 nm)	15.2	1154	246	3.44	0.12
MPNF-350 (90 nm)	11.1	783	292	2.04	0.14
MCNF-350-700 (90 nm)	7.3	1308	1032	2.19	0.51
MCNF-700 (50 nm)	14.6	999	290	2.70	0.14
MPNF-350 (50 nm)	9.5	642	113	1.41	0.05
MCNF-350-700 (50 nm)	6.5	907	464	1.28	0.23
MCNF-700 (200 nm)	12.7	1232	343	2.69	0.16
MPNF-350 (200 nm)	10.6	854	270	1.30	0.13
MCNF-350-700 (200 nm)	7.6	1766	1225	1.38	0.60
MCNF-700 (300 nm)	11.4	1300	516	2.35	0.25
MPNF-350 (300 nm)	9.5	696	241	1.05	0.12
FDU-16-350 ^[3]	6.6	460	230	0.34	
FDU-16-700 ^[3]	3.8	690	480	0.37	
MMC-900	14.9	1469	409	4.11	0.20
MMC-700	14.8	1243	333	3.49	0.16
MMP-350	11.4	872	216	1.61	0.10
MMC-350-700	8.7	1291	613	1.99	0.30
FDU-15-350	5.6	323	46	0.34	0.02
FDU-15-700	3.2	648	381	0.37	0.19
FDU-15-900	2.9	673	446	0.36	0.22

Table S1. Textural Properties of Mesoporous Materials

^{*a*} By using the Barrett-Joyner-Halenda (BJH) model, the pore volume was derived from the adsorption branch of isotherms and estimated from the adsorbed amount at a relative pressure P/P_0 of 0.996.

^b The micropore volume was calculated by the V-t method.

Figure S1-Figure S14

Figure S1. SEM images of MCNF-700 obtained by using AAO with an average pore diameter of 90 nm as template.

Figure S2. Low-magnification TEM images of MCNF-700 obtained by using AAO with an average pore diameter of 90 nm as template.

Figure S3. Raman spectra of MCNF-700 obtained by using AAO with an average pore diameter of 90 nm as template. (The Raman spectra of MCNF-700 shows two characteristic vibration modes at about 1340 and 1595 cm⁻¹, respectively. It suggests that MCNF-700 has a low degree of graphitization.)

Figure S4. BJH pore size distribution curves from desorption branches for MCNF-700, MPNF-350 and MCNF-350-700 obtained by using AAO with an average pore diameter of 90 nm as template.

Figure S5. SEM images of MCNF-700 obtained by using AAO with an average pore diameter of 50 nm as template.

Figure S6. TEM images of MCNF-700 obtained by using AAO with an average pore diameter of 50 nm as template.

Figure S7. (a) N_2 adsorption–desorption isotherms, (b) BJH pore size distribution curves from adsorption branches, and (c) BJH pore size distribution curves from desorption branches for MCNF-700, MPNF-350, and MCNF-350-700 obtained by using AAO with an average pore diameter of 50 nm as template. The isotherms of MPNF-350 and MCNF-350-700 are offset vertically by 1100 and 1400 cm³/g, respectively.

Figure S8. SEM images of MCNF-700 obtained by using AAO with an average pore diameter of 200 nm as template.

Figure S9. TEM images of MPNF-350 (a) and MCNF-700 (b) obtained by using AAO with an average pore diameter of 200 nm as template.

Figure S10. (a) N_2 adsorption–desorption isotherms, (b) BJH pore size distribution curves from adsorption branches, and (c) BJH pore size distribution curves from desorption branches for MCNF-700, MPNF-350, and MCNF-350-700 obtained by using AAO with an average pore diameter of 200 nm as template. The isotherms of MPNF-350 and MCNF-350-700 are offset vertically by 1100 and 1300 cm³/g, respectively.

Figure S11. SEM (a,b) and TEM (c,d) images of MCNF-700 obtained by using AAO with an average pore diameter of 300 nm as template.

Figure S12. (a) N_2 adsorption–desorption isotherms, (b) BJH pore size distribution curves from adsorption branches, and (c) BJH pore size distribution curves from desorption branches for MCNF-700 and MPNF-350 obtained by using AAO with an average pore diameter of 300 nm as template. The isotherms of MPNF-350 are offset vertically by 1000 cm³/g. (Figure c indicates that the window of the mesopores was not opened completely, which is due to the restriction effect weakens with increasing the pore diameter of AAO template.)

Figure S13. Plan-view TEM images of AAO–MCNF-700 complex obtained by using AAO with an average pore diameter of 50 nm as template. (From the high-magnification TEM image (right), we can see that the surface of the carbon nanofiber connected tightly with the surface of the pore wall of AAO after carbonization at 700 °C)

Figure S14. SEM images of SiO₂ colloidal crystal (a) and MMC-700 (b,c), TEM image of MMC-700 (d).

References:

- [1] Stöber, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62.
- [2] Meng, Y.; Gu, D.; Zhang, F.; Shi, Y.; Yang, H.; Tu, B.; Yu, C.; Zhao, D. Angew. Chem., Int. Ed. 2005, 44, 7053.
- [3] Meng, Y.; Gu, D.; Zhang, F.; Shi, Y.; Cheng, L.; Feng, D.; Wu, Z.; Chen, Z.; Wan, Y.; Stein, A.; Zhao, D. Chem. Mater. 2006, 18, 4447