Supporting Information I

Small Molecule Microarray-facilitated Screening of Affinity-based Probes (A*f*BPs) for γ-secretase

Haibin Shi¹, Kai Liu,² Ashley Xu,¹ Shao Q. Yao*^{,1,2}

Departments of Chemistry and Biological Sciences, Medicinal Chemistry Program of the Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore

117543, Republic of Singapore

(chmyaosq@nus.edu.sg)

1. General

All chemicals were purchased from commercial vendors and used without further purification, unless otherwise noted. ¹H NMR spectra was recorded on a Bruker model Avance 300 MHz, 500 MHz or DPX-300 NMR spectrameter. Chemical shifts are reported in parts per million referenced with relative to residual solvent (CDCl₃=7.26 ppm, DMSO-d₆ = 2.5 ppm and CD₃OD = 3.31 ppm) or from internal standard tetramethylsilane (TMS = 0.00 ppm). The following abbreviations were used in reporting spectra: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets. All reactions were carried out under N₂ atmosphere, unless otherwise stated. Concentration in vacuo was performed on a Büchi rotary evaporator. HPLC grade solvents were used for all the reactions. HPLC profiles and ESI mass spectra were acquired in the positive or negative mode by using a Shimadzu IT-TOF. HAP and mutants H34A, S37A, E278K were obtained from the Yada Lab (University of Guelph, Canada).¹ Fluorescence scanning of SDS-PAGE gels was carried out with Typhoon 9200 fluorescence gel scanner (GE), and where applicable, the bands were quantified with the software installed on the instrument. Plain glass slides were purchased from Sigma Aldrich (USA), and modified to generate the corresponding avidin-coated surface as previously described.² The numbering of the residures in the inhibititors synthesized for this study (P_2, P_1, P_1) and P_2) is based on the standard protease/substrate nomemclature, where residues in the substrate/inhibitor is numbered 1, 2, 3..., according to their relative positions from the scissile bond (non-prime and prime residues are given to those located either on the left or right side of the scissile bond, respectively).

2. Chemical Synthesis

Scheme S1. Overall design and synthesis of the 198-member, biotin-containing small molecules targeting aspartic proteases. Each member contains a hydroxylethyl "core" group which is a well-known transitionstate (TS) analog of aspartic proteases. The biotin tag in each molecule was used for microarray immobilization.

2.1 General procedure for the synthesis of N-terminal azide scaffolds 4(a-c).

Figure S1. Synthesis of the N-terminal hydroxylethyl TS warheads 4(a-c).

2.1.1 General procedure for the synthesis of bromomethyl ketones 2(a-c):

Compound 2 was synthesized according to published procedures.³ To a stirring solution of the Fmoc-protection amino acid and N-methylmorpholine (6 mmol each) in THF (40 mL) was added isobutyl chloroformate (6 mmol) at -40 °C. After 15 min, the reaction mixture was filtered. Diazomethane in ether (freshly prepared from 1.33 6.2 mmol of g, 1-methyl-3-nitrol-nitrosoguanidine and 1.8 mL of 40 wt% aqueous KOH in 10 mL of EtOH) was added to the filtrate slowly and the mixture was warmed up to room temperature slowly. After completion of the reaction, the solution was concentrated *in vacuo* to obtain diazo ketone 1 which was dissolved in 30 mL of CH₂Cl₂. Subsequently 48% HBr (6 mmol) was then added slowly at 0 °C and stir for further 15 min. The reaction mixture was finally diluted with EtOAc (40 mL) and washed with saturated sodium bicarbonate, then with brine. The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to afford bromomethyl ketone 2(a-f) (80-88% yield).

N-α-Fmoc-phenylalanyldiazomethane (1a):

Yield = 85%. ¹H-NMR (500 MHz, CDCl₃) δ 3.05 (d, *J* = 6.95 Hz, 2H), 4.21 (t, *J* = 6.00 Hz, 1H), 4.41-4.43 (m, 3H), 5.13 (s, 1H), 5.29 (s, 1H), 7.17 (d, *J* = 4.17 Hz, 1H), 7.23-7.32 (m, 6H), 7.40 (t, *J* = 4.53 Hz, 2H), 7.54 (t, *J* = 6.42 Hz, 2H), 7.78 (d, *J* = 7.49 Hz, 2H); ESI-MS: m/z [M+Na]⁺ = 434.134.

N- α -Fmoc-phenylalanylbromomethylketone (2a):

Yield = 86%. ¹H-NMR (500 MHz, CDCl₃) δ 3.09-3.14 (m, 2H), 3.77-3.93 (m, 2 H), 4.17 (d, *J* = 7.32 Hz, 1H), 4.42 (d, *J* = 6.30 Hz, 2H), 4.78 (d, *J* = 6.95 Hz, 1H), 5.31 (d, *J* = 6.95 Hz, 1H), 7.13 (d, *J* = 6.95 Hz, 4H), 7.25-7.32 (m, 5H), 7.40 (t, *J* = 7.55 Hz, 2H), 7.53 (t, *J* = 7.88, Hz, 2H), 7.76 (d, *J* = 7.55 Hz, 2H); ¹³C-NMR (125 MHz, CDCl₃) δ 200.3, 158.7, 143.5, 141.3, 135.5, 129.1, 127.7-124.7(m), 119.9, 74.1, 58.8, 54.0, 18.8; ESI-MS: m/z [M+Na]⁺ =486.06.

$N-\alpha$ -Fmoc-isobutylalanylbromomethylketone (2b):

Yield = 89%. ¹H-NMR (300 MHz, CDCl₃) δ 0.93 (d, *J* = 10.02 Hz, 6H), 1.43 (t, *J* = 6.16 Hz, 2 H), 1.61 (t, *J* = 6.16 Hz, 2 H), 3.98 (d, *J* = 4.44 Hz, 2H), 4.18 (t, *J* = 6.33 Hz, 1H), 4.43 (t, *J* = 9.05 Hz 2H), 4.52 (t, *J* = 12.66 Hz, 1H), 7.30-7.55 (m, 4H), 7. 65 (t, *J* = 3.36 Hz, 2H), 7.75 (d, *J* = 7.56 Hz, 2H).

N- α -Fmoc-methylalanylbromomethylketone (2c):

Yield = 83%. ¹H-NMR (300 MHz, CDCl₃) δ 1.40 (d, J = 7.42 Hz, 3H), 3.93-4.00(m, 1H), 4.18-4.25 (m, 2H), 4.38-4.66 (m, 3H), 5.39 (s, 2H), 7.29-7.43 (m, 4H), 7.59 (d, J = 5.07 Hz, 2H), 7.77 (d, J = 7.41 Hz, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 201.5, 143.6, 141.3, 127.7, 127.6, 127.0, 124.9, 119.9, 66.8, 53.5, 47.1, 45.9, 31.3, 18.7, 17.8, 17.5.

2.1.2 General procedure for the synthesis of α-Azido Ketones **3(a-c)**:

 α -Azido Ketones were synthesized according to published procedure with some modifications.⁶ To a solution of the α -bromo ketone **2** (5 mmol) and acetic acid (10 mmol) in DMF was added NaN₃ (7.5 mmol) in water at 0 °C. After stirring for overnight at room

temperature, the reaction was quenched with lots of water and the aqueous layer was extracted with EtOAc. The combined organic extracts were washed with brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. Purification of the crude product by silica-gel chromatography with 80:20 hexane/ethyl acetate afforded α -Azido Ketones **3** (85-90% yield).

N-α-Fmoc-phenylalanylazidoketone (3a):

Yield = 79%. ¹H-NMR (300 MHz, CDCl₃) δ 3.03 (d, *J* = 3.39 Hz, 2H), 3.64 (d, *J* = 11.34 Hz, 1H), 3.90 (d, *J* = 11.34 Hz, 1H), 4.18 (t, *J* = 6.32 Hz, 1H), 4.44 (d, *J* = 6.42 Hz, 2H), 4.53-4.56 (m, 1H), 5.23 (d, *J* = 7.08 Hz, 1H), 7.12 (d, *J* = 6.90 Hz, 2H), 7.28-7.33 (m, 5H), 7.40 (t, *J* = 4.17 Hz, 3H), 7.54 (t, *J* = 5.10 Hz, 2H), 7.77 (d, *J* = 7.56 Hz, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 203.4, 155.8, 143.6, 141.1, 135.2, 129.0, 127.8-127.0(m), 124.9, 120.0, 66.9, 58.7, 56.6, 47.2, 37.6; ESI-MS: m/z [M+Na]⁺ = 449.166.

N-α-Fmoc-isobutylalanylalanylazidoketone (**3b**):

Yield = 87%. ¹H-NMR (500 MHz, CDCl₃) δ 0.94 (d, *J* = 1.90 Hz, 6H), 1.38-1.43 (m, 1H), 1.52-1.56 (m, 2H), 3.96 (d, *J* = 8.30 Hz, 2H), 4.37 (t, *J* = 8.20 Hz, 1H), 4.38-4.51 (m, 3H), 5.11 (d, *J* = 7.55 Hz, 1H), 7.31-7.34 (m, 2H), 7.41 (t, *J* = 7.57 Hz, 2H), 7.58 (t, *J* = 6.95 Hz, 2H), 7.77 (d, *J* = 7.55 Hz, 2H).

N- α -Fmoc-methylalanylazidoketone (3c):

Yield = 75%. ¹H-NMR (500 MHz, CDCl₃) δ 1.35 (d, *J* = 6.90 Hz, 3H), 4.03 (d, *J* = 2.50 Hz, 2H), 4.20 (t, *J* = 6.30 Hz, 1H), 4.39-4.44 (m, 2H), 4.48-4.52 (m, 1H), 5.34 (d, *J* = 6.95 Hz, 1H), 7.32 (t, *J* = 6.95 Hz, 2H), 7.41 (t, *J* = 7.55 Hz, 2H), 7.59 (t, *J* = 6.30 Hz, 2H), 7.77 (d, *J* = 7.55 Hz, 2H); ¹³C-NMR (125 MHz, CDCl₃) δ 201.6, 144.5, 141.3, 126.9, 126.6, 126.0, 124.9, 119.6, 66.7, 53.1, 47.0, 45.9, 31.2, 18.7, 17.9, 17.7.

2.1.3 General procedure for the synthesis of α -Azido alcohols **4(a-c)**:

 α -Azido Ketones **3** (5 mmol) was dissolved in 20 ml of THF followed by addition of sodium borohydride (6 mmol) in 2 ml H₂O at 0 °C. The reaction mixture was stirred for 1 h and neutralized with aqueous 1 N HCl. After extraction, the organic layer was washed with brine and dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. Purification by silica-gel chromatography with 85:15 hexane/EtOAc afforded bromomethyl alcohol **4** (50-70%).

N-α-Fmoc-phenylalanylazidoalcohol (4a):

Yield = 55%. ¹H-NMR (500 MHz, CDCl₃) δ 2.84-2.93 (m, 2H), 3.26 (t, *J* = 6.30 Hz, 1H), 3.35 (s, 1H), 3.69-3.89 (m, 2H), 4.12-4.17 (m, 1H), 4.40-4.43 (m, 2H), 4.76 (d, *J* = 6.95 Hz, 1H), 5.07 (d, *J* = 8.80 Hz, 1H), 7.14-7.31 (m, 7H), 7.40 (t, *J* = 7.25 Hz, 2H), 7.46-7.55 (m, 2H), 7.75 (d, *J* = 6.95 Hz, 2H); ¹³C-NMR (125 MHz, CDCl₃) δ 156.5, 143.7, 141.4, 137.0, 129.3-126.7(m), 124.9, 119.9, 72.2, 66.5, 54.9, 54.1, 47.3, 38.3; LC-MS: m/z [M+Na]⁺ = 451.175.

$N-\alpha$ -Fmoc-isobutylalanylalanylazidoalcohol (4b):

Yield =96%. ¹H-NMR (500 MHz, CDCl₃) δ 0.91 (d, J = 3.80 Hz, 6H), 1.24-1.36 (m, 2H), 1.48-1.57 (m, 1H), 3.19-3.31 (m, 2H), 3.71-3.76 (m, 2H), 4.19 (t, J = 5.97 Hz, 1H), 4.45-4.50 (m, 1H), 4.52-4.56 (m, 1H), 4.74 (t, J = 8.15 Hz, 1H), 4.86 (t, J = 9.50 Hz, 1H), 7.31 (t, J = 7.25 Hz, 1H), 4.86 (t, J = 9.50 Hz, 1H), 7.31 (t, J = 7.25 Hz, 1H), 4.86 (t, J = 9.50 Hz, 1H), 7.31 (t, J = 7.25 Hz, 1H), 4.86 (t, J = 9.50 Hz, 1H), 7.31 (t, J = 7.25 Hz, 1H), 4.86 (t, J = 9.50 Hz, 1H), 7.31 (t, J = 7.25 Hz, 1H), 4.86 (t, J = 9.50 Hz, 1H), 7.31 (t, J = 7.25 Hz, 1H), 4.86 (t, J = 9.50 Hz, 1H), 7.31 (t, J = 7.25 Hz, 1H), 4.86 (t, J = 9.50 Hz, 1H), 7.31 (t, J = 7.25 Hz, 1H), 4.86 (t, J = 9.50 Hz, 1H), 7.31 (t, J = 7.25 Hz, 1H), 4.86 (t, J = 9.50 Hz, 1H), 7.31 (t, J = 7.25 Hz, 1H), 4.86 (t, J = 9.50 Hz, 1H), 7.31 (t, J = 7.25 Hz, 1H), 4.86 (t, J = 9.50 Hz, 1H), 7.31 (t, J = 7.25 Hz, 1H), 4.86 (t, J = 9.50 Hz, 1H), 7.31 (t, J = 7.25 Hz, 1H), 4.86 (t, J = 9.50 Hz, 1H), 7.31 (t, J = 7.25 Hz, 1H), 4.86 (t, J = 9.50 Hz, 1H), 7.31 (t, J = 7.25 Hz, 1H), 4.86 (t, J = 9.50 Hz, 1H), 7.31 (t, J = 7.25 Hz, 1H), 4.86 (t, J = 9.50 Hz, 1H), 7.31 (t, J = 7.25 Hz, 1H), 4.86 (t, J = 9.50 Hz, 1H), 7.31 (t, J = 7.25 Hz, 1H), 4.86 (t, J = 9.50 Hz, 1H), 4.

2H), 7.39 (t, J = 6.95 Hz, 2H), 7.57 (d, J = 6.30 Hz, 2H), 7.75 (d, J = 7.55 Hz, 2H), ¹³C-NMR (125 MHz, CDCl₃) δ 156.7, 143.7, 141.4, 127.7, 127.0, 124.8, 119.9, 73.5, 66.3, 53.7, 52.4, 47.4, 24.6, 23.2, 21.5; LC-MS: m/z [M+Na]⁺ = 417.189.

N-α-Fmoc-methylalanylazidoalcohol (4c):

Yield = 75%. ¹H-NMR (300 MHz, CDCl₃) δ 1.18 (d, J = 5.91 Hz, 3H), 3.25-3.33(m, 2H), 3.65-3.79 (m, 2H), 4.24 (t, J = 6.24 Hz, 1H), 4.55 (d, J = 6.72 Hz, 1H), 5.00 (s, 1H), 7.33-7.47 (m, 4H), 7.62 (d, J = 7.41 Hz, 2H), 7.81 (d, J = 7.56 Hz, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 157.5, 142.6, 139.4, 137.4, 128.9, 127.3, 121.4, 120.0, 109.6, 72.0, 53.3, 48.9, 16.7.

2.2 General procedure for the synthesis of C-terminal azide scaffolds 8 (a-c).

Figure S2. Synthesis of the C-terminal warhead scaffolds building block 8(a-c).

2.2.1 General procedure for the synthesis of α -azido acid **5(a-c)**:

The diazo transfer reaction was performed according to the reported procedure.⁴ L-Amino acids (10 mmol, 1.0 eqv) was combined with K₂CO₃ (15 mmol, 1.5 eqv) and CuSO₄ pentahydrate (0.1 mmol, 0.01 eqv), distilled H₂O (20 mL), and CH₃OH (40 mL). Triflyl azide in CH₂Cl₂ (20 mmol, 2 equiv.) freshly prepared according to the reported procedure was added, and the resulting mixture was stirred at ambient temperature overnight. Subsequently, the organic solvents were removed under reduced pressure and the aqueous slurry was diluted with H₂O (50 mL). This slurry was then acidified to pH 6 with 2 N HCl aqueous solution and diluted with 0.25 M, pH 6.2 phosphate buffer (50 mL) and extracted with EtOAc to remove the sulfonamide byproduct. The aqueous phase was then acidified to pH 2 with 2 N HCl aqueous solution. The product was obtained from another round of EtOAc extractions. The EtOAc extracts were combined, dried with anhydrous Na₂SO₄ and evaporated to dryness giving the α -azido acid 5(**a-c**) in 70-85% yield.

2-Azido-3-phenylpropanoic acid (5a)

Yield = 84%. ¹H-NMR (300 MHz, CDCl₃) δ 3.04 (dd, *J* = 13.98, 8.88 Hz, 1H), 3.24 (dd, *J* = 13.98, 4.92 Hz, 1H), 4.13-4.18 (m, 1H), 7.25-7.33 (m, 5H); ¹³C-NMR (125 MHz, CDCl₃) δ 175.6, 135.6, 129.2, 128.7, 127.4, 63.1, 37.5; LC-MS: m/z [M-H]⁻ =190.1.

2-azido-4-methylpentanoic acid (5b)

Yield = 73%. ¹H-NMR (300 MHz, CDCl₃) δ 0.99 (d, J = 6.95 Hz, 6H), 1.68-1.78 (m, 2H), 1.80-1.85 (m, 1H), 3.86-3.89 (m, 1H), 10.77 (br s, 1H); LC-MS: m/z 2[M]⁺=313.0.

2-Azidopropanoic acid (5c)

Yield = 75%. ¹H-NMR (500 MHz, CDCl₃) δ 1.54 (d, *J* = 6.95 Hz, 3H), 4.02-4.06 (m, 1H), 10.6 (br s, 1H); ¹³C-NMR (125 MHz, CDCl₃) δ 176.9, 57.0, 16.5.

2.2.2 General procedure for the synthesis of α -azido bromomethyl ketones 7(a-c):

Isobutyl chloroformate (9.6 mmol, 1.2 eqv) was added to a solution of α -azido acid **5(a-c)**(8.0 mmol, 1.0 eqv) and N-methylmorpholine (9.6 mmol, 1.2 eqv) in THF (20 mL) at -40 °C, and the reaction mixture was stirred for 15 min. The reaction mixture was then filtered and diazomethane (4.0 eqv, freshly prepared from 1-methyl-3-nitro1-nitrosoguanidine and of 40 wt% aqueous KOH in EtOH) was added slowly into the filtrate. The reaction mixture was stirred for 2-3h at 0 °C. After completion of the reaction, the solvent was evaporated *in vacuo* and the residue was dissolved in DCM followed by the treatment with 48% HBr aq (1.2 eqv) at 0 °C. The reaction mixture was then stirred for 3 h. After completion of the reaction, it was diluted with 15 wt% aqueous citric acid and extracted with DCM. The organic layer was washed with saturated sodium bicarbonate and brine. Finally, it was dried over anhydrous sodium sulfate, filtered, concentrated and purified by silica-gel chromatography with 80:20 hexane/EtOAc afforded α -azido bromomethyl ketones 7(**a-c**) in 60-93%.

3-azido-1-bromo-4-phenylbutan-2-one (7a)

Yield = 74%. ¹H-NMR (300 MHz, CDCl₃) δ 2.99 (d, *J* = 8.55 Hz, 1H), 3.25 (d, *J* = 5.58 Hz, 1H), 3.86 (d, *J* = 4.59 Hz, 1H), 3.95 (d, *J* = 6.06 Hz, 1H), 4.35-4.40 (m, 1H), 7.25-7.36 (m, 5H); ¹³C-NMR (75 MHz, CDCl₃) δ 198.3, 135.3, 129.2-128.6(m), 127.5, 66.8, 37.5, 32.3.

3-azido-1-bromo-5-methylhexan-2-one (7b)

Yield = 65%. ¹H-NMR (300 MHz, CDCl₃) δ 0.73-1.17 (m, 6H), 1.62 (t, *J* = 7.48 Hz, 2H), 1.80-1.88 (m, 1H), 3.38 (t, *J* = 5.91 Hz, 1H), 4.05 (d, *J* = 6.27 Hz, 1H), 4.19 (d, *J* = 7.68 Hz, 1H); ¹³C-NMR (75 MHz, CDCl₃) δ 198.9, 64.7, 40.6, 32.7, 25.4, 23.5, 22.7.

3-azido-1-bromo-5-methy-2-one (7c)

Yield = 60%. ¹H-NMR (500 MHz, CDCl₃) δ 1.52 (d, J = 6.30 Hz, 3H), 4.08-4.11(m, 1H), 4.29-4.31(m, 1H); ¹³C-NMR (125 MHz, CDCl₃) δ 198.8, 61.0, 31.2, 15.8.

2.2.3 General procedure for the synthesis of α -azido bromomethyl alcohol 8(a-c):

To the solution of α -azido bromomethyl ketones **7(a-c)** (8 mmol, 1 eqv) in 20 mL of 95:5 THF/H₂O, sodium borohydride (12 mmol. 1.5 eqv) was added gradually at 0 °C. The reaction mixture was stirred for 1 h and then was neutralized with aqueous 1N HCl. After extraction with EtOAc, the organic extracts were washed with brine, dried with Na₂SO₄, and concentrated under reduced pressure. Purification by silica-gel chromatography with 80:20 hexanes/EtOAc afforded compound **8(a-d)** as white solid.

α-Azido bromomethyl-Phe-alcohol (8a)

Yield = 75%. ¹H-NMR (300 MHz, CDCl₃) δ 2.40 (d, J = 4.44 Hz, 1H), 2.80-3.18 (m, 2H), 3.48-3.52 (m, 1H), 3.65 (d, J = 6.09 Hz, 1H), 7.29-7.35 (m, 5H); ¹³C-NMR (75 MHz, CDCl₃) δ 136.9, 136.6-128.6 (m), 127.0, 126.9, 72.1, 65.9, 64.8, 37.0, 35.2. LC-MS: m/z [M+Na]⁺=293.990.

α-Azido bromomethyl-Leu-alcohol (8b)

Yield = 90%. ¹H-NMR (500 MHz, CDCl₃) δ 0.97 (d, J = 2.50 Hz, 6H), 1.38-1.49 (m, 1H), 1.60-1.69 (m, 1H), 1.73-1.84 (m, 1H), 2.53 (d, J = 5.65 Hz, 1H), 3.31-3.54 (m, 2H), 3.56-3.72 (m, 1H); ¹³C-NMR (125 MHz, CDCl₃) δ 73.4, 62.9, 39.8, 36.6, 25.3, 23.3, 21.8. LC-MS: m/z 2[M]⁺=388.089.

α-Azido bromomethyl-Ala-alcohol (8c)

Yield = 80%. ¹H-NMR (500 MHz, CDCl₃) δ 1.36 (d, *J* = 6.57 Hz, 3H), 2.37 (t, *J* = 5.43 Hz, 1H), 3.41-3.78 (m, 4H); ¹³C-NMR (125 MHz, CDCl₃) δ 73.7, 59.3, 36.5, 34.9, 15.6, 14.9. LC-MS: m/z 2[M]=388.089.

2.3 Synthesis of the biotin linkers (9 & 14):

Figure S3. Synthesis of two biotin liners.

2.3.1. Biotin linker (9).

Compound 9 was synthesized according to previous report with some modification.⁵ To a solution of D-biotin (12 g, 50 mmol) in DMF was added N-hydroxysuccinimide (7 g, 60 mmol) and EDC (11.5 g, 60 mmol). The reaction was allowed to proceed overnight. The resulting mixture was dried in vacuo to remove DMF. The gel-like residue was recrystallized from

EtOH/Acetic acid/H₂O (95:1:4) to afford biotin-NHS as a white solid (14 g; 80% yield). To a solution of 6-aminohexanoic acid (1.3 g, 10 mmol) in 30 ml of 1:1 Dioxane/water co-solvent, the pH of the solution was adjusted to 8~8.5 by using a 4 M NaOH solution at 0°C. Biotin-NHS (3.4 g, 10 mmol) was subsequently added, and the reaction mixture was stirred at room temperature overnight. The resulting gelatinous solid formed was added ether, stirred for 5 minutes. The supernatant ether was decanted followed by addition of acetone and adjusting the pH of the resulting solution to 3 using 2 M HCl at 0 oC. Finally, the solid was filtered, washed several times with MeOH to afford the pure compound **9** as a white solid (2.85 g, 80%). ¹H-NMR (300 MHz, CDCl₃) δ 1.23-1.62 (m, 12H), 2.04(t, *J* = 7.41 Hz, 2H), 2.19 (t, *J* = 7.23 Hz, 2H), 2.57 (d, *J* = 12.15 Hz, 1H), 2.82 (dd, *J* = 12.48, 4.92 Hz, 1H), 2.97-3.16 (m, 3H), 4.13 (t, *J* = 4.29 Hz, 1H), 4.30 (t, *J* = 7.38 Hz, 1H), 6.43 (s, 2H), 7.73 (t, *J* = 5.28 Hz, 1H); ¹³C-NMR (75 MHz, CDCl₃) δ 174.8, 172.2, 163.1, 61.4, 59.6, 55.8, 38.6, 35.6, 33.9, 29.2, 28.5, 26.3, 25.7, 24.6; LC-MS: m/z [M+H]⁺=357.282.

2.3.2. Biotin linker (14).

Compound **14** was synthesized according to published procedures with some modifications,⁵ as follows.

(10). To a stirred solution of diol (1 mmol) in CH₂Cl₂ (10mL) was added fresh Ag₂O (0.35, 1.5mmol), TsCl (0.21g, 1.1mmol), and KI (0.033g, 0.2 mmol). The reaction mixture was stirred at room temperature for 8h, then filtered through a small pad of silica gel, and washed with EtOAc. Evaporation of the solvent, followed by column chromatography, gave the desired monotosylate product **10** (Yield = 70%). ¹H-NMR (300 MHz, CDCl₃) δ 2.43 (s, 3H), 3.27(s, 1H), 3.57-3.68 (m, 14H), 4.15 (t, *J* = 4.44 Hz, 2H), 7.34 (d, *J* = 8.22 Hz, 2H), 7.78 (d, *J* = 8.04 Hz, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 144.4, 132.4, 129.4, 127.4, 72.0, 70.0-68.9(m), 68.1, 60.9, 21.1.

(11). To a solution of 10 (10 mmol) in DMF, NaN₃ (30 mmol) was added. The reaction was then stirred for 8h at 80 °C. After completation of reaction, DMF was firstly removed under high vacuum, and the residue was purified by column chromatography to afford the desired product in 80% yield. ¹H-NMR (300 MHz, CDCl₃) δ 3.39 (t, *J* = 5.10 Hz, 2H), 3.59 (t, *J* = 4.92 Hz, 2H), 3.67-3.71(m, 10H); ¹³C-NMR (75 MHz, CDCl₃) δ 72.4, 69.8-70.4(m), 61.3, 50.4.

(12). To a solution of 11 (10 mmol) in DMF, Pyridinium dichromate (PDC) (50 mmol) was added at 0 °C. Then the reaction was stirred overnight at room temperature. After completation of reaction, a lot of brine was added to quench the reaction followed by EA extraction. The extrate was dried by Na₂SO₄, filtrated and evaporated under high vacuum. Finally the residue was purified by column chromatography to afford the desired product 12 in 55% yield. ¹H-NMR (300 MHz, CDCl₃) δ 3.40 (t, *J* =4.65 Hz, 2H), 3.68-3.72 (m, 10H), 4.14 (s, 2H), 8.02 (s, 1H); ¹³C-NMR (75 MHz, CDCl₃) δ 172.1, 69.5-72.1(m), 68.0, 63.5, 50.2.

(13 & 14). To a solution of 12 (10 mmol) in MeOH, Pd/C (20%w) was added at room temperature. The reaction was then stirred overnight. After completation of reaction, Pd/C was filtrated by celite. The filtrate was evaporated and the residue was purified by column chromatography to afford compound 13 in 70% yield. To a solution of above PEG amino acid in

30 ml of 1:1 Dioxane/water co-solvent, the pH of the solution was adjusted to 8~8.5 by using a 4 M NaOH solution at 0 °C. Biotin-NHS (3.4 g, 10 mmol) was subsequently added, and the reaction mixture was stirred at room temperature overnight. The resulting gelatinous solid formed was added ether, stirred for 5 minutes. The supernatant ether was decanted followed by addition of acetone and adjusting the pH of the resulting solution to 3 using 2 M HCl at 0 °C. Finally, the solid was filtered, washed several times with MeOH to afford the pure compound **14** as a white solid in 85% yield. ¹H-NMR (300 MHz, CDCl₃) δ 1.34-1.69 (m, 6H), 2.15 (t, *J* = 6.99 Hz, 2H), 2.56-2.61(m, 1H), 2.77-2.92 (m, 2H), 3.11-3.15 (m, 4H), 3.22-3.66 (m, 8H), 4.05 (s, 2H), 4.21-4.25 (m, 2H), 4.40-4.79 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 176.2, 174.23, 167.7, 70.2-71.7(m), 69.2, 63.3, 61.6, 56.9, 41.0, 40.4, 36.7, 36.2, 33.8, 31.4, 29.5, 26.7, 25.6; LC-MS: m/z [M+H]⁺=434.134.

2.4. Solid-phase synthesis of the 198-member small molecule library

The 198-member small molecule library was synthesized using DHP resin (GL Biochem, Shanghai, China). The synthesis of the N-terminal library (123 compounds in total) was carried out as shown in Figure S4. The synthesis of the C-terminal library (75 compounds in total) was carried out as shown in Figure S5.

2.4.1. General procedures for solid-phase synthesis of 123-member, N-terminal small molecule library.

Figure S4. Solid-phase synthesis of N-terminal library in solid phase.

Support-bound *a*-Azido alcohols (a-c). According to published procedures with some modifications,^{4,6,7} HM DHP resin (40 mg) was swelled in DCE (5 mL) for 2 h. The solvent was then removed, followed by the addition of α -Azido alcohols **4(a-c)** (4.0 eq) in DCE (10 mL) and PPTs (Pyridinium p-toluenesulfonate) (1.5 eq) at room temperature. Then the reaction mixture was strirred for 12 h at 60 °C. The resulting resin was washed with NMP (3×), THF (3×), CH₂Cl₂ (3×) and Et₂O (3×) and dried *in vacuo*, then stored at – 20 °C.

Deprotection of Fmoc group. To a 50 ml plastic tube was added a solution of 20% piperidine in NMP and the resulting resin. The mixture was shaken for 2 h. The solvent was then removed and washed with NMP ($3\times$), THF ($3\times$), CH₂Cl₂ ($3\times$) and Et₂O ($3\times$) and dried *in vacuo*. The completeness of the reaction was monitored by ninhydrin test. Blue beads indicate the presence of primary amine and the completeness of the reaction.

Coupling of different acids or sulfonyl chlorides. The resulting resin firstly was swelled in THF for 2 h. The solvent was then removed. To the resin was added a preactived solution containing the corresponding acid (4.0 eq), PyBOP (4.0 eq), HOAt (4.0 eq) and DIPEA (8.0 eq) in THF or a solution of the corresponding sulfonyl chloride (4.0 eq) and DIEA (8.0 eq) in dry THF. The reaction mixture was shaken overnight at room temperature and the resin was washed with NMP ($3\times$), THF ($3\times$), CH₂Cl₂ ($3\times$) and Et₂O ($3\times$) and dried under vacuum. The completeness of the reaction was also monitored by ninhydrin test. Negative test indicate the absence of primary amine and the completeness of the reaction.

Reduction of azido group to primary amine. Reduction of the azide was accomplished using 0.2 M SnCl₂, 0.8 M PhSH, and 1.0 M Et₃N in THF (1 mL) for 4 h. The resin was then washed with 50 vol% aqueous THF solution ($3\times$), THF ($3\times$), CH₂Cl₂ ($3\times$) and ether ($3\times$), and then dried *in vacuo*.

Acylation of the primary amine with the biotin linker (9 or 14). The resulting support-bound amine was then acylated in a preactived solution of biotin acid 9 (4.0 eq), PyBOP (4.0 eq), HOAt (4.0 eq) and DIPEA (8.0 eq) in THF. The reaction mixture was shaken overnight at room temperature and the resin was washed with NMP ($3\times$), THF ($3\times$), CH₂Cl₂($3\times$) and Et₂O ($3\times$) and dried under vacuum. The completeness of the reaction was monitored by ninhydrin test. ***For the 33 compounds N-b-(1-33), biotin linker 14 was used instead in the synthesis.****

Cleavage of small molecules from the solid support. Dried resin from above reaction was treated with a 3 ml solution containing TFA (95%) and H₂O (5%) and the mixture was shaken for 20 min at r.t followed by filtration. The resin was rinsed with DCM ($2\times$). The combined filtrates were concentrated to dryness to afford the 123-member N-terminal library as shown in Figure S4. The resulting compounds were then directly checked by LC-MS

Figure S5. Solid-phase synthesis of the 75-member, C-terminal library.

Support-bound bromomethyl alcohol (a-c). HM DHP resin (40 mg) was swelled in DCE (5 mL) for 2 h. The solvent was then removed followed by the addition of bromomethyl alcohols **8(a-c)** (4.0 eq) in DCE (10 mL) and PPTs (Pyridinium p-toluenesulfonate) (1.5 eq) at room temperature. The reaction mixture was strirred for 12 h at 60 °C. The resulting resin was washed with NMP ($3\times$), THF ($3\times$), CH₂Cl₂ ($3\times$) and Et₂O ($3\times$) and dried *in vacuo*, then stored at -20 °C.

Synthesis of C-terminal library. Support-bound bromomethyl alcohol was added to a vial followed by addition of a solution of *i*-butylamine (10 eqv) in NMP (10 mL). The vial was then

sealed and the reaction mixture was heated at 80 °C for 36 h. The resin was then washed with NMP (3×), THF (3×), CH₂Cl₂ (3×), and ether (3×), and then dried *in vacuo*. Acylation with the sulfonyl chloride (4.0 eqv) and DIEA (8.0 eqv) in dry THF was carried out overnight. The resin was then washed with NMP (3×), THF (3×), CH₂Cl₂ (3×), and ether (3×), and then dried *under vacuum*. The resulting resin was treated with 95:5 TFA/H₂O for 20 min followed by filtration. The resin was then rinsed with 95:5 TFA/H₂O and CH₂Cl₂. The combined filtrates were concentrated to dryness to afford the 75-member C-terminal library as shown in Figure S5. The resulting compounds were then directly checked by LC-MS.

2.5. "Click" assembly of A/BPs targeting γ -secretase.

Figure S6. "Click" assembly of the fluorescently labeled and biotin-containing affinity-based probes (A/BPs).

Synthesis of the above 4 probes by "Click chemistry" followed previously published procedures with minor modifications as indicated below.⁸ The TER-BP-alkyne and Biotin-BP-alkyne linkers were obtained as previously described.⁸ The alkyne (1.2 eq) and the azide (1.0 eq; final concentration: 10.0 mM) were dissolved in a minimal amount of DMSO. A mixture of DMSO/H₂O solution (1:1; 2 mL) was subsequently added and the reaction was shaken for a few minutes to obtain a clear solution. The "click chemistry" was initiated by sequential addition of catalytic amounts of sodium ascorbate (0.4 eq) and CuSO₄ (0.1 eq). The reaction was continued with shaking at room temperature for another 12 h. The reaction product was then directly

analyzed by LC-MS; results indicated the complete consumption of the azide and quantitative formation of the triazole final product in all cases. The final probes were subsequently purified by prep-HPLC and characterized/confirmed by NMR and LC-MS (the amount of the TER probes obtained was too small to be characterized by NMR). A negative control probe, **TER-A-31**, was also synthesized and characterized similarly.

Biotin-F5 ¹H-NMR (300 MHz, DMSO-d6) δ 0.70 (d, J = 5.85 Hz, 6H), 0.78 (d, J = 5.55 Hz, 2H), 0.90-1.04 (m, 3H), 1.23-1.55 (m, 10H), 1.97-2.03 (m, 6H), 2.27 (s, 2H), 2.66-3.00 (m, 10H), 3. 95-4.10 (m, 1H), 4.25-4.27 (m, 2H), 4.55-4.71 (m, 3H), 5.55(s, 1H), 6.50 (s, 1H), 6.79 (s, 1H), 7.37 (d, J = 8.19 Hz, 3H), 7.52 (d, J = 6.99 Hz, 2H), 7.50-7.66 (m, 6H), 7.75-7.85 (m, 4H), 8.06 (s, 2H), 8.54 (s, 2H); LC-MS: m/z [M+H]⁺=1023.150.

Biotin-F24 ¹H-NMR (300 MHz, DMSO-d6) δ 0.72 (d, J = 5.85 Hz, 6H), 0.78 (d, J = 6.15 Hz, 2H), 1.13-1.41(m, 16H), 2.00 (t, J = 6.99 Hz, 4H), 2.66-2.78 (m, 6H), 2.85-3.15 (m, 24H), 2.29 (s, 2H), 5. 71 (s, 2H), 6.91 (s, 2H), 7.08 (s, 2H), 7.37 (s, 2H), 7.50-7.65 (m, 3H), 7.66-7.75 (m, 4H), 7.81 (s, 1H); LC-MS: m/z [M+H]⁺= 990.150.

LC-MS characterizations of the probes:

HPLC conditions: 0-100% B for 10 mins, then 100% B for 2 mins.

TER-F5

Biotin-F24

3. Screening and Biology Experiments

3.1. Preparation of avidin slides

25 mm \times 75 mm glass slides (Sigma-Aldrich) were cleaned in piranha solution (sulfuric acid/hydrogen peroxide, 7:3). An amine functionality was incorporated onto the slides by silanization using a solution of 3% (aminopropyl)triethoxysilane in 2% water and 95% ethanol. After 1-2 h incubation, the slides were washed with ethanol and cured at 150 °C for at least 2 h. The resulting amine slides were incubated in a solution of 180 mM succinic anhydride in DMF for 30 min before being transferred to a boiling water bath for 2 min. The slides were rinsed with ethanol and dried under a stream of nitrogen. The carboxylic acid derivatized slide surface was activated with a solution of 100 mM of HBTU (O-Benzotriazole-N, N, N', N'-tetramethyl-uronium-hexafluoro-phosphate), 200 mМ DIEA, and 100 mМ N-hydroxysuccinimide in DMF, thus generating the NHS-derivatized slides. These surfaces were reacted with a solution of 1 mg/mL avidin in 10 mM NaHCO₃ (pH 9) for 40 min, washed with water, air dried. The unreacted NHS groups were quenched with a solution of 2 mM aspartic acid in a 0.5 M NaHCO₃ buffer, pH 9. These slides were washed with water, dried and stored at 4 °C, ready for printing.

3.2 Microarray preparation

All compounds stocks were prepared in a 1:1 DMSO/PBS spotting solution (to 5 mM final concentration), and were distributed in 384-well plates. All compounds were shown to be completely soluble in this spotting solution. One slide was spotted on an ESI SMA arrayer (Ontario, Canada) with the print head installed with 4 Stealth SMP8B Microspotting pins (Telechem, U.S.A.). Spots generated were of approximately 350 µm diameter and were printed with a spot-spot spacing of 450 µm. The pins were rinsed in between samples using two cycles of wash (for 10 s) and sonication (for 10 s) in reservoirs containing 70 % ethanol followed by drying under reduced pressure (for 10 s). The slides were allowed to stand for 1 h on the printer platform and stored at 4 °C until use. Before incubation with the labeled proteins or lysates, the slides were rinsed with PBS (pH 7.4) for 10 min and blocked with PBS-containing 1 % BSA for 1 h. For studies with the 198-member library, all compounds were spotted on the same slide in duplicate.

3.3 Cell culture

 γ -30 cell line was cultured in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum and 1% penicillin/streptomycin/puromycin/zeocine/geneticin/hygromycin). Cells were incubated at 37 °C in a humidified atmosphere containing 5% CO₂. Subsequently, the cells were harvested with mammalian cell lysis buffer (50 mM HEPES, pH7.4, 1 mM EDTA, 100 mM NaCl, 10% Glycerol). Protein concentration was determined using the Bradford protein assay (Bio-Rad). Equal proteins were loaded and separated on 12% SDS-PAGE gels and transferred to PVDF membrane. The Western blots were done using anti-PS antibodies.

3.4 Preparation of Membrane Fractions from γ -30 cell lysates

The cellular lysates were centrifuged at $800 \times g$ for 10 min to remove nuclei and cell debris. The postnuclear supernatant was further fractionated by sequential centrifugation at $100000 \times g$ for 1 h .The collected pellet were resuspended in HEPES buffer with 1% CHAPSO followed by centrifugation at $100000 \times g$ for further 1 h. The supernant was collected with addition of 20% glycerol and stored at -80 °C until use. All centrifugation steps were carried out at 4 °C.

3.5 Protein labeling and screening on the small molecule microarray

Protein or lysate samples were minimally labeled with either Cy3 or Cy5 N-hydroxysuccinimide ester (Amersham, GE Healthcare, USA) for 1 h on ice, following the manufactor's protocols and our previously published procedures.² The unreacted dye was quenched with a 10-fold molar excess of hydroxylamine for a further 1 h. The excess dye was further removed by extensive dialysis at 4 °C overnight (Amersham, GE Healthcare, USA), or Microcon spin-column. After analysis by SDS-PAGE gel to ensure successful labeling and purity, the labeled proteins or lysates were reconstituted in a final corresponding buffer. In a standard microarray experiment, the labeled protein (1 μ M; 30 μ L) or lysates (2 μ g, 30 μ L) was applied to the array. For denaturing experiments, the labeled protein was firsted boiled for 10 min, cooled before being applied to the small molecule microarray. For dual-color screening experiments, an equal amount of a Cy3-labeled protein and a Cy5-labeled protein were mixed and applied together to the slide. The samples were incubated with the array in a humidified chamber for 1 h at room temperature, before repeated rinses with PBS + 0.05% Tween 20, typically 3 x 10 min washes with gentle shaking. Slides were scanned using an ArrayWoRx microarray scanner installed with the relevant filters (Cy3: λ ex/em = 548/595 nm; Cy5: λ ex/em = 633/685 nm).

4. Results and Discussion

(a)	C-c-14	C-c-16	C-C-18	C-c-23	C-c-25	C-c-15	C-c-17	C-c-19	C-c-24		(
· /	C-c-4	C-c-6	C-c-8	C-c-10	C-c-12	C-o-5	C-c-7	C-c-9	C-c-11	C-c-13	
	C-a-20	C-b-21	C-b-23	C-b-25	C-c-2	C-a-21	C-b-22	C-b-24	C-c-1	C-c-3	
	C-a-10	C-a-12	Ca-14	C-a-16	C-a-18	C-a-11	C-a-13	Ca-15	C-a-17	C-a-19	
	N-c-44	C-a-2	C-a-4	Ca-6	C-a-8	Ca-1	Ca-3	Ca-5	Ca-7	C-a-9	
	NH:50	N-b-52	N-b-31	N-c-2	N-c-42	N-b-51	N-b-53	N-c-1	N-c-3	N-c-43	
	N-b-37	N-b-40	N-b-42	N-b-44	N-b-47	N-b-38	N-b-55	N-b-43	N-b-46	N-b-49	
	Na-45	N-a-47	N-b-20	N-b-22	N-b-33	N-a-46	N-a-48	N-b-21	N-b-32	N-b-34	
	N-a-35	N-a-37	N-a-39	N-a-41	N-a-43	N-a-36	N-a-38	N-a-40	N-a-42	N-a-44	
	N-a-25	N-a-27	Na-29	N-a-31	N-a-33	N-a-26	N-a-28	N-a-30	N-a-32	N-a-34	
	C-b-15	C-b-17	C-b-19	C-c-20	C-c-22	C-b-16	C-b-18	C-b-20	C-c-21		
	Cb-5	C-b-7	C-b-9	C-b-11	C-b-13	C-b-6	C-b-8	C-b-10	C-b-12	C-b-14	
	N-c-40	C-a-22	C-a-24	C-b-1	C-b-3	N-c-55	C-a-23	Ca-25	C-b-2	C-b-4	
	N-c-18	N-c-18	No-22	N-0-33	N-c-37	N-c-19	N-c-21	No-32	N-c-34	N-c-38	
	N-c-6	N-c-10	N-c-12	N-c-14	N-c-16	N-c-8	N-c-11	N-c-13	N-c-15	N-c-17	
	N-b-12	N-b-14	N-b-16	N-b-16	N-c-4	N-b-13	N-b-15	N-b17	N-b-19	N-c-5	
	N-a-55	N-b-2	N-b-4	N-b-6	N-b-10	N-b-1	N-b-3	N-b-5	N-b-8	N-b-11	
	Na-21	N-a-23	N-a-49	N-a-51	N-a-53	N-a-22	N-a-24	Na-50	N-a-52	N-a-54	
	Na-11	N-a-13	Na-15	N-a-17	N-a-19	N-a-12	N-a-14	N-a-16	N-a-18	N-a-20	
	N-a-1	Na-3	Na-5	Na-7	Na-9	N-a-2	Na-4	N-a-6	Na-8	N-a-10	

Figure S6. (a) The arrangement of 198-member library on microarrary; (b) The spotting format (duplicate) of all the microarrays used in this study, unless otherwise specified.

Figure S7. Fluorescence gel images of the dye-labeled HAP and its mutants used in this study. Cy3-and Cy-5 labeled proteins were false-colored in Green and Red, respectively.

HAP E278K H34A S37A

4.1. Fingerprint of HAP and its mutants

Figure S8. Small molecules microarray immobilized with the 198-member library was screened against fluorescently labeled HAP and its active-site mutants. Results indicated the ability of HAP binding to SMM was lost after mutation.

4.2. Characterization of A/BPs with γ -30 cell lysates

Based on the microarray screening results, two stronger binders, **C-c-5** and **C-c-24**, were identified and their corresponding A/BPs (both TER and Biotin versions) were synthesized using "Click Chemistry" as shown in Figure S6. A negative control probe **TER-A31** (from the spot **N-a-31** from the SMM screening which showed no binding and was deemed negative) was also synthesized. Subsequently, in-gel fluorescence labeling and pull-down experiments were carried out with these probes against mammalian cell lysates prepared from the γ -30 cell line. Firstly, the three TER-containing probes, **TER-F5**, **TER-F24** and **TER-A-31** (negative control), were used to label γ -30 cell lysates, Details of the cell lysate labeling experiment are described below: a desired lysate amount (15 µg of total proteins as determined by Bradford assay) was incubated with the probes (5 µM final concentration; 5 % DMSO) in HEPES buffer for 30 min at RT. After 30 min incubation, samples were irradiated on ice for 25 min using a B100A lamp (UVP) at a distance of 5 cm. After irradiation, samples were boiled for 10 min with 4 µL of 6 x SDS loading buffer, resolved on a 12% SDS-PAGE followed by in-gel fluorescence scanning with a Typhoon 9200 gel scanner (Fig S10(a)). Western blotting was carried out with anti-PS1 (Santa Cruz Biotechnology).

To further validate the labeling of PS-NTF by the two probes, pull-down from labeled lysates experiments were carried out as described below using the biotin version of the probe: 2 mg of lysate were labeled by 5 μ M probe F24 in a 2-ml reaction using above described conditions. After labeling, the lysates in the reaction were acetone precipitated and resolubilized in 0.1% SDS in PBS with brief sonication. This resuspended sample was then incubated with avidin-agarose beads

(100 µL/mg protein; Pierce) at RT for 30 min. After centrifugation, supernatant were removed and the beads were washed with 1% SDS in PBS for 4 times. After washing, the beads were boiled in elution buffer (200 mM Tris pH 6.8, 400 mM DTT, 8% SDS). This pull-down sample from labeled lysates was then separated on 12% SDS PAGE gel together with pull down sample from un-labeled lysates. After SDS-PAGE gels separation, proteins were then transferred to a PVDF membrane and subsequently blocked with 2.5% (w/v) BSA/PBST. Membranes were incubated for 1 h at RT with neutravidin conjugated HRP (1:10000) or anti-PS-NTF (1/5000; Cat# C1245). After wash with PBST for three times, blots were further incubated with appropriate secondary antibody for 1 hr at RT. After incubation, blot was washed again with PBST for 3 times and the SuperSignal West Pico kit (Pierce) was used to develop the blot. The results are shown in the maintext (Figure 2).

5. Summary of Characterizations of the 198-member Library

#	ID	Structure	(Figure S4)		LCMS		
		R1 (AA)	R2 (acid)	% purity	Cal MW	Obs MW	
1	N-a-1	Phe	1	>90	623.31	624.238	
2	N-a-2	Phe	2	>90	727.34	728.246	
3	N-a-3	Phe	3	~85	657.28	658.191	
4	N-a-4	Phe	4	>90	653.32	654.238	
5	N-a-5	Phe	5	~80	675.27	676.179	
6	N-a-6	Phe	6	~85	659.30	660.209	
7	N-a-7	Phe	7	~50	686.29	688.193	
8	N-a-8	Phe	8	>90	653.32	654.238	
9	N-a-9	Phe	9	~70	651.36	652.258	
10	N-a-10	Phe	10	>90	651.35	652.261	
11	N-a-11	Phe	11	~85	653.32	654.247	
12	N-a-12	Phe	12	>90	673.33	674.241	
13	N-a-13	Phe	13	>90	648.31	649.226	
14	N-a-14	Phe	14	>90	681.32	682.225	
15	N-a-15	Phe	15	>90	651.35	652.261	
16	N-a-16	Phe	16	~80	693.26	694.167	
17	N-a-17	Phe	17	>90	737.21	740.110	
18	N-a-18	Phe	18	~80	707.30	708.203	
19	N-a-19	Phe	19	>90	671.29	672.200	
20	N-a-20	Phe	20	~85	649.33	650.243	
21	N-a-21	Phe	21	>90	763.23	764.119	
22	N-a-22	Phe	22	-	713.27	-	
23	N-a-23	Phe	23	~80	683.34	684.249	
24	N-a-24	Phe	24	>90	673.27	674.244	

Table S1. The 123-member, N-terminal Library

25	N-a-25	Phe	25	~90	674.33	674.243
26	N-a-26	Phe	26	~50	638.33	639.244
27	N-a-27	Phe	27	~80	655.32	656.238
28	N-a-28	Phe	28	~80	749.21	750.108
29	N-a-29	Phe	29	~85	687.35	688.259
30	N-a-30	Phe	30	~70	651.35	652.261
31	N-a-31	Phe	31	~80	651.35	652.257
32	N-a-32	Phe	32	~50	681.39	682.299
33	N-a-33	Phe	33	>90	667.34	668.255
34	N-a-34	Phe	34	~60	643.38	644.291
35	N-a-35	Phe	35	~50	663.35	664.260
36	N-a-36	Phe	36	~50	673.35	672.244
37	N-a-37	Phe	37	>90	711.37	712.272
38	N-a-38	Phe	38	~70	603.35	604.270
39	N-a-39	Phe	39	~70	671.29	673.223
40	N-a-40	Phe	40	-	637.33	-
41	N-a-41	Phe	41	~85	655.32	656.238
42	N-a-42	Phe	42	~85	673.30	675.204
43	N-a-43	Phe	43	~80	709.30	710.203
44	N-a-44	Phe	44	~80	693.24	694.15
45	N-a-45	Phe	45	-	704.27	-
46	N-a-46	Phe	46	~85	710.29	711.198
47	N-a-47	Phe	47	~80	695.26	696.165
48	N-a-48	Phe	48	~60	691.29	692.196
49	N-a-49	Phe	49	>90	735.31	736.216
50	N-a-50	Phe	50	>90	701.33	702.242
51	N-a-51	Phe	51	>90	665.24	666.150
52	N-a-52	Phe	52	~70	715.34	716.245
53	N-a-53	Phe	53	>90	701.29	702.199
54	N-a-54	Phe	54	>90	689.29	690.204
55	N-a-55	Phe	55	>90	673.30	674.211
56	N-b-1	Leu	1	~80	665.35	666.258
57	N-b-2	Leu	2	~70	769.37	770.262
58	N-b-3	Leu	3	~70	699.31	700.208
59	N-b-4	Leu	4	~80	695.36	696.259
60	N-b-5	Leu	5	~70	717.30	718.206
61	N-b-6	Leu	6	~80	701.33	702.231
62	N-b-8	Leu	8	~70	695.36	696.256
63	N-b-10	Leu	10	~80	693.38	694.283
64	N-b-11	Leu	11	~80	695.36	696.259
65	N-b-12	Leu	12	-	751.33	-
66	N-b-13	Leu	13	~80	690.34	691.246
67	N-b-14	Leu	14	~70	723.35	724.247

-							
68	N-b-15	Leu	15	~70	693.38	694.282	
69	N-b-16	Leu	16	~70	569.16	570.153	
70	N-b-17	Leu	17	-	815.20	-	
71	N-b-18	Leu	18	~70	749.33	750.222	
72	N-b-19	Leu	19	~80	713.32	714.227	
73	N-b-20	Leu	20	~80	691.36	692.264	
74	N-b-21	Leu	21	~60	805.26	806.143	
75	N-b-22	Leu	22	-	791.27	-	
76	N-b-32	Leu	32	~70	723.42	746.299	
77	N-b-33	Leu	33	~80	709.37	710.278	
78	N-b-34	Leu	34	~70	685.41	686.312	
79	N-b-37	Leu	37	~85	753.40	754.294	
80	N-b-38	Leu	38	~60	645.38	646.292-	
81	N-b-40	Leu	40	~70	679.36	680. 265	
82	N-b-55	Leu	55	~70	715.33	716.229	
83	N-b-42	Leu	42	-	715.33	-	
84	N-b-43	Leu	43	~70	751.33	752.231	
85	N-b-44	Leu	44	~60	735.27	736.172	
86	N-b-46	Leu	46	~60	752.32	753.215	
87	N-b-47	Leu	47	-	737.29	-	
88	N-b-49	Leu	49	~60	777.34	778.241	
89	N-b-50	Leu	50	~60	743.36	744.255	
90	N-b-51	Leu	51	~80	707.27	708.174	
91	N-b-52	Leu	52	~70	757.38	758.269	
92	N-b-53	Leu	53	~70	743.32	744.217	
93	N-b-31	Leu	31	~80	693.38	694.332	
94	N-c-1	Ala	1	~70	547.28	548.299	
95	N-c-2	Ala	2	~80	651.31	652.310	
96	N-c-3	Ala	3	~60	581.24	582.284	
97	N-c-4	Ala	4	~80	577.29	578.301	
98	N-c-5	Ala	5	~70	599.23	600.245	
99	N-c-6	Ala	6	~70	583.26	584.279	
100	N-c-8	Ala	8	~80	577.29	578.340	
101	N-c-10	Ala	10	~70	575.31	576.330	
102	N-c-11	Ala	11	~80	577.29	578.301	
103	N-c-12	Ala	12	-	597.30	-	
104	N-c-13	Ala	13	~80	572.28	573.288	
105	N-c-14	Ala	14	~70	605.29	606.305	
106	N-c-15	Ala	15	~70	575.31	576.327	
107	N-c-16	Ala	16	~50	617.23	618.247	
108	N-c-17	Ala	17	-	661.17	-	
109	N-c-18	Ala	18	~40	631.27	632.251	
110	N-c-19	Ala	19	~50	595.26	596.270	

111	N-c-20	Ala	20	~40	573.30	574.333
112	N-c-21	Ala	21	~90	687.20	688.212
113	N-c-22	Ala	22	-	637.24	-
114	N-c-32	Ala	32	-	603.35	-
115	N-c-33	Ala	33	~80	591.31	592.331
116	N-c-34	Ala	34	~40	567.35	568.328
117	N-c-37	Ala	37	~60	635.34	636.382
118	N-c-38	Ala	38	~60	527.31	528.328
119	N-c-40	Ala	40	-	597.27	-
120	N-c-55	Ala	55	-	597.27	-
121	N-c-42	Ala	42	-	633.27	-
122	N-c-43	Ala	43	~50	617.21	618.272
123	N-c-44	Ala	44	-	634.26	-

"-" = Not characterized.

Table S2. The 75-member, C-terminal Library

#	ID	Stru	cture (Figure S5)	LCMS		
		R1' (AA)	R2' (Sulfonyl chloride)	% purity	Cal MW	Obs MW
1	C-a-1	Phe	1	-	674.27	-
2	C-a-2	Phe	2	~70	765.36	766.370
3	C-a-3	Phe	3	>90	749.30	750.318
4	C-a-4	Phe	4	-	760.33	-
5	C-a-5	Phe	5	~80	766.35	767.375
6	C-a-6	Phe	6	~60	751.32	752.341
7	C-a-7	Phe	7	~70	791.38	792.392
8	C-a-8	Phe	8	~70	757.39	758.410
9	C-a-9	Phe	9	~50	721.30	722.318
10	C-a-10	Phe	10	~70	771.41	772.422
11	C-a-11	Phe	11	~60	757.35	758.362
12	C-a-12	Phe	12	-	745.35	-
13	C-a-13	Phe	13	~80	729.36	730.369
14	C-a-14	Phe	14	-	841.48	-
15	C-a-15	Phe	15	-	695.38	-
16	C-a-16	Phe	16	>90	772.37	773.381
17	C-a-17	Phe	17	-	760.33	-
18	C-a-18	Phe	18	~50	757.39	758.409
19	C-a-19	Phe	19	-	785.42	-
20	C-a-20	Phe	20	~50	808.40	809.415
21	C-a-21	Phe	21	-	817.23	-
22	C-a-22	Phe	22	~60	765.36	766.372
23	C-a-23	Phe	23	~80	785.42	786.430
24	C-a-24	Phe	24	~50	733.33	734.345
25	C-a-25	Phe	25	~50	751.32	752.333

26	C-b-1	Leu	1	~70	695.38	696.352-			
27	С-b-2	Leu	2	~80	731.38	732.391			
28	С-b-3	Leu	3	~85	715.32	716.335			
29	С-b-4	Leu	4	-	726.34	-			
30	С-b-5	Leu	5	~80	732.37	733.380			
31	C-b-6	Leu	6	~30	717.34	718.354			
32	C-b-7	Leu	7	~80	757.39	758.406			
33	C-b-8	Leu	8	-	723.41	-			
34	C-b-9	Leu	9	-	687.32	-			
35	C-b-10	Leu	10	~60	737.42	738.438			
36	C-b-11	Leu	11	~70	723.37	724.390			
37	C-b-12	Leu	12	~70	711.37	712.408			
38	C-b-13	Leu	13	~80	695.38	696.383			
39	C-b-14	Leu	14	-	807.50	-			
40	C-b-15	Leu	15	-	661.39	-			
41	C-b-16	Leu	16	~80	738.38	739.405			
42	C-b-17	Leu	17	-	726.34	-			
43	C-b-18	Leu	18	~80	723.41	724.417			
44	C-b-19	Leu	19	-	751.44	-			
45	C-b-20	Leu	20	-	774.42	-			
46	C-b-21	Leu	21	-	783.24	-			
47	C-b-22	Leu	22	~60	731.38	732.389			
48	С-b-23	Leu	23	~80	751.44	752.441			
49	С-b-24	Leu	24	~70	699.35	700.364			
50	С-b-25	Leu	25	~85	717.34	718.357			
51	C-c-1	Ala	1	-	653.33	-			
52	C-c-2	Ala	2	>90	689.33	690.338			
53	C-c-3	Ala	3	>90	673.27	674.281			
54	C-c-4	Ala	4	-	684.30	-			
55	C-c-5	Ala	5	~70	690.32	691.332			
56	C-c-6	Ala	6	~85	675.29	676.307			
57	C-c-7	Ala	7	>90	715.34	716.352			
58	C-c-8	Ala	8	-	681.36	-			
59	C-c-9	Ala	9	~90	645.27	646.280			
60	C-c-10	Ala	10	>95	695.38	696.386			
61	C-c-11	Ala	11	>90	681.32	682.339			
62	C-c-12	Ala	12	>90	669.32	670.341			
63	C-c-13	Ala	13	>95	653.33	654.33			
64	C-c-14	Ala	14	-	765.45	-			
65	C-c-15	Ala	15	-	619.34	-			
66	C-c-16	Ala	16	~80	696.33	697.343			
67	C-c-17	Ala	17	-	684.30	-			
68	C-c-18	Ala	18	>90	681.38	682.369			

69	C-c-19	Ala	19	~90	709.39	710.409
70	C-c-20	Ala	20	~90	732.37	733.389
71	C-c-21	Ala	21	-	741.20	-
72	C-c-22	Ala	22	~90	689.33	690.335
73	C-c-23	Ala	23	~90	709.39	710.397
74	C-c-24	Ala	24	>90	657.30	658.312
75	C-c-25	Ala	25	~90	675.29	676.309

6. Reference

- K. von der Helm, S. Seelmeier, A. Kisselev, H. Nitschko, *Methods Enzymol.*, 1994, 241, 89-104; (b) C. L. Parr, T. Tanaka, H. Xiao, R. Y. Yada, *Febs J* 2008, 275, 1698-1707; (c) H. Xiao, T. Tanaka, M. Ogawa, R. Y. Yada, *Protein Eng Des Sel* 2007, 20, 625-633.
- (a) H. Sun, L.P. Tan,; L.Q. Gao, S.Q. Yao, *Chem. Commun.*, 2009, 677–679. (b) C. H. S. Lu, H. Sun, F. B. A. Bakar, M. Uttamchandani, W. Zhou, Y.-C. Liou, S.Q.Yao, *Angew. Chem. Int. Ed.*, 2008, 47, 7438-7441. (c) H. Sun, C.H.S. Lu, M. Uttamchandani, Y. Xia, Y.-C. Liou,; Yao, S.Q., *Angew. Chem. Intl. Ed.*, 2008, 47, 1698-1702. (d) Uttamchandani, M.; Lee, W.L.;Wang, J.; Yao, S.Q., *J. Am. Chem. Soc.*, 2007, *129*, 13110-13117.
- 3. Aili Heinsoo, etc. Tetrahedron: Asymmetry., 1995, 6(9), 2245-2247.
- 4. J.A. Ellman et al. *Tetrahedron*, 58, **2002**, 6305–6310.
- 5. Wang, J.; Uttamchandani, M.; Sun, L.P.; Yao, S.Q. Chem. Commun. 2006, 717-719.
- 6. Jeroen, S.; Dickschat, H.R.; Irene, W.D.; Stefan, S.; Eur. J. Org. Chem. 2005, 4141-4153.
- 7. Abderrahim, Bouzide, Gilles, Sauve.; Organic Lett. 2002, 4(14), 2329-2332.
- (a) Rajavel Srinivasan, Lay Pheng Tan, Hao Wu, Peng-Yu Yang, Karunakaran A. Kalesh and Shao Q. Yao. *Org. Biomol. Chem.*, 2009, *7*, 1821-1828; (b) Wang, J.; Uttamchandani, M.; Li, J.; Hu, M.; Yao, S.Q. *Chem. Commun.*, 2006, 3783-3785.