G-Quadruplex Recognition by Macrocyclic Hexaoxazole (60TD) Dimer: Greater Selectivity Than Monomer

Keisuke Iida, ${ }^{a}$ Masayuki Tera, ${ }^{a}$ Takatsugu Hirokawa, ${ }^{b}$ Kazuo Shin-ya ${ }^{c}$ and Kazuo Nagasawa* ${ }^{a}$
a: Department of Biotechnology and Life Science Faculty of Technology.
Tokyo University of Agriculture and Technology (TUAT)
Koganei, Tokyo 184-8588 (Japan)
E-mail:knaga@cc.tuat.ac.jp; Fax: +81-42-388-7295;
Tel; +81-42-388-7295
b: Computational Biology Research Center
National Institute of Advanced Industrial Science and Technology
Koto-ku, Tokyo 135-0064 (Japan)
c: Biological Information Research Center
National Institute of Advanced Industrial Science and Technology
Koto-ku, Tokyo 135-0064 (Japan)

Table of Contents:

1. Synthesis S2
2. Synthesis of 6OTD dimers and LSA2-6OTD (3 and 9-11) S3-S7
3. Copies of NMR spectra of compounds (6-14) S8-S21
4. Molecular dynamics simulation experiment for 9, 10 and 11 S22
5. FRET melting assay S23
6. PCR stop assay S24-S25
7. ESI mass spectrometry S26-S27

1. Synthesis

Flash chromatography was performed on Silica gel 60 (spherical, particle size $0.040 \sim 0.100 \mu \mathrm{~m}$; Kanto). Optical rotations were measured on a JASCO DIP 1000 polarimeter, using the sodium D line. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on JEOL JNM-ECX 400. The spectra are referenced internally according to residual solvent signals of $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}\right.$ NMR; $\left.\delta=7.26 \mathrm{ppm},{ }^{13} \mathrm{C} \mathrm{NMR} ; \delta=77.0 \mathrm{ppm}\right),\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\left({ }^{1} \mathrm{H}\right.$ NMR; $\delta=$ $2.50 \mathrm{ppm},{ }^{13} \mathrm{C}$ NMR; $\delta=39.5 \mathrm{ppm}$). Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift (δ, ppm), multiplicity (s , singlet; d, doublet; t , triplet; m , multiplet; br, broad), integration, coupling constant (Hz). Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (δ, ppm). Mass spectra were recorded on JEOL JMS-T100X spectrometer with ESI-MS mode using methanol as solvent. Fluorescence was scanned with a phosphorimager (Typhoon 8600, Molecular Dynamics). All oligonucleotides purified were obtained from Sigma Genosys and dissolved in double-distilled water to be used without further purification. Fluorescence resonance energy transfer (FRET) melting assay were made with an excitation wavelength of 470 nm and a detection wavelength of 530 nm using a LightCycler® ST300 System RT-PCR machine (Roche).
2. Synthesis of 6OTD dimers

6OTD dimer 6

To a solution of $4(400 \mathrm{mg}, 458 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, was added TFA $(1 \mathrm{~mL})$ and the mixture was stirred for 2 h . To the reaction mixture was added Amberlyst ${ }^{\circledR}$ A-26(OH) ionexchange resin. The resulting mixture was filtered through a cotton with MeOH , and the filtrates were concentrated in vacuo to give amine as a white solid. To the crude solution of amine in acetonitrile-dioxane $=1: 1(60 \mathrm{~mL})$, was added DIPEA $(390 \mu \mathrm{~L}, 2.3 \mathrm{mmol})$, and triphosgene $(20 \mathrm{mg}, 69 \mu \mathrm{~mol})$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$. After stirring at rt for 18 h , then evaporated. The residue was added 0.1 N HCl and $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3}. The organic layer was dried over MgSO_{4}, filtrated and concentrated in vacuo. The residue was purified on silica gel $\left(\mathrm{CHCl}_{3}\right.$ - $\mathrm{AcOEt}-\mathrm{MeOH}=3: 2: 1$) to give $6(100 \mathrm{mg}, 64 \mu \mathrm{~mol} 31 \%)$.

Spectral data for 6: $[\alpha]^{25}{ }_{\mathrm{D}}=15.0$ (c 1.4, $\mathrm{CHCl}_{3}-\mathrm{MeOH}=1: 1$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 9.20-9.05(\mathrm{~m}, 8 \mathrm{H}), 8.97-8.87(\mathrm{~m}, 4 \mathrm{H}), 8.46(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.29(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{t}, J=5.5 \mathrm{~Hz}$, $2 \mathrm{H}), 5.46-5.35(\mathrm{~m}, 4 \mathrm{H}), 4.25(\mathrm{dd}, J=4.1,10.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{dd}, J=3.2,10.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.95-2.75(\mathrm{~m}, 4 \mathrm{H})$, 2.12-1.82 (m, 4H), 1.45-1.16 (m, 4H), 1.10-0.75 (m, 46H), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.7,164.0,159.9$, $158.6,156.0,155.9,154.7,154.6,140.9,139.3,139.2,138.6,138.5,136.7,130.8,129.7,129.5,77.2,64.9,50.2$, $47.7,40.0,34.6,29.6,29.4,22.0,17.7,11.7$; HRMS (ESI, M+Na) calcd for $\mathrm{C}_{73} \mathrm{H}_{85} \mathrm{~N}_{18} \mathrm{O}_{19} \mathrm{Na} 1596.5675$, found 1596.5711.

6OTD dimer 7

To a solution of $4(200 \mathrm{mg}, 229 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(19 \mathrm{~mL})$, was added TFA $(1 \mathrm{~mL})$ and stirred for 2 h .

To the reaction mixture was added Amberlyst ${ }^{\circledR}$ A- $26(\mathrm{OH})$ ionexchange resin. The resulting mixture was filtered through a cotton with MeOH , and the filtrates were concentrated in vacuo to give amine as a white solid. The crude amine was dissolved in acetonitrile solution (50 mL), was added DIPEA ($389 \mu \mathrm{~L}, 2.3 \mathrm{mmol}$), and dipentafluorophenyl adipic diester ($44 \mathrm{mg}, 92 \mu \mathrm{~mol}$). The reaction mixture was refluxed for 3 h at $100^{\circ} \mathrm{C}$, then evaporated. The residue was taken up in 0.1 N HCl and $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3}. The organic layer was dried over MgSO_{4}, filtrated and concentrated in vacuo. The residue was purified on silica gel $\left(\mathrm{CHCl}_{3}-\mathrm{AcOEt}-\mathrm{MeOH}=3: 2: 1\right)$ to give $7(102 \mathrm{mg}, 62 \mu \mathrm{~mol} 67 \%)$.

Spectral data for $7:[\alpha]^{25}=5.9\left(c 2.1, \mathrm{CHCl}_{3}-\mathrm{MeOH}=1: 1\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.49(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.35-8.09(\mathrm{~m}, 12 \mathrm{H}), 6.12-5.98(\mathrm{br}, 2 \mathrm{H}), 5.51-5.38(\mathrm{~m}, 4 \mathrm{H}), 4.27(\mathrm{dd}, J=$ $4.6,9.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{dd}, J=6.8,9.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.32-3.09(\mathrm{~m}, 4 \mathrm{H}), 2.25-1.87(\mathrm{~m}, 8 \mathrm{H}), 1.76-1.48(\mathrm{~m}, 8 \mathrm{H})$, $1.30-0.83(\mathrm{~m}, 46 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,164.6,164.0,160.0,159.9,156.0,154.8,154.6,141.0$, $140.9,139.3,139.1,138.5,138.4,136.8,131.0,130.9,129.8,129.6,100.5,77.2,64.9,50.3,47.7,39.2,36.0$, 34.7, 28.7, 24.9, 17.9, 17.8, 17.7, 11.7; HRMS (ESI, M+Na) calcd for $\mathrm{C}_{78} \mathrm{H}_{92} \mathrm{~N}_{18} \mathrm{O}_{20} \mathrm{Na} 1679.6172$, found 1679.6123.

6OTD dimer 8

To a solution of $4(200 \mathrm{mg}, 229 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(19 \mathrm{~mL})$, was added TFA $(1 \mathrm{~mL})$ and the mixture was stirred for 2 h . To the reaction mixture was added Amberlyst ${ }^{\circledR}$ A-26(OH) ionexchange resin. The resulting mixture was filtered through a cotton with MeOH , and the filtrates were concentrated in vacuo to give amine as a white solid. The crude amine was dissolved in acetonitrile solution (50 mL) , was added DIPEA ($389 \mu \mathrm{~L}, 2.3$ mmol), and dipentafluorophenyl 1,12-dodecanedicarboxylate ($54 \mathrm{mg}, 92 \mu \mathrm{~mol}$). The reaction mixture was refluxed for 3 h at $100^{\circ} \mathrm{C}$, then evaporated. The residue was taken up in 0.1 N HCl and $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3}. The organic layer was dried over MgSO_{4}, filtrated and concentrated in vacuo. The residue was purified on silica gel $\left(\mathrm{CHCl}_{3}-\mathrm{AcOEt}-\mathrm{MeOH}=3: 2: 1\right)$ to give $8(82 \mathrm{mg}, 46 \mu \mathrm{~mol} 50 \%)$.

Spectral data for 8: $[\alpha]^{25}{ }_{\mathrm{D}}=31.9$ (c 1.0, $\mathrm{CHCl}_{3}-\mathrm{MeOH}=1: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.57(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.50(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.26-8.16(\mathrm{~m}, 12 \mathrm{H}), 5.78-5.68(\mathrm{br}, 2 \mathrm{H}), 5.50-5.36(\mathrm{~m}, 4 \mathrm{H}), 4.27(\mathrm{dd}, J=$ $4.6,9.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{dd}, J=7.5,9.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.32-3.06(\mathrm{~m}, 4 \mathrm{H}), 2.40-1.40(\mathrm{~m}, 8 \mathrm{H}), 1.64-1.37(\mathrm{~m}, 8 \mathrm{H})$, $1.37-1.15(\mathrm{~m}, 20 \mathrm{H}), 1.09-0.80(\mathrm{~m}, 42 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.7,164.0,159.8,156.0,154.6,140.9$, 28.8, 25.8, 22.0, 17.8, 17.7, 11.7; HRMS (ESI, M+Na) calcd for $\mathrm{C}_{86} \mathrm{H}_{108} \mathrm{~N}_{18} \mathrm{O}_{20} \mathrm{Na}$ 1791.7424, found 1791.7413.

6OTD dimer 9

To a solution of $\mathbf{6}(160 \mathrm{mg}, 102 \mu \mathrm{~mol})$ in THF (20 mL), was added TBAF ($266 \mathrm{mg}, 1.0 \mathrm{mmol}$) and the mixture was stirred for 5 min . To the reaction mixture was added $\mathrm{Ac}_{2} \mathrm{O}(1 \mathrm{~mL})$. After stirring at rt for 1 h , then evaporated. The residue was added 0.1 N HCl and $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3}. The organic layer was dried over MgSO_{4}, filtrated and concentrated in vacuo. The residue was purified on silica gel $\left(\mathrm{CHCl}_{3}\right.$ - $\left.\mathrm{AcOEt}-\mathrm{MeOH}=3: 2: 2\right)$ to give $9(40 \mathrm{mg}, 30 \mu \mathrm{~mol} 29 \%)$.

Spectral data for 9: $[\alpha]^{25}{ }_{\mathrm{D}}=25.0\left(c 0.3, \mathrm{CHCl}_{3}-\mathrm{MeOH}=1: 1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~d}, \mathrm{~J}=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 8.54 (d, J = 7.8 Hz, 2H), 8.28-8.18 (m, 12H), 5.64-5.57 (m, 2H), 5.45-5.36 (m, 2H), 4.80-4.69 (br, 2 H), 4.64 (dd, $J=4.1,11.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{dd}, J=3.2,11.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.23-3.98(\mathrm{~m}, 4 \mathrm{H}), 2.10-1.80(\mathrm{~m}, 14 \mathrm{H})$, $1.58-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.22(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,164.8,161.7,160.0,159.9,158.3$, $156.0,155.8,154.7,141.1,141.0,139.8,139.2,138.7,138.6,136.8,136.6,130.9,130.8,129.8,129.6,77.2$, 63.8, 47.7, 40.0, 34.7, 29.4, 22.0, 20.8; HRMS (ESI, M+Na) calcd for $\mathrm{C}_{59} \mathrm{H}_{48} \mathrm{~N}_{18} \mathrm{O}_{21} \mathrm{Na}$ 1367.3139, found 1367.3165 .

6OTD dimer 10

To a solution of $7(102 \mathrm{mg}, 62 \mu \mathrm{~mol})$ in THF $(10 \mathrm{~mL})$, was added TBAF $(160 \mathrm{mg}, 615 \mu \mathrm{~mol})$ and the
mixture was stirred for 30 min . To the reaction mixture was added $\mathrm{Ac}_{2} \mathrm{O}(5 \mathrm{~mL})$. After stirring at rt for 30 min , then evaporated. The residue was added $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3}. The organic layer was dried over MgSO_{4}, filtrated and concentrated in vacuo. The residue was purified on silica gel ($\mathrm{CHCl}_{3}-\mathrm{AcOEt}-\mathrm{MeOH}=3: 2: 2$) to give $\mathbf{1 0}$ ($50 \mathrm{mg}, 35 \mu \mathrm{~mol} 57 \%$).

Spectral data for 10: $[\alpha]^{25}{ }_{\mathrm{D}}=14.1\left(c 0.3, \mathrm{CHCl}_{3}-\mathrm{MeOH}=1: 1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~d}, \mathrm{~J}$ $=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.58-8.49(\mathrm{br}, 2 \mathrm{H}), 8.29-8.18(\mathrm{~m}, 12 \mathrm{H}), 6.12-5.92(\mathrm{br}, 2 \mathrm{H}), 5.63-5.58(\mathrm{~m}, 2 \mathrm{H}), 5.47-5.37(\mathrm{~m}$, $2 \mathrm{H}), 4.63(\mathrm{dd}, J=4.0,11.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{dd}, J=3.4,11.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.30-3.10(\mathrm{~m}, 4 \mathrm{H}), 2.20-1.90(\mathrm{~m}, 14 \mathrm{H})$, 1.67-1.38 (m, 8H), 1.33-1.20 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d6) $\delta 171.7,170.1,164.5,161.8,159.0$, $158.7,155.6,155.5,154.6,154.5,142.7,142.5,142.3,141.9,141.2,136.0,135.8,129.8,129.7,128.6,128.4$, $69.8,63.1,56.0,47.5,38.1,35.1,33.3 .28 .7,24.9,21.2,20.4,18.6$; HRMS (ESI, M+Na) calcd for $\mathrm{C}_{64} \mathrm{H}_{56} \mathrm{~N}_{18} \mathrm{O}_{22} \mathrm{Na}$ 1451.3714, found 1451.3720.

6OTD dimer 11

To a solution of $8(50 \mathrm{mg}, 28 \mu \mathrm{~mol})$ in THF (10 mL), was added TBAF ($74 \mathrm{mg}, 282 \mu \mathrm{~mol}$) and the mixture was stirred for 5 min . To the reaction mixture was added $\mathrm{Ac}_{2} \mathrm{O}(1 \mathrm{~mL})$ and the mixture was stirred at rt for 1 h , then evaporated. The residue was added $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3}. The organic layer was dried over MgSO_{4}, filtrated and concentrated in vacuo. The residue was purified on silica gel (CHCl_{3}-AcOEt-MeOH = 3:2:2) to give $\mathbf{1 1}$ ($27 \mathrm{mg}, 17 \mu \mathrm{~mol} 61 \%$).

Spectral data for 11: $[\alpha]^{25}{ }_{\mathrm{D}}=82.6$ (c 1.4, $\mathrm{CHCl}_{3}-\mathrm{MeOH}=1: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~d}, \mathrm{~J}$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.55(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.26-8.18(\mathrm{~m}, 12 \mathrm{H}), 5.74-5.64(\mathrm{br}, 2 \mathrm{H}), 5.63-5.56(\mathrm{~m}, 2 \mathrm{H}), 5.49-5.38$ $(\mathrm{m}, 2 \mathrm{H}), 4.64(\mathrm{dd}, J=3.9,11.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{dd}, J=3.5,11.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.32-3.09(\mathrm{~m}, 4 \mathrm{H}), 2.20-1.90(\mathrm{~m}, 14 \mathrm{H})$, $1.70-1.38(\mathrm{~m}, 8 \mathrm{H}), 1.37-1.14(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.2,170.6,164.7,161.6,160.0,159.9$, 156.0, 155.9, 154.7, 154.6, 141.1, 140.9, 139.8, 139.2, 138.5, 138.4, 136.9, 136.6, 131.0, 130.9, 129.9, 129.6, $77.2,63.8,47.7,39.2,36.8,34.6,29.5,29.4,29.3,28.9,25.8,22.0,20.8$; HRMS (ESI, M+Na) calcd for $\mathrm{C}_{72} \mathrm{H}_{72} \mathrm{~N}_{18} \mathrm{O}_{22} \mathrm{Na}$ 1563.4966, found 1563.4941.

To a solution of $4(41 \mathrm{mg}, 46 \mu \mathrm{~mol})$ in acetonitrile- $12 \mathrm{~N} \mathrm{HCl}=11: 1$ solution $(2 \mathrm{~mL})$ and the mixture was stirred for 0.5 h , then evaporated. The residue was dissolved in pyridine $(10 \mathrm{~mL})$, was added $\mathrm{Ac}_{2} \mathrm{O}(3 \mathrm{~mL})$ and the reaction mixture was stirred at rt. After stirring at $70{ }^{\circ} \mathrm{C}$ for 1 h , then evaporated. The residue was purified on silica gel $\left(\mathrm{CHCl}_{3}\right.$ - $\mathrm{AcOEt}-\mathrm{MeOH}=3: 2: 1$) to give 3 ($30 \mathrm{mg}, 43 \mu \mathrm{~mol} 93 \%$).

Spectral data for 3: $[\alpha]^{25}{ }_{\mathrm{D}}=5.71\left(c 1.0, \mathrm{CHCl}_{3}-\mathrm{MeOH}=1: 1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.70-8.50$ $(\mathrm{m}, 2 \mathrm{H}), 8.28-8.18(\mathrm{~m}, 6 \mathrm{H}), 5.88-5.78(\mathrm{br}, 1 \mathrm{H}), 5.63-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.48-5.40(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=4.0,11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J=3.4,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.20-1.90(\mathrm{~m}, 8 \mathrm{H}), 1.62-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.20$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,170.2,164.7,161.7,160.0,156.0,155.8,154.7,154.6,141.2$, $141.1,140.9,140.8,139.8$. 139.7. 139.3, 139.2, 138.5, 136.8. 136.6, 130.9, 130.8, 129.8, 129.5, 63.8, 47.7, 39.3, 34.5, 28.7, 23.3, 21.9, 20.7; HRMS (ESI, M+Na) calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{9} \mathrm{O}_{11} \mathrm{Na} 724.1728$, found 724.1721
3. Copies of NMR spectra of compounds 6-11 and 3.

4. Molecular dynamics simulation experiment for $\mathbf{9 , 1 0}$ and $\mathbf{1 1}$

Initial structures of $\mathbf{9}, \mathbf{1 0}$ and $\mathbf{1 1}$ were constructed using the Molecular Builder module in Maestro (Schrödinger LLC.). Molecular dynamics simulation was carried out using AMBER9 with the gaff (for compounds) and ff99SB (for water) force field. The compound was surrounded with a $20 \AA$ layer of TIP3PBOX water molecules. After minimization, heating and equilibration, the production phase was carried out at 300 K for 10 ns , using the NTV ensemble and PME algorithm. All simulations were performed on a IBM BlueGene/L supercomputer at the Computational Biology Research Center (CBRC).

Fig. S1 Telomeric G-quadruplex structure and distribution of the intra-distance between the center of 6OTDs. Distribution of the intra-distance between the center of 6OTDs in three 6OTD dimers, $\mathbf{9}$ (dash line), $\mathbf{1 0}$ (solid line) and $\mathbf{1 1}$ (dotted line) derived from MD simulation in water. Ball and Stick representation of compounds on distribution diagram are the average conformations of $\mathbf{9}, \mathbf{1 0}$ and $\mathbf{1 1}$ in each characteristic distribution ranges of distance: $5-10 \AA$ for $\mathbf{9}, 10-20 \AA$ for $\mathbf{1 0}$ and $20-30 \AA$ for $\mathbf{1 1}$.

5. FRET melting assay

FRET melting assays were performed as reported methods. ${ }^{\text {S1 }}$ Oligonucleotides were initially dissolved as a $100 \mu \mathrm{M}$ stock solution in MilliQ water; further dilutions were carried out in 60 mM potassium cacodylate buffer, pH 7.4 and FRET experiments were carried out with a 200 nM oligonucleotide solution. The dual fluorescently labeled oligonucleotides Flu-ss-telo21 5 '-FAM-[GGG TTA GGG TTA GGG TTA GGG]-TAMRA-3' and Flu-ds-26mer 5^{\prime} '-FAM-[(TA $)_{2}$ GC(TA $\left.)_{2} \mathrm{~T}_{6}(\mathrm{TA})_{2} \mathrm{GC}(\mathrm{TA})_{2}\right]$-TAMRA-3' were used in this protocol. The donor fluorophore was 6-carboxyfluorescein, FAM, and the acceptor fluorophore was 6-carboxytetramethylrhodamine, TAMRA. Dual-labeled DNA was annealed at a concentration of 400 nM by heating at $94{ }^{\circ} \mathrm{C}$ for 10 min followed by cooling to rt . 96 -well plates were prepared by addition of $10 \mu \mathrm{~L}$ of the annealed DNA solution to each well, followed by $10 \mu \mathrm{~L}$ of a solution of the respective molecule at an appropriate concentration. Fluorescence melting curves were determined in a LightCycler® ST300 System RT-PCR machine (Roche), using a total reaction volume of $20 \mu \mathrm{~L}$.

Fig. S2 ΔT_{m} of $0.2 \mu \mathrm{M}$ ss-telo21 (A) or $0.2 \mu \mathrm{M}$ Flu-ds-26mer (B) in the presence of ligands $\mathbf{3}$ and $\mathbf{9 - 1 1}$. monomer 3, \square : dimer $\mathbf{9}, \triangle$: dimer 10, \diamond : dimer 11)

S1) S. Muller, G. D. Pantos, R. Rodriguez and S. Balasubramanian, Chem. Commun., 2009, 80.

6. PCR stop assays

PCR stop assays were performed as previously reported. Oligonucleotides ss-telo24 and ss-telo24-mut, the complementary sequence of ss-telo24 d[TCT CGT CTT CCC TAA] were used. The chain-extension reaction was performed in $1 \times$ PCR buffer containing 0.2 mM dNTP, 5 U Taq polymerase, 7.5 pmol oligonucleotides and various concentrations of $\mathbf{3}$ and $\mathbf{9 - 1 1}$. The mixtures were incubated in a thermocycler under the following conditions: $94^{\circ} \mathrm{C}$ for 2 min , followed by 30 cycles of $94{ }^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 47^{\circ} \mathrm{C}$ for 30 s , and 72 ${ }^{\circ} \mathrm{C}$ for 30 s . Amplified PCR products were resolved on 12% native polyacrylamide gels in 0.5 xTBE buffer and stained with ethidium bromide. The IC_{50} values were calculated based on the fluorescence intensity scanned with a phosphorimager (Typhoon 8600, Molecular Dynamics).

Fig. S3 PCR stop assay of $\mathbf{3}$ and $\mathbf{9 - 1 1}$. Top panel presented the PCR product; a) $\mathbf{3}$-ss-telo24, b) $\mathbf{9}$-ss-telo24, c) 10-ss-telo24,
d) 11-ss-telo24, e) 3-ss-telo24-mut, f) 9-ss-telo24-mut,
g) 10-ss-telo24-mut, h) 11-ss-telo24-mut. Lower panel presented the quantification of the fluorescent intensity by using phosphorimager; i) ($\mathbf{3}$ and 10)-ss-telo24, j) ($\mathbf{9}$ and 11)-ss-telo24, k) ($\mathbf{3}$ and 9-11)-ss-telo24-mut. Results represent means +/-SD of three independent experiments. PCR inhibitory activities were calculated by the following equation. (intensity of the band in the presence of ligands) / (intensity of positive control band).
7. ESI mass spectrometry

ESI mass spectra were obtained in the negative-ion mode with JEOL JMS-T100X spectrometer. The direct-infusion flow rate was $5.0 \mu \mathrm{~L} \mathrm{~min}^{-1}$. All experiments were performed in $20 \mathrm{mM} \mathrm{NH} 4 \mathrm{OAc}^{\mathrm{O}}$ containing $10 \mu \mathrm{M}$ of ss-telo 24 and $40 \mu \mathrm{M}$ of $\mathbf{3}$ and $\mathbf{9 - 1 1}$. 15% methanol was added just before injection.

Exact mass of ss-telo24: 7571.27
Exact mass of 3: 701.18
[1:2] ${ }^{5-}$ calcd for 1793.37 found 1793.41
[1:1] ${ }^{5-}$ calcd for 1653.49 found 1653.76
[1:3] ${ }^{6-}$ calcd for 1611.47 found 1611.91
[1:2] ${ }^{6-}$ calcd for 1494.61 found 1494.90
[1:1] ${ }^{6-}$ calcd for 1377.74 found 1378.31
[1:2] ${ }^{7-}$ calcd for 1280.95 found 1281.51
[1:1] ${ }^{7-}$ calcd for 1180.78 found 1181.45

Exact mass of ss-telo24: 7571.27
Exact mass of 10: 1428.38
[1:1] ${ }^{5-}$ calcd for 1798.93 found 1798.57
[1:1] ${ }^{6-}$ calcd for 1498.94 found 1499.21
[1:1] ${ }^{7-}$ calcd for 1284.66 found 1285.21

Exact mass of ss-telo24: 7571.27
Exact mass of 9: 1344.32
(1:1) $)^{5-}$ calcd for 1782.12 found 1781.73
$(1: 2)^{6-}$ calcd for 1708.99 found 1712.70
$(1: 1)^{6-}$ calcd for 1484.93 found 1485.29
$(1: 2)^{7-}$ calcd for 1464.70 found 1468.16
(1:1) $)^{7-}$ calcd for 1272.66 found 1273.16

Exact mass of ss-telo24: 7571.27
Exact mass of 11: 1540.51
$(1: 1)^{6-}$ calcd for 1517.63 found 1518.19
$(1: 1)^{7-}$ calcd for 1300.68 found 1301.12

Fig. S4 ESI mass spectra of $10 \mu \mathrm{M}$ ss-telo 24 with $40 \mu \mathrm{M}$ ligand (A) 3, (B) $\mathbf{9}$, (C) 10, (D) $\mathbf{1 1}$

Telomestatin (TMS) and its derivatives 6OTDs have been reported to bind to telomeric G-quadruplex with two molecules of them and strongly stabilize the structure. Based on a docking study of TMS and telomeric G-quadruplex, an end-stacked binding mode was proposed, i.e., interaction of the terminal G-quartet flat surfaces through $\pi-\pi$ stacking. ${ }^{\text {S2 }}$ We consider that 6OTD interact to telomeric G-quadruplex as the similar binding mode with TMS. From the above ESI-mass spectra, 6OTD dimers $\mathbf{9 - 1 1}$ were revealed to form the complex with ss-telo24 in a ratio with $1: 1$. We believe these interactions involve at least two types of complexations, i.e., type-A complex (one 6OTD moiety in dimer responsible for the interaction with ss-telo24) and type-B complex (both of two 6OTD moieties in dimer responsible for the interaction with ss-telo24), and one of these possible complexations for each types was shown in Fig. S5. In cases of dimers 9 and 11, the type-A complex is thought to form predominantly because of the steric hindrances of their inappropriate length of the linkers. This speculation was supported by the instability of their complex with ss-telo24 compared to the monomer 3 ($2: 1$ complexation with DNA), which were shown from the FRET melting analysis and PCR stop assay (Table 1). Actually, the dimer 9, which has "less hinder linker" among the three dimers, forms 2:1 complex with DNA, although as a minor complexation (Fig. S4). This observation also supports the possibility of type-A complex.

On the contrary, dimer $\mathbf{1 0}$ is thought to form type-B complex with ss-telo24, since it stabilize the G-q structure more potently than the other dimers $\mathbf{9}$ and $\mathbf{1 1}$ (Table 1). However, stabilizing ability of $\mathbf{1 0}$ was the same level as the monomer 3. We believe dimer 10 forms the complex in a mixture of type-A and B. Molecular dynamics result (Fig. S1) shows that dimer 10 has some intra-distances between the center of 60TD, which may support this possibility.

Fig. S5 Possible binding modes of 6OTD dimers 9-11 with G-quadruplex.

S2) M.-Y. Kim, H. Vankayalapati, K. Shin-ya, K. Wierzba, and L. H. Hurley, J. Am. Chem. Soc., 2002, 124, 2098.

