Supporting Information for

Boiling Water-Catalyzed Neutral and Selective *N***-Boc**

Deprotection

Jia Wang, Yan-Liang Liang, Jin Qu*

The State Key Laboratory of Elemento-organic Chemistry,

Nankai University, Tianjin 300071, P. R. China

Fax: +86-(022)-23499247 and E-mail:qujin@nankai.edu.cn

Table of Contents

General
General Procedure for N-Boc Deprotection Reaction in Boiling Water
¹ H NMR Studies of the Deprotection of <i>N</i> -Boc-benzotriazole in D ₂ O at 60°C
Analytical Data for Compounds in Table 14
Analytical Data for Compounds in Table 26
Analytical Data for Compounds in Table 39
Selected NMR Spectra
References

General

All reactions were carried out in aerial atmosphere, unless otherwise mentioned. Water was purchased from Watson water or from Milli-Q[®] Ultrapure Water Purification System. Flash chromatography was performed on silica gel columns (200 – 300 mesh). All of the compounds were characterized by ¹H NMR and ¹³C NMR. ¹H NMR spectra were recorded at 300 MHz, 400 MHz or 600 MHz; ¹³C NMR were recorded at 75 MHz, 100 MHz or 150 MHz. Peaks recorded are relative to internal standards: TMS ($\delta = 0.00$) for ¹H and CDCl₃ ($\delta = 77.00$) for ¹³C spectra.

General Procedure for N-Boc Deprotection Reaction in Boiling Water

In a 50 mL round bottle flask filled with 20 mL of water, *tert*-butyl 3–(hydroxymethyl) phenylcarbamate (223 mg, 1 mmol) was added. Then the flask topped with a condenser was dipped in a 110°C oil bath. TLC was used to monitor the progress of the reaction. The reaction mixture was cooled down after 1.5 h and was extracted with ethyl acetate (40 mL×3). The extract was washed with brine, dried over anhydrous Na₂SO₄, and then concentrated in vacuum. The residue was purified by column chromatography on silica gel with ethyl acetate/petroleum ether (1:1, v/v) to afford the free amine as a colorless solid (120 mg, yield 98%, for most of cases, no further purification is needed). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (s, 1H), 7.21–7.24 (m, 2H), 7.03 (d, *J* = 6.8 Hz, 1H), 6.56 (br s, 1H, NH), 4.65 (s, 2H), 1.95 (br s, 1H, OH), 1.51 (s, 9H)

Most of the substrate was insoluble in water at room temperature, but it became partially soluble or completely miscible when temperature was raised above 60°C. For very sticky N^{α} , N^{ind} -diBoc-tryptamine, the substrate was firstly dissolved in 1 mL of 1,4-dioxane and then 19 mL of water was added. We note that most organic compounds containing one or more hydrogen-bond-forming functional groups should have good solubility in hot water (60–100°C).

¹H NMR Studies of the Deprotection of *N*-Boc-benzotriazole in D₂O at 60^oC

The white solid of N-Boc-benzotriazole (100 mg) and 500 µL of D₂O were placed in an NMR tube and were sonicated for 1 minute at room temperature. There is no signal in the ¹H NMR spectrum recorded because *N*-Boc-benzotriazole is not soluble in pure water at room temperature. The NMR tube was then immersed into a 60°C water bath for 4 min (shake the NMR tube occasionally) and then was cooled down in an ice bath. The peaks of *N*-Boc-benzotriazole appear in the ¹H NMR spectrum were recorded because N-Boc-benzotriazole is partially soluble in water after heating (in order to insure that the signals in ¹H NMR spectrum belong to the starting material, a ¹³C NMR spectrum of the 4 min sample was also taken and compared with the ¹³C NMR spectrum of N-Boc-benzotriazole taken in CDCl₃). The high-field singlet attributes to the *t*-butanol formed in the reaction. Similarly, the NMR tube was heated for another 4 minutes and was cooled down before the ¹H NMR spectrum was recorded. On the ¹H NMR spectrum, the signals of the product rise while the signals of the starting material fall down. After the reaction finished (16 min), 20 mg of authentic t-butanol was added in the NMR tube and it is found that the high field singlet do not split which means it is the signal from *t*-butanol.

Analytical Data for Compounds in Table 1

tert-Butyl 1H-imidazole-1-carboxylate¹

Table 1 - Entry 1

¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 2.4 Hz, 1H), 7.38 (s, 1H), 7.03 (d, J = 2.4 Hz, 1H), 1.63 (s, 9H)

tert-Butyl 1H-pyrazole-1-carboxylate²

Table 1 - Entry 2

¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 2.4 Hz, 1H), 7.72 (s, 1H), 6.39 (t, J = 2.8 Hz, 1H), 1.66 (s, 9H)

tert-Butyl 1H-benzo[d]imidazole-1-carboxylate ³

Table 1 - Entry 3

¹H NMR (600 MHz, CDCl₃) δ 8.43 (s, 1H), 7.99 (d, *J* = 7.8 Hz, 1H), 7.79 (d, *J* = 7.8 Hz, 1H), 7.34–7.39 (m, 2H), 1.70 (s, 9H)

tert-Butyl 1H-benzo[d][1,2,3]triazole-1-carboxylate ⁴

Boc

Table 1 - Entry 4

¹H NMR (600 MHz, CDCl₃) δ 8.12 (d, *J* = 8.4 Hz, 1H), 8.07 (d, *J* = 8.4 Hz, 1H), 7.63 (t, *J* = 7.8 Hz, 1H), 7.48 (t, *J* = 7.8 Hz, 1H), 1.77 (s, 9H)

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

tert-Butyl 1H-indole-1-carboxylate ⁵

Table 1 - Entry 5

¹H NMR (600 MHz, CDCl₃) δ 8.15 (m, 1H), 7.59 (s, 1H), 7.55 (d, *J* = 7.8 Hz, 1H), 7.30 (d, *J* = 7.8 Hz, 1H), 7.22 (m, 1H), 6.56 (s, 1H), 1.67 (s, 9H)

tert-Butyl 1H-pyrrolo[2,3-b]pyridine-1-carboxylate ⁶

Table 1 - Entry 6

¹H NMR (400 MHz, CDCl₃) δ 8.51 (dd, J = 1.6, 4.8 Hz, 1H), 7.87 (dd, J = 1.6, 7.6 Hz, 1H), 7.64 (d, J = 4.0 Hz, 1H), 7.18 (dd, J = 4.8, 7.6 Hz, 1H), 6.50 (d, J = 4.0 Hz, 1H), 1.67 (s, 9H)

tert-Butyl 3-acetyl-1H-indole-1-carboxylate ⁷

Table 1 - Entry 7

¹H NMR (600 MHz, CDCl₃) δ 8.37 (m, 1H), 8.23 (s, 1H), 8.12 (m, 1H), 7.37 (m, 2H), 2.57 (s, 3H, CH₃), 1.72 (s, 9H)

Analytical Data for Compounds in Table 2

tert–Butyl phenylcarbamate⁸

-Вос

Table 2 - Entry 1

¹H NMR (300 MHz, CDCl₃) δ 7.39 (d, *J* = 8.0 Hz, 2H), 7.32 (t, *J* = 8.0 Hz, 2H), 7.03 (t, *J* = 7.2 Hz, 1H), 6.48 (s, 1H, NH), 1.52 (s, 9H)

tert–Butyl *p*–tolylcarbamate ⁹

-Boc

Table 2 - Entry 2

¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.4 Hz, 2H), 6.42 (br s, 1H, NH), 2.29 (s, 3H), 1.51 (s, 9H)

tert–Butyl 4–chlorophenylcarbamate¹⁰

Table 2 - Entry 3

¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 8.8 Hz, 2H), 7.24 (d, *J* = 9.2 Hz, 2H), 6.53 (br s, 1H, NH), 1.51 (s, 9H)

tert-Butyl 4-bromophenylcarbamate ⁹

Table 2 - Entry 4

¹H NMR (600 MHz, CDCl₃) δ 7.38 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 6.48 (br s, 1H, NH), 1.53 (s, 9H)

tert-Butyl 4-hydroxyphenylcarbamate ⁹

Table 2 - Entry 5

¹H NMR (600 MHz, CDCl₃) δ 7.17 (d, *J* = 7.2 Hz, 2H), 6.73 (d, *J* = 7.2 Hz, 2H), 6.34 (br s, 1H, NH), 5.27 (br s, 1H, OH), 1.51 (s, 9H)

tert–Butyl 3–hydroxyphenylcarbamate¹¹

Table 2 - Entry 6

¹H NMR (400 MHz, CDCl₃) δ 7.11 (m, 2H), 6.72 (d, J = 7.6 Hz, 1H), 6.52 (t, J = 8.0 Hz, 2H), 5.39 (br s, 1H), 1.52 (s, 9H)

tert-Butyl 4-methoxyphenylcarbamate¹

H -N-Boc

Table 2 - Entry 7

¹H NMR (600 MHz, CDCl₃) δ 7.25 (d, *J* = 9.0 Hz, 2H), 6.83 (d, *J* = 9.0 Hz, 2H), 6.35 (br s, 1H, NH), 3.78 (s, 3H), 1.51 (s, 9H)

tert–Butyl 4–acetoxyphenylcarbamate¹²

Table 2 - Entry 8

¹H NMR (300 MHz, CDCl₃) δ 7.36 (d, J = 9.0 Hz, 2H), 7.01 (d, J = 8.7 Hz, 2H), 6.49 (br s, 1H, NH), 2.28 (s, 3H), 1.51 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 188.62, 152.69, 146.04, 136.01, 121.93, 119.42, 80.65, 28.31, 21.04

tert–Butyl 3–(hydroxymethyl)phenylcarbamate¹³

Table 2 - Entry 9

¹H NMR (400 MHz, CDCl₃) δ 7.42 (s, 1H), 7.21–7.24 (m, 2H), 7.03 (d, *J* = 6.8 Hz, 1H), 6.56 (br s, 1H, NH), 4.65 (s, 2H), 1.95 (br s, 1H, OH), 1.51 (s, 9H)

tert–Butyl 4–acetylphenylcarbamate¹⁴

N–Boc Ac

Table 2 - Entry 10

¹H NMR (300 MHz, CDCl₃) δ 7.81 (d, J = 8.7 Hz, 2H), 7.43 (d, J = 8.1 Hz, 2H), 6.55 (s, 1H, NH), 2.47 (s, 3H), 1.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 197.12, 152.31, 143.26, 131.36, 129.67, 117.34, 80.88, 28.09, 26.20

tert-Butyl 4-nitrophenylcarbamate¹

N-Boc O_2N

Table 2 - Entry 11

¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 9.2 Hz, 2H), 7.54 (d, *J* = 9.2 Hz, 2H), 6.96 (br s, 1H, NH), 1.54 (s, 9H)

tert-Butyl 4-(dimethylamino)phenylcarbamate¹⁵

N–Boc

Table 2 - Entry 12

¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, J = 6.4 Hz, 2H), 6.70 (t, J = 6.4 Hz, 2H), 6.25 (br s, 1H, NH), 2.89 (s, 6H), 1.50 (s, 9H)

Analytical Data for Compounds in Table 3

tert–Butyl Butylcarbamate³

N Boc

Table 3 - Entry 1 - Substrate

¹H NMR (400 MHz, CDCl₃) δ 4.52 (s, 1H, NH), 2.74-2.75 (m, 2H), 1.08 (s, 9H), 1.07-1.11 (m,

2H), 0.95-1.01 (m, 2H), 0.55 (t, *J* = 0.8 Hz, 3H)

tert-Butyl 5-hydroxypentylcarbamate¹⁶

H Boc N OH

Table 3 - Entry 2 - Substrate

¹H NMR (600 MHz, CDCl₃) δ 4.68 (s, 1H, NH), 3.64 (t, J = 6.0 Hz, 3H), 3.12 (br, 2H), 2.08–2.19 (m, 1H), 1.57–1.60 (m, 2H), 1.50–1.52 (m, 2H), 1.44 (s, 9H), 1.38–1.41 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 156.08, 79.06, 62.53, 40.36, 32.19, 29.79, 28.37, 22.87

tert–Butyl 2–hydroxycyclohexylcarbamate¹⁷

trans Table 3 - Entry 3 - Substrate

¹H NMR (400 MHz, CDCl₃) δ 4.61 (br s, 1H), 3.30 (br s, 3H), 1.95–2.05 (m, 2H), 1.68–1.70 (m, 2H), 1.45 (s, 9H), 1.12–1.30 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 157.12, 79.85, 75.13, 56.52, 34.08, 31.72, 28.31, 24.64, 24.00

tert-Butyl 4-hydroxypiperidine-1-carboxylate¹⁸

Table 3 - Entry 4 - Substrate

¹H NMR (600 MHz, CDCl₃) δ 3.80–3.88 (m, 3H), 3.03 (m, 2H), 1.83–1.88 (m, 2H), 1.67 (br s, 1H, OH), 1.46 (s, 9H), 1.39–1.54 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 154.80, 79.52, 67.71, 41.23, 34.14, 28.40

tert-Butyl 2-oxopiperidine-1-carboxylate¹⁹

Table 3 - Entry 5 - Substrate

¹H NMR (600 MHz, CDCl₃) δ 3.52–3.58 (m, 2H), 2.35–2.46 (m, 2H), 1.67–1.77 (m, 4H), 1.42 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 171.15, 152.45, 82.54, 46.12, 34.68, 27.79, 25.57, 20.28

tert-Butyl (S)-1-(methoxycarbonyl)ethylcarbamate²⁰

Table 3 - Entry 7 - Substrate

¹H NMR (400 MHz, CDCl₃) δ 5.05 (br, 1H), 4.32 (m, 1H), 3.75 (s, 3H), 1.45 (s, 9H), 1.38 (d, J = 6.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 173.80, 155.06, 79.77, 52.24, 49.10, 28.26, 18.59

tert-Butyl (S)-1-(cyclohexylcarbamoyl)-2-hydroxyethylcarbamate²¹

Table 3 - Entry 8 - Substrate

¹H NMR (300 MHz, CDCl₃) δ 6.72 (s, 1H, NH), 5.70 (s, 1H), 4.04–4.13 (m, 2H), 3.70–3.76 (m, 2H), 3.64 (s, 1H), 1.46 (s, 9H), 1.17–2.07 (m, 10H); ¹³C NMR (75 MHz, CDCl₃) δ 170.45, 156.33, 80.47, 62.85, 54.81, 54.76, 48.13, 32.68, 28.26, 25.43, 25.51

(S)-2-amino-N-cyclohexyl-3-hydroxypropanamide²²

Table 3 - Entry 8 - Product

¹H NMR (300 MHz, CDCl₃) δ 7.37–7.39 (br s, 1H), 3.72–3.82 (br, 3H), 3.43 (t, J = 4.8 Hz, 1H), 2.62 (br s, 4H), 1.13–2.05 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 172.63, 65.30, 55.86, 47.81, 32.98, 32.87, 25.46, 24.72

tert-Butyl 2-(1-(tert-butoxycarbonyl)-1H-imidazol-5-yl)ethylcarbamate²³

Table 3 - Entry 9 - Substrate

¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.14 (s, 1H), 5.02 (br s, 1H, NH), 3.43 (t, J = 6.3 Hz, 2H), 2.74 (t, J = 6.6 Hz, 2H), 1.61 (s, 9H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 155.89, 146.99, 141.20, 136.78, 113.65, 85.36, 79.04, 39.80, 28.37, 28.29, 27.86

tert-Butyl 2-(1H-imidazol-5-yl)ethylcarbamate²⁴

Table 3 - Entry 9 - Product

¹H NMR (400 MHz, CDCl₃) δ 11.07 (s, 1H), 7.53 (s, 1H), 6.74 (s, 1H), 5.35 (s, 1H, NH), 3.30 (s, 2H), 2.72 (s, 2H), 1.33 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 156.06, 134.72, 116.77, 99.80, 78.92, 40.20, 28.16, 27.24

tert-Butyl 2-(1-(tert-butoxycarbonyl)-1H-indol-3-yl)ethylcarbamate²⁵

Table 3 - Entry 10 - Substrate

¹H NMR (600 MHz, CDCl₃) δ 8.14 (d, J = 8.0 Hz, 1H), 7.52 (d, J = 7.8 Hz, 1H), 7.41 (s, 1H), 7.30 (t, J = 7.2 Hz, 1H), 7.21 (t, J = 7.2 Hz, 1H), 4.85 (br s, 1H, NH), 3.44 (s, 2H), 2.87 (s, 2H), 1.65 (s, 9H), 1.43 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 155.77, 149.49, 135.39, 130.29, 124.23, 122.92, 122.28, 118.77, 117.65, 115.08, 83.22, 78.90, 40.07, 29.50, 28.22, 27.99

tert-Butyl 2-(1H-indol-3-yl)ethylcarbamate²⁶

Table 3 - Entry 10 - Product

¹H NMR (600 MHz, CDCl₃) δ 8.08 (s, 1H), 7.61 (d, *J* = 7.8 Hz, 1H), 7.37 (d, *J* = 7.8 Hz, 1H), 7.20 (t, *J* = 7.2 Hz, 1H), 7.12 (t, *J* = 7.8 Hz, 1H), 7.03 (s, 1H), 4.62 (s, 1H), 3.47 (d, *J* = 6.0 Hz, 2H), 2.96 (t, *J* = 6.0 Hz, 2H), 1.44 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 156.06, 136.43, 127.37, 122.01, 119.30, 118.72, 112.99, 112.93, 111.19, 79.24, 41.07, 28.41, 25.81

(S)-tert-Butyl 2-(butyl-tert-Butoxycarbonylcarbamoyl)pyrrolidine-1-carboxylate

Boc 0 Boc

Table 3 - Entry 11 - Substrate

¹H NMR (600 MHz, CDCl₃) δ 5.18-5.22 (m, 1H), 3.58-3.75 (m, 3H), 3.42-3.50 (m, 1H), 2.32 (s, 1H), 1.86-1.95 (m, 3H), 1.56 (s, 5H), 1.54 (s, 4H), 1.47 (s, 4H), 1.40 (s, 5H), 1.27-1.36 (m, 4H), 0.91-0.96 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 175.73, 175.39, 154.10, 153.42, 152.79, 152.59, 82.73, 82.48, 78.90, 78.87, 61.01, 60.54, 46.65, 46.35, 44.26, 44.21, 30.91, 30.57, 30.40, 30.25, 28.18, 28.00, 27.69, 23.28, 27.72, 19.78, 19.73, 13.53, 13.50 (*cis/trans=*1:1); LRMS (ESI) [M+H]⁺ m/z 371.0; HRMS (ESI) for C₁₉H₃₄N₂O₅: Calcd for [M+H]⁺ m/z 371.2573, found 371.2579.

(S)-tert-Butyl 2-(butylcarbamoyl)pyrrolidine-1-carboxylate²⁷

Table 3 - Entry 11 - Product

¹H NMR (600 MHz, CDCl₃) δ 6.85 (s, 0.5H), 6.42 (s, 0.5H), 3.93-4.00 (m, 1H), 2.93-3.19 (m, 4H), 1.60-1.99 (m, 4H), 1.19 (s, 9H), 1.08-1.09 (m, 4H), 0.65 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.58, 171.55, 155.08, 154.11, 99.70, 79.59, 60.63, 59.77, 46.54, 38.51, 31.23, 31.19, 31.06, 30.72, 27.83, 24.02, 23.20, 19.48, 13.19 (*cis/trans=*1:1)

Selected NMR Spectra

tert-Butyl 2-(1H-imidazol-5-yl)ethylcarbamate ¹H NMR

tert-Butyl 2-(1H-imidazol-5-yl)ethylcarbamate ¹³C NMR

tert-Butyl 2-(1H-indol-3-yl)ethylcarbamate ¹H NMR

tert-Butyl 2-(1H-indol-3-yl)ethylcarbamate ¹³C NMR

(S)-*tert*-Butyl 2-(butyl-*tert*-Butoxycarbonylcarbamoyl)pyrrolidine-1-carboxylate ¹H NMR

(S)-*tert*-Butyl 2-(butyl-*tert*-Butoxycarbonylcarbamoyl)pyrrolidine-1-carboxylate ¹³C NMR

(S)-tert-Butyl 2-(butylcarbamoyl)pyrrolidine-1-carboxylate ¹H NMR

(S)-tert-Butyl 2-(butylcarbamoyl)pyrrolidine-1-carboxylate ¹³C NMR

References

- 1. Varala, R.; Nuvula, S.; Adapa, S. R. J. Org. Chem. 2006, 71, 8283-8286.
- 2. Kashima, C.; Tsuruoka, S.; Mizuhara, S. Tetrahedron 1998, 54, 14679-14688.
- 3. Sunitha, S.; Kanjilal, S.; Reddy, P. S.; Prasad, R. B. N. Tetrahedron Lett. 2008, 49, 2527-2532.
- 4. Katritzky, A. R.; Fali, C. N.; Li, J. Q.; Ager, D. J.; Prakash, I. Synth. Commun. 1997, 27, 1623-1630.
- 5. Hasan, I.; Marinelli, E. R.; Lin, L.-C. C.; Fowler, F. W.; Levy, A. B. J. Org. Chem. 1981, 46, 157-164.
- Kazzouli, S. E.; Koubachi, J.; Berteina-Raboin, S.; Mouaddib, A.; Guillaumet, G. Tetrahedron Lett. 2006, 47, 8575-8577.
- 7. Danheiser, R. L.; Brisbois, R. G.; Kowalczyk, J. J.; Miller, R. F. J. Am. Chem. Soc. 1990, 112, 3093-3100
- Moraczewski, A. L.; Banaszynski, L. A.; From, A. M.; White, C. E.; Smith, B. D. J. Org. Chem. 1998, 63, 7258-7262.
- 9. Chankeshwara, S. V.; Chakraborti, A. K. Org. Lett. 2006, 8, 3259-3262.
- 10. Vilaivan, T. Tetrahedron Lett. 2006, 47, 6739-6742.
- 11. Chankeshwara, S. V.; Chakraborti, A. K. Tetrahedron Lett. 2006, 47, 1087-1091.
- Suryakiran, N.; Prabhakar, P.; Reddy, T. S.; Srinivasulu, M.; Swamy, N. R.; Venkateswarlu, Y. J. Mol. Catal. A: Chem. 2007, 264, 40-43.
- 13. An, H.-Y.; Wang, T.-M.; Mohan, V.; Griffey, R. H.; Cook, P. D. *Tetrahedron* **1998**, *54*, 3999-4012.
- 14. Ramesh, C.; Mahender, G.; Ravindranath, N.; Das, B. Tetrahedron 2003, 59, 1049-1054.
- 15. Autelitano, F.; Labat-Alcaraz, M.-L.; Sobrio, F.; Goeldner, M.; Ilien, B. J. Labelled Compd. Radiopharm. **1996**, *38*, 567-578.
- 16. Masuda, M.; Jonkheijm, P.; Sijbesma, R. P.; Meijer, E. W. J. Am. Chem. Soc. 2003, 125, 15935-15940.
- 17. Govindaraju, T.; Kumar, V. A.; Ganesh, K. N. J. Org. Chem. 2004, 69, 1858-1865
- 18. Kreidler, B.; Baro, A.; Christoffers, J. Eur. J. Org. Chem. 2005, 5339-5348.

- 19. Harrison, T. J.; Dake, G. R. J. Org. Chem. 2005, 70, 10872-10874.
- Yuste, F.; Ortiz, B.; Carrasco, A.; Peralta, M.; Quintero, L.; Sánchez-Obregón, R.; Walls, F.; Ruano, J. L. G. *Tetrahedron: Asymmetry* 2000, *11*, 3079-3090.
- 21. Robles, J.; Pedroso, E.; Grandas, A. Tetrahedron Lett. 1991, 32, 4389-4392.
- 22. Schon, I.; Friss, J.; Kisfaludy, L. Acta Chim. Acad. Sci. Hungar 1978, 98, 215-223.
- 23. Shimasaki, Y.; Kiyota, H.; Sato, M.; Kuwahara, S. Tetrahedron 2006, 62, 9628-9634.
- 24. Jain, R.; Avramovitch, B.; Cohen, L. A. Tetrahedron 1998, 54, 3235-3242.
- 25. Jacquemard, U.; Bénéteau, V.; Lefoix, M.; Routier, S.; Mérour, J.-Y.; Coudert, G. *Tetrahedron* **2004**, *60*, 10039-10047.
- 26. Espejo, V. R.; Rainier, J. D. J. Am. Chem. Soc. 2008, 130, 12894-12895.
- 27. Gryko, D.; Lipiński, R. Eur. J. Org. Chem. 2006, 3864-3876.