Unusual partner radical trimer formation in a host complex of cucurbit[8]uril, ruthenium(II) tris-bipyridine linked phenol and methylviologen

Shiguo Sun, ${ }^{[a, b]}$ Samir Andersson, ${ }^{[a]}$ Rong Zhang, ${ }^{[b]}$ and Licheng Sun ${ }^{*[a]}$
${ }^{a}$ School of Chemical Science and Engineering, Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, 10044 Stockholm, Sweden.
${ }^{b}$ State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Device, Dalian University of Technology (DUT), ZhongShan Road 158-40, 116012 Dalian, China.

Supporting information

Synthesis

4-(Chloromethyl)phenyl acetate. This compound was prepared according to a literature procedure [Taylor L. D., Grasshoff J. M., Pluhar M. J. Org. Chem. 1978, 43, 1197]. ${ }^{1}$ H NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 2.31$ ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COOPh}-\right), 4.57$ (s, 2H, $-\mathrm{PhCH}_{2} \mathrm{Cl}$), $7.10(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H})$.

4-(ethyl-phenol)-4'-methyl-2,2'-bipyridine. To a solution of 4,4'-dimethyl-2,2'bipyridine ($2.5 \mathrm{~g}, 13.5 \mathrm{mmol}$) in THF (50 mL) was added a solution of freshly prepared LDA (2 mL of diisopropylamine, 8.1 mL of 1.6 M n -butyllithium in 10 mL of THF maintained at $0^{\circ} \mathrm{C}$) in drop wise under N_{2} at $0{ }^{\circ} \mathrm{C}$, the resulting dark brown solution was stirred for 1h, 4-(Chloromethyl)phenyl acetate ($20 \mathrm{mmol}, 3.69 \mathrm{~g}$) was added quickly, then the ice bath was removed and the solution was allowed to warm to room temperature. After 3 h , the reaction was quenched by the addition of 100 mL of phosphate buffer (pH $=7.0$). The solution was extracted with $3 \times 50 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to a yellow residual oil. The crude product was purified by column chromatography on silica gel, eluting first with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by 10% acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$, yielded 3.1 g of the desired compound (82.5%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.75-2.84\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 6.73-6.75(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$,

Ph-H), 6.89-6.92 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.03-7.05(\mathrm{dd}, J=4.8 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}$, bpyH), 7.12-7.13 (dd, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$, bpy-H), 8.18 (s, 2H, bpy-H), 8.49-8.53 (m, 2H, bpy-H).
[Ru(bpy)2(4-(4-ethyl-phenol)-4'-methyl-2,2'-bipyridine)](Cl) $\mathbf{2}_{2}$ (1). Compounds 4-(4-ethyl-phenol)-4'-methyl-2,2'-bipyridine ($87 \mathrm{mg}, 0.3 \mathrm{mmol}$) and cis-Ru(bpy) $)_{2} \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ($141 \mathrm{mg}, 0.27 \mathrm{mmol}$) were added to the solution of 40 ml of 50% ethanol/water $(\mathrm{v} / \mathrm{v})$. The reaction flask was wrapped with aluminum foil and refluxed under N_{2} atmosphere for 4 h , an orange brown solution was obtained. After removing the solvent by rotary evaporation, the crude product was purified by column chromatography on silica gel (eluent $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} /$ saturated aqueous $\mathrm{KNO}_{3}, 10 / 2 / 1$, v/v/v). Excess KNO_{3} and the solvent were removed; the residue was re-dissolved in water and precipitated with a saturated solution of $\mathrm{NH}_{4} \mathrm{PF}_{6}$. The precipitate was filtered and dried in vacuum to afford the compound as $\mathrm{PF}_{6}{ }^{-}$salt. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$), $\delta 2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.87(\mathrm{t}, \mathrm{J}=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.03 (t, 2H, $J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}$), $6.66-6.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H})$, 6.83-6.85 (d, J = 8.4 Hz, 2H, Ph-H), 7.07-7.09 (m, 1H, bpy'-H), 7.20-7.22 (m, 1H, bpy'H), 7.35-7.39 (m, 2H, bpy-H), 7.42-7.46 (m, 2H, bpy-H), 7.48-7.52 (m, 2H, bpy'-H), 7.66-7.76 (m, 4H, bpy-H), 8.00-8.09 (m, 4H, bpy-H), 8.29 (s, 1H, bpy'-H), 8.37 (s, 1H, $\mathrm{bpy}^{\prime}-\mathrm{H}$), 8.56-8.60 (m, 4H, bpy-H). ESI-MS (m/z (\%)): 849.0 (30) [M-PF $\left.{ }_{6}\right]^{+}$, 352.0 (100) $\left[M-2 \mathrm{PF}_{6}{ }^{-}\right]^{2+}$; HRMS (ESI, m / z): $\left[M-\mathrm{PF}_{6}{ }^{-}\right]^{+}$calcd for $\mathrm{C}_{39} \mathrm{H}_{34} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{OPRu}, 848.7616$; found, 848.7651, $\left[M-2 \mathrm{PF}_{6}{ }^{-}\right]^{2+}$ calcd for $\mathrm{C}_{39} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{ORu}, 351.8984$, found, 351.8995. Because $\mathrm{CB}[8]$ is completely insoluble in organic solvents, so the $\mathrm{PF}_{6}{ }^{-}$salt was metathesized to the chloride salt for aqueous solution by using tetra-n-butylammonium chloride ($\mathrm{Bu}_{4} \mathrm{NCl}$) dissolved in a minimal amount ($<10 \mathrm{ml}$) of acetone.

S1. Cyclic voltammograms of the $\mathrm{Ru}(\mathrm{bpy})_{3}$ complex (left, solid line), phenol-bipyridine ligand (left,
 Scan rate: $\mathrm{v}=100 \mathrm{mV} \mathrm{s}^{-1}$.

S2. ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of complex 1 only (a), addition of 1 equiv of MV^{2+} (b), addition of 1 equiv of $\mathrm{CB}[8]$ (c).

S3. Part of the MS spectrum for the 1:1:1 inclusion complex (bottom) and simulation (top).

S4. The dependence of the absorbance of $\mathbf{1}(5 \mu \mathrm{M})$ in aqueous solution at 460 nm on the increasing equiv of $1: 1 \mathrm{MV}^{2+} / \mathrm{CB}[8]$

S5. ${ }^{1} \mathrm{H}$ NMR spectra to show (top) the dynamic inclusion of complex $\mathbf{1}$ into the $\mathrm{MV}^{2+} / \mathrm{CB}[8]$ complex as 0:1.0:1.0 (a), 0.5:1.0:1.0 (b), 1.0:1.0:1.0 (c) and 2.0:1.0:1.0 (d); and (down) the focus on the shift of the $\mathrm{CB}[8]$ peaks showing the dynamic interaction.

S6. Absorption spectra of complex $1(10 \mu \mathrm{M}), \mathrm{CB}[8](10 \mu \mathrm{M}), \mathrm{MV}^{2+}(10 \mu \mathrm{M})$ and $100 \mu \mathrm{M}$ TEOA, before (black), after 20 min (blue), after 40 min (red), and after 60 min (pink) light irradiation, respectively.

S7. Normalized absorption spectra of $\mathrm{Ru}(\mathrm{bpy})_{3}{ }^{2+}(10 \mu \mathrm{M}), \mathrm{CB}[8](10 \mu \mathrm{M}), \mathrm{MV}^{2+}(10 \mu \mathrm{M})$ and $100 \mu \mathrm{M}$ TEOA after light irradiation.
a)

b)

c)

S8. Composition of the three systems a), b), and c) with addition of 10 equiv TEOA and irradiated for 15 min for ${ }^{1} \mathrm{H}$ NMR measurements.

S9. ${ }^{1} \mathrm{H}$ NMR of the three systems a), b), and c) after addition of 10 equiv TEOA and irradiated for 15 min .

