Supplementary information

Iodine-mediated cyclization of N-thioacyl 1-(2-pyridyl)-1,2-aminoalcohols and theirsubsequentcondensationleadingtoformationofnovelbis(1-imidazo[1,5-a]pyridyl)arylmethanes

Shinsuke Tahara, Fumitoshi Shibahara, Toshifumi Maruyama and Toshiaki Murai Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan

Bis(3-pheny-1-limidazo[1,5-a]pyridyl)phenylmethane (3a) (ST287)

То THF solution (2 mL) of а N-(2-hydroxy-2-phenyl-1-(2-pyridyl)ethyl)benzenecarbo-thioamide (1a) (227 mg, 0.5 mmol) was added I₂ (381 mg, 1.5 mmol) and pyridine (0.121 mL, 1.5 mmol) at room temperature. The mixture was stirred at room temperature for 30 min. The reaction mixture was poured onto $Na_2S_2O_3(aq)$ and extracted with CH_2Cl_2 . The organic layer was dried over MgSO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (*n*-hexane : ethyl 2 1) with shielding of light acetate = : to give bis(3-phenyl-1-imidazo[1,5-a]pyridyl)phenylmethane (3a) (0.111 g, 0.023 mmol, 93% per 0.25 mmol) as a green solid; mp 103-104 °C; IR (KBr) 3372, 3207, 2709, 2318, 1961, 1894, 1814, 1748, 1713, 1660, 1597, 1455, 1366, 1184, 1124, 1066, 1027, 970, 918, 882, 842, 795, 694, 613, 577, 521, 480 cm⁻¹; ¹H NMR (CDCl₃) δ 6.26 (s, 1H, CH-Ar₃), 6.29 (dd, J = 7.3, 6.3 Hz, 2H, Ar), 6.40 (dd, J = 9.3, 6.3 Hz, 2H, Ar), 7.07 (t, J = 7.3 Hz, 1H, Ar), 7.16 (t, J = 7.8 Hz, 2H, Ar), 7.23 (t, J = 7.3 Hz, 2H, Ar), 7.33 (t, J = 7.8 Hz, 4H, Ar), 7.36 (d, J = 9.3 Hz, 2H, Ar), 7.39 (d, J = 7.3 Hz, 2H, Ar), 7.63 (d, J = 7.8 Hz, 4H, Ar), 8.01 (d, J = 7.3 Hz, 2H, Ar); ¹³C NMR δ 44.1 (CH-Ar₃), 112.8, 117.6, 119.6, 121.0, 126.1, 128.0, 128.1, 128.2, 128.5, 128.7, 128.8, 130.5, 133.9, 136.6, 143.1 (Ar); MS (El) m/z 476 (M⁺); HRMS calcd for C₃₃H₂₄N₄: 476.1995, found: 476.1984.

Bis(3-phenyl-1-imidazo[1,5-a]pyridyl)-4-methoxyphenylmethane (3b) (ST291)

THF of То solution (2 mL) а N-[2-hydroxyl-2-(4-methoxyphenyl)-1-(2-pyridyl)propyl]benzenecarbothioamide (1b) (182 mg, 0.5 mmol) was added I₂ (381 mg, 1.5 mmol) and pyridine (0.121 mL, 1.5 mmol) at room temperature. The mixture was stirred at room temperature for 30 min. The reaction mixture was poured onto Na₂S₂O₃ (aq) and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (*n*-hexane : ethyl acetate = 2 : 1) with shielding of light to give bis(3-phenyl-1-imidazo[1,5-a]pyridyl)-4-methoxyphenylmethane (3b) (0.111 g, 0.018 mmol, 72% per 0.25 mmol) as a green solid; mp 95–96 °C; IR (KBr) 3302, 3063, 2927, 2834, 1748, 1664, 1602, 1510, 1458, 1364, 1300, 1247, 1172, 1077, 1029, 960, 910, 885, 793, 774, 729, 692, 614. 588 cm⁻¹; ¹H NMR (CDCl₃) δ 3.67 (s, 3H, -OCH₃), 6.23 (s, 1H, CH-Ar₃), 6.36 (ddd, J =7.3, 6.3, 1.0 Hz, 2H, Ar), 6.45 (ddd, J = 9.3, 6.3, 1.0 Hz, 2H, Ar), 6.74 (d, J = 8.8 Hz, 2H, Ar), 7.28 (t, J = 7.3 Hz, 2H, Ar), 7.33 (d, J = 8.8 Hz, 2H, Ar), 7.36 (d, J = 9.3 Hz, 2H, Ar), 7.38 (t, J

= 7.3 Hz, 4H, Ar), 7.68 (dd, J = 7.3, 1.5 Hz, 4H, Ar), 8.07 (d, J = 7.3 Hz, 2H, Ar); ¹³C NMR δ 44.1 (<u>C</u>H-Ar₃), 55.1 (<u>C</u>H₃O-), 112.9, 113.6, 117.7, 119.7, 121.1, 128.2, 128.3, 128.4 128.9, 129.8, 130.5, 134.2, 135.3, 136.6, 158.0 (<u>Ar</u>); MS (El) *m/z* 506 (M⁺); HRMS calcd for C₃₄H₂₆N₄O: 506.2107, found: 506.2107.

Bis(3-phenyl-1-imidazo[1,5-a]pyridyl)-4-chlorophenylmethane (3c) (ST298)

То THF а solution (4 mL) of N-(2-(4-chlorophenyl)-2-hydroxy-1-(2-pyridyl)ethyl)benzenecarbothioamide (1c) (184 mg, 0.5 mmol) was added I₂ (381 mg, 1.5 mmol) and pyridine (0.121 mL, 1.5 mmol) at room temperature. The mixture was stirred at room temperature for 30 min. The reaction mixture was poured onto Na₂S₂O₃ (aq) and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (*n*-hexane : ethyl acetate = 2 : 1) with shielding of light to give bis(3-phenyl-1-imidazo[1,5-a]pyridyl)-4-chlorophenylmethane (3c) (0.104 g, 0.020 mmol, 81% per 0.25 mmol) as a green solid; mp 77-78 °C; IR (KBr) 3063, 1900, 1749, 1711, 1667, 1602, 1488, 1221, 1177, 1089, 1015, 962, 918, 883, 773, 732, 697, 615, 531, 499, 449 cm⁻¹; ¹H NMR $(CDCl_3)$ δ 6.22 (s, 1H, C<u>H</u>-Ar₃), 6.34 (dd, J = 6.8, 6.3 Hz, 2H, Ar), 6.45 (dd, J = 9.3, 6.3 Hz, 2H, Ar), 7.14 (d, J = 8.3 Hz, 2H, Ar), 7.26 (t, J = 7.3 Hz, 2H, Ar), 7.33 (d, J = 8.3 Hz, 2H, Ar), 7.36 (t, J = 7.3 Hz, 4H, Ar), 7.42 (d, J = 9.3 Hz, 2H, Ar), 7.65 (d, J = 7.3 Hz, 4H, Ar), 8.05 (d, J = 6.8 Hz), 8.05Hz, 2H, Ar); ¹³C NMR δ 44.1 (CH-Ar₃), 113.0, 118.0, 119.4, 121.1, 128.1, 128.2, 128.4, 128.5, 128.9, 130.1, 130.4, 131.9, 133.3, 136.7, 141.7 (Ar); MS (El) m/z 510 (M⁺); HRMS calcd for C₃₃H₂₃ClN₄: 510.1611; found, 510.1632.

Bis(3-phenyl-1-imidazo[1,5-a]pyridyl)-4-methylphenylmethane (3d) (ST299)

To a THF solution (4 mL) of *N*-(2-hydroxyl-1-(2-pyridyl)-2-(4-methylphenyl)ethyl)benzenecarbothioamide (1d) (174 mg, 0.5 mmol) was added I₂ (381 mg, 1.5 mmol) and pyridine (0.121 mL, 1.5 mmol) at room temperature. The mixture was stirred at room temperature for 30 min. The reaction mixture was poured onto Na₂S₂O₃ (aq) and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (*n*-hexane : ethyl acetate = 2 : 1) with shielding of light to give bis(3-phenyl-1-imidazo[1,5-a]pyridyl)-4-methylphenylmethane (**3d**) (0.126 g, 0.025 mmol, 100% per 0.25 mmol) as a green solid; mp 116-117 °C; IR (KBr) 3053, 2917, 1903, 1750, 1662, 1631, 1602, 1509, 1458, 1403, 1365, 1315, 1261, 1181, 1127, 1075, 1026, 999, 960, 915, 853, 745, 698, 853, 745, 698, 500, 429 cm⁻¹; ¹H NMR (CDCl₃) δ 2.18 (s, 3H, C<u>H₃</u>), 6.22 (s, 1H, C<u>H</u>-Ar₃), 6.28 (dd, J = 7.3, 6.3 Hz, 2H, Ar), 6.39 (dd, J = 9.3, 6.3 Hz, 2H, Ar), 6.97 (d, J = 7.8 Hz, 2H, Ar), 7.22 (t, J = 7.3 Hz, 2H, Ar), 7.30 (t, J = 7.3 Hz, 4H, Ar), 7.33 (d, J = 7.8 Hz, 2H, Ar), 7.38 (d, J = 9.3 Hz, 2H, Ar), 7.62 (d, J = 7.3, 4H, Ar), 8.00 (d, J = 7.3 Hz, 2H, Ar); ¹³C NMR δ 20.9 (-<u>C</u>H₃), 44.4 (<u>C</u>H-Ar₃), 112.9, 117.6, 120.0, 121.0, 128.0, 128.2, 128.4, 128.6, 128.7, 128.8, 130.5, 134.1, 135.6, 136.5, 140.1 (<u>Ar</u>); MS (El) *m/z* 490 (M⁺); HRMS calcd for C₃₄H₂₆N₄: 490.2157; found: 490.2167.

Bis(3-(4-methoxyphenyl)-1-imidazo[1,5-a]pyridyl)-4-methoxyphenylmethane (3e) (ST310)

THF То а solution (4 mL) of N-(2-hydroxyl-2-(4-methoxyphenyl)-1-(2-pyridyl)ethyl)-4-methoxy-benzenecarbothioamide (1e) (197 mg, 0.5 mmol) was added I_2 (381 mg, 1.5 mmol) and pyridine (0.121 mL, 1.5 mmol) at room temperature. The mixture was stirred at room temperature for 30 min. The reaction mixture was poured onto Na₂S₂O₃ (aq) and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (*n*-hexane : ethyl acetate = 2 : 1) with shielding of light to give bis(3-(4-methoxyphenyl)-1-imidazo[1,5-a]pyridyl)-4-methoxyphenylmethane (3e) (0.102 g, 0.018 mmol, 72% per 0.25 mmol) as a green solid; mp 101-102 °C; IR (KBr) 3343, 3070, 3000, 2934, 2836, 2047, 1747, 1662, 1607, 1528, 1509, 1461, 1437, 1364, 1303, 1251, 1173, 1110, 1083, 1027, 964, 836, 791, 743, 699, 596, 515, 444, 416 cm⁻¹; ¹H NMR (CDCl₃) δ 3.65 (s, 3H, $-OCH_3$, 3.73 (s, 6H, $-OCH_3$), 6.21 (s, 1H, CH-Ar₃), 6.30 (ddd, J = 7.3, 6.3, 1.0 Hz, 2H, Ar), 6.39 (dd, J = 9.3, 6.3 Hz, 2H, Ar), 6.73 (d, J = 8.8 Hz, 2H, Ar), 6.89 (d, J = 8.8 Hz, 4H, Ar),7.29 (d, J = 9.3 Hz, 2H, Ar), 7.31 (d, J = 8.8 Hz, 2H, Ar), 7.57 (d, J = 8.8 Hz, 4H, Ar), 7.95 (d, J = 8.8 Hz, 4H, Ar = 7.3 Hz, 2H, Ar); 13 C NMR δ 44.0 (CH-Ar₃), 55.1 (-OCH₃), 55.2 (-OCH₃), 112.7, 113.5, 114.2, 117.3, 119.6, 121.0, 122.9, 128.0, 129.6, 129.7, 133.7, 135.3, 136.5, 158.0, 159.7 (Ar); MS (El) m/z 560 (M⁺); HRMS calcd for C₃₆H₃₀N₄: 566.2318, found: 560.2308.

Bis(3-(2-pyridyl)-1-imidazo[1,5-a]pyridyl)-4-methoxyphenylmethane (3f) (ST338)

To a THF solution (4 mL) of N-(2-hydroxy-2-(4-methoxyphenyl)-1-(2-pyridyl)ethyl)-2-pyridinecarbothioamide (1f) (366 mg, 1.0 mmol) was added I₂ (761 mg, 3.0 mmol) and pyridine (0.244 mL, 3.0 mmol) at room temperature. The mixture was stirred at room temperature for 30 min. The reaction mixture

was poured onto Na₂S₂O₃ (aq) and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (*n*-hexane : ethyl acetate = 2 : 1 – 1 : 1) with shielding of light to give bis(3-(2-pyridyl)-1-imidazo[1,5-a]pyridyl)-4-methoxyphenylmethane (**3f**) (0.137 g, 0.027 mmol, 54% per 0.50 mmol) as a green solid; mp 188-189 °C; IR (KBr) 3356, 3120, 2929, 2361, 2335, 1905, 1839, 1792, 1753, 1675, 1584, 1560, 1508, 1427, 1367, 1308, 1243, 1179, 1147, 1128, 1111, 1070, 1033, 1006, 964, 911, 886, 828, 798, 752, 696, 616, 570, 518, 469, 452, 442, 419 cm⁻¹; ¹H NMR δ 3.63 (s, 3H, -OC<u>H₃</u>), 6.25 (s, 1H, C<u>H</u>-Ar₃), 6.52 (ddd, *J* = 7.8, 6.3, 1.5 Hz, 2H, Ar), 6.58 (ddd, *J* = 9.8, 6.3, 1.0 Hz, 2H, Ar), 6.71 (d, *J* = 8.8 Hz, 2H, Ar), 6.97 (ddd, *J* = 7.3, 4.9, 1.0 Hz, 2H, Ar), 7.24 (d, *J* = 7.8 Hz, 2H, Ar), 7.45 (dd, *J* = 4.9, 2.0, 1.0 Hz, 2H, Ar), 9.77 (d, *J* = 7.3 Hz, 2H, Ar), 8.18 (d, *J* = 9.3Hz, 2H, Ar), 8.45 (ddd, *J* = 4.9, 2.0, 1.0 Hz, 2H, Ar), 9.77 (d, *J* = 7.3 Hz, 2H, Ar); ¹³C NMR: 55.1 (-O<u>C</u>H₃), δ 44.0 (<u>C</u>H-Ar₃), 113.4, 113.5, 118.8, 119.1, 121.1, 122.0, 125.7, 129.7, 130.0, 133.6, 134.6, 135.0, 136.2, 148.0, 151.2, 158.0 (Ar); MS (El) *m*/z 508 (M⁺); HRMS calcd for C₃₂H₂₄N₆O: 508.2012, found: 508.2003.

Bis(3-(2-pyridyl)-1-imidazo[1,5-a]pyridyl)-4-chlorophenylmethane (3g) (ST339)

То а THF solution (4 mL) of N-(2-hydroxy-2-(4-chlorophenyl)-1-(2-pyridyl)ethyl)-2-pyridinecarbothioamide (1g) (185 mg, 0.5 mmol) was added I₂ (381 mg, 1.5 mmol) and pyridine (0.121 mL, 1.5 mmol) at room temperature. The mixture was stirred at room temperature for 30 min. The reaction mixture was poured onto Na₂S₂O₃ (aq) and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (*n*-hexane : ethyl acetate = 2 : 1 - 1 : 1) with shielding of light to give bis(3-(2-pyridyl)-1-imidazo[1,5-a]pyridyl)-4-chlorophenylmethane (**3g**) (0.0992 g, 0.019 mmol, 77% per 0.25 mmol) as a green solid; mp 81-82 °C; IR (KBr) 3303, 3115, 3015, 2926, 2855, 1903, 1754, 1714, 1665, 1631, 1588, 1561, 1504, 1427, 1337, 1310, 1375, 1193, 1147, 1127, 1089, 1045, 1013, 965, 925, 753, 710, 666, 616, 592, 540, 528, 503, 453, 424, 402 cm⁻¹; ¹H NMR δ 6.25 (s, 1H, CH-Ar₃), 6.54 (ddd, J = 7.3, 6.8, 1.0 Hz, 2H, Ar), 6.61 (ddd, J = 9.3, 6.3, 1.0 Hz, 2H, Ar), 6.69 (ddd, J = 7.3, 4.9, 1.0 Hz, 2H, Ar), 7.14 (d, J = 8.6 Hz, 2H, Ar), 7.25 (d, J = 8.6 Hz, 2H, Ar), 7.47 (d, J = 9.3 Hz, 2H, Ar), 7.58 (ddd, J = 8.3, 7.3, 2.0 Hz, 2H, Ar), 8.18 (d, J = 8.3Hz, 2H, Ar), 8.46 (dd, J = 4.9, 1.0 Hz, 2H, Ar), 9.78 (d, J = 7.3 Hz, 2H, Ar); ¹³C NMR δ 44.1 (<u>C</u>H-Ar₃), 113.5, 118.6, 119.4, 121.2, 122.0, 125.8, 128.2, 130.0, 130.1, 132.0, 133.7, 133.8, 136.3, 141.4, 148.0, 151.2 (Ar); MS (El) m/z 512 (M⁺); HRMS calcd for C₃₁H₂₁ClN₆: 512.1516,

found: 512.1519.

Bis(3-(2-thienyl)-1-imidazo[1,5-a]pyridyl)-4-methoxyphenylmethane (3h) (ST355)

THF То solution (4 mL) of а N-(2-(4-methoxyphenyl)-2-hydroxy-1-(2-pyridyl)ethyl)-2-thiophenecarbothioamide (1h) (185) mg, 0.5 mmol) was added I₂(381 mg, 1.5 mmol) and pyridine (0.121 mL, 1.5 mmol) at room temperature. The mixture was stirred at room temperature for 30 min. The reaction mixture was poured onto Na₂S₂O₃ (aq) and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (*n*-hexane : ethyl acetate = 2 : 1) with shielding of light to give bis(3-(2-thienyl)-1-imidazo[1,5-a]pyridyl)-4-methoxyphenylmethane (3h) (0.074 g, 0.014 mmol,57% per 0.25 mmol) as a green solid; mp 87-88 °C; IR (KBr) 3325, 3098, 2930, 2834, 1745, 1710, 1681, 1600, 1509, 1478, 1432, 1412, 1355, 1301, 1247, 1176, 1113, 1084, 1032, 998, 913, 845, 797, 732, 699, 618, 564, 531, 452, 412 cm⁻¹; ¹H NMR δ 3.65 (s, 3H, -OCH₃), 6.18 (s, 1H, CH-Ar₃), 6.44 (dd, J = 6.8, 6.3 Hz, 2H, Ar), 6.61 (dd, J = 8.3, 6.3 Hz, 2H, Ar), 6.72 (d, J = 8.8, 2H, Ar), 7.02 (dd, *J* = 4.9, 3.4 Hz, 2H, Ar), 7.24 (dd, *J* = 4.9, 1.0 Hz, 2H, Ar), 7.28 (d, *J* = 8.3 Hz, 2H, Ar), 7.35 (dd, J = 3.4, 1.0 Hz, 2H, Ar), 7.52 (d, J = 8.8 Hz, 2H, Ar), 8.10 (d, J = 6.8Hz, 2H, Ar): ¹³C NMR δ 44.8, 44.9 (CH-Ar₃), 55.1, 55.2 (-OCH₃), 113.5, 117.7, 119.9, 120.0, 121.3, 121.4, 124.5, 124.6, 125.5, 125.6, 127.5, 128.7, 129.5, 129.6, 131.2, 132.8, 134.4, 135.1, 158.0 (Ar); MS (El) m/z 518 (M⁺); HRMS calcd for C₃₀H₂₂N₄OS₂: 518.1235, found: 518.1213.

Bis(3-(thienyl)-1-imidazo[1,5-a]pyridyl)-4-chlorophenylmethane (3i) (ST356)

THF То а solution (4 mL) of N-(2-(4-chlorophenyl)-2-hydroxy-1-(2-pyridyl)ethyl)-2-thiophenecarbothioamide (1i) (186 mg, 0.5 mmol) was added I₂ (381 mg, 1.5 mmol) and pyridine (0.121 mL, 1.5 mmol) at room temperature. The mixture was stirred at room temperature for 30 min. The reaction mixture was poured onto Na₂S₂O₃ (aq) and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (*n*-hexane : ethyl acetate = 2 : 1) with shielding of light to give bis(3-(thienyl)-1-imidazo[1,5-a]pyridyl)-4-chlorophenylmethane (3i) (0.082 g, 0.016 mmol, 62% per 0.25 mmol) as a green solid; mp 90-91 °C; IR (KBr) 3434, 3070, 2930, 2366, 2324, 1899, 1734, 1630, 1588, 1511, 1487, 1404, 1332, 1304, 1260, 1236, 1170, 1112, 1088, 1014, 933, 913, 845, 781, 701, 614, 494, 454, 425 cm⁻¹; ¹H NMR δ 6.18 (s, 1H, CH-Ar₃), 6.43 (ddd, J = 6.8, 6.3, 1.5 Hz, 2H, Ar), 6.51 (dd, J = 9.3, 6.3 Hz, 2H, Ar), 7.00 (dd, J = 4.9, 3.4 Hz, 2H, Ar, 2H, Ar), 7.12 (d, J = 8.3 Hz, 2H, Ar), 7.24 (d, J = 4.9 Hz, 2H, Ar), 7.28 (d, J = 8.3 Hz, 2H, Ar), 7.33 (d, J = 3.4 Hz, 2H, Ar), 7.55 (d, J = 9.3 Hz, 2H, Ar), 8.09 (d, J = 6.8 Hz, 2H, Ar); ¹³C NMR δ 43.8 (<u>C</u>H-Ar₃), 113.6, 118.0, 119.6, 121.4, 124.6, 125.6, 127.5, 128.2, 126.7, 130.0, 131.3, 131.9, 132.6, 133.5, 141.5 (Ar); MS (El) m/z 522 (M⁺); HRMS calcd for C₂₉H₁₉ClN₄S₂: 522.0740, found: 522.0737.

[3-(4-Methoxyphenyl)-1-imidazo[1,5-a]pyridyl](3-phenyl-1-imidazo[1,5-a]pyridyl)phenylm ethane (6a) (ST349)

To a THF solution (4 mL) of N-(2-hydroxy-2-phenyl-1-(2-pyridyl)ethyl)benzenecarbothioamide (2f) (167 mg, 0.5 mmol) was added 3-(4-methoxyphenyl)imidazo[1,5-a]pyridine (5a) (112 mg, 0.5 mmol), I₂ (381 mg, 1.5 mmol) and pyridine (0.121 mL, 1.5 mmol) at room temperature. The mixture was stirred at room temperature for 30 min. The reaction mixture was poured onto $Na_2S_2O_3$ (aq) and extracted with CH_2Cl_2 . The organic layer was dried over MgSO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (*n*-hexane : ethyl acetate = 2 : 1) with shielding of light to give [3-(4-methoxyphenyl)-1-imidazo[1,5-a]pyridyl](3-phenyl-1-imidazo[1,5-a]pyridyl)phenylmetha ne (6a) (0.161 g, 0.032 mmol, 64% per 0.50 mmol) as a green solid; mp 74-75 °C; IR (KBr) 3063, 3024, 2936, 2836, 2045, 1898, 1748, 1655, 1631, 1610, 1573, 1529, 1493, 1461, 1405, 1365, 1303, 1289, 1250, 1216, 1172, 1110, 1074, 1030, 1001, 963, 916, 836, 795, 749, 698, 666, 617, 597, 578, 514, 423 cm⁻¹; ¹H NMR (CDCl₃) δ 3.69 (s, 3H, -OCH₃), 6.26 (s, 1H, CH-Ar₃), 6.24-6.30 (m, 2H, Ar), 6.34-6.42 (m, 2H, Ar), 6.87 (d, J = 8.8 Hz, 2H, Ar), 7.08 (d, J = 7.3 Hz, 1H, Ar), 7.16 (t, J = 7.3 Hz, 2H, Ar), 7.24 (d, J = 7.3 Hz, 1H, Ar), 7.33(t, J = 7.3 Hz, 2H, Ar), 7.34 (d, J = 6.3 Hz, 1H, Ar), 7.36 (d, J = 8.8 Hz, 1H, Ar), 7.39 (d, J = 7.3 Hz, 2H, Ar), 7.55 (d, J = 8.8 Hz, 2H, Ar), 7.64 (d, J = 7.3 Hz, 2H, Ar), 7.92 (d, J = 7.3 Hz, 1H, Ar), 8.01 (d, J = 7.3 Hz, 1H, Ar); ¹³C NMR δ 44.9 (<u>C</u>H-Ar₃), 55.2 (-O<u>C</u>H₃), 112.6, 112.8, 114.2, 117.3, 117.6, 119.61, 119.63, 120.96, 120.99, 123.0, 126.1, 128.0, 128.1, 128.2, 128.5, 128.7, 128.8, 129.5, 130.5, 133.4, 134.0, 136.6, 143.2, 159.6 (Ar); MS (El) m/z 506 (M⁺); HRMS calcd for C₃₄H₂₆N₄O: 506.2107, found: 506.2107.

X-ray Structure Analysis. The measurement was carried out on a Rigaku/MSC Mercury CCD diffractometer with graphite-monochlomated Mo K α radiation ($\lambda = 0.71069$ Å). The structures were solved and refined using the teXsan[®] crystallographic softwere package of Molecular Structure Corporation. The X-ray quality crystal was obtained by slow diffusion of hexane and CH₂Cl₂ into **3g** (0.23 mg). The crystal was cut from the grown crystal and mounted on a glass fiber. The structure was solved by direct method using SHELXL-97. Scattering factors for neutral atoms were from Cromer and Waber, and anomalous dispersion effect were used. The function minimized was $\Sigma w (F_o^2 - F_c^2)^2$ and the weighting scheme employed $w = [\sigma_c^2 (F_o^2) + (p(\max(F_o^2, 0) + 2F_c^2/3)^2)]^{-1}$. A full-matrix least-squares refinement was executed with non-hydrogen atoms being anisotropic. The final least square cycle included fixed hydrogen atoms at calculated positions of which each isotropic thermal parameter was set to 1.2 times of that of the connecting atom. Crystal data and measurement description are summarized in Table 3.

-	-	
Identification code	crystalclear	
Empirical formula	$C_{31}H_{21}ClN_6$	
Formula weight	512.99	
Temperature	193(2) K	
Wavelength	0.71070 Å	
Crystal system	Monoclinic	
Space group	$P 2_1/c$	
Unit cell dimensions	a = 11.262(6) Å	$\alpha = 90^{\circ}$.
	b = 10.562(6) Å	$\beta = 96.078(7)^{\circ}$.
	c = 20.766(12) Å	$\gamma = 90^{\circ}$.
Volume	2456(2) Å ³	
Z	4	
Density (calculated)	1.387 mg/m^{3}	
Absorption coefficient	0.190 mm^{-1}	
F(000)	1064	
Crystal size	0.30 x 0.20 x 0.20 mm ³	
Theta range for data collection	3.19 to 27.50°.	
Index ranges	-14<=h<=14, -13<=k<=13, -17<=l<=26	

Table 3. Crystal data and structure refinement for 3g.

Reflections collected	19735
Independent reflections	5616 [R(int) = 0.0806]
Completeness to theta = 27.50°	99.5 %
Absorption correction	Integration
Max. and min. transmission	0.989 and 0.950
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5616 / 0 / 347
Goodness-of-fit on F ²	1.000
Final R indices [I>2sigma(I)]	R1 = 0.1074, $wR2 = 0.2353$
R indices (all data)	R1 = 0.1447, wR2 = 0.2600
Largest diff. peak and hole	$0.267 \text{ and } -0.310 \text{ e.Å}^{-3}$