Supporting Information

Efficient Catalytic Syntheses of α-pyridones and 3(2H)-Isoquinolones through Ruthenium-catalyzed Cycloisomerization of 3-En-5-ynyl and o-alkynylphenyl Nitrones

Kamalkishore pati and Rai-Shung Liu*

Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, 30043, ROC. e-mail: <u>rsliu@mx.nthu.edu.tw</u>

Contents:

(1) Representative Synthetic procedure	res	S2
(2) Spectral data for key compounds -		S4
(3) NMR-Spectra for key compounds		-S19
(4) X-ray data for compound (5e)	S	5100

(1) Representative Synthetic procedures.

(a) General procedures

Unless otherwise noted, all experiments were carried out under argon atmosphere in oven-dried glassware using stander syringe, cannula and septa apparatus. Tetrahydrofuran, diethyl ether, Toluene and hexane were dried with sodium and distilled before use. DMF and CH₂Cl₂ were dried over CaH₂, and distilled before use. All the ¹ H NMR and ¹³C NMR were recorded in CDCl₃ solution. Coupling constants (*J* values) are given in Hertz (Hz) and chemical shifts are expressed in parts per million (ppm). Substrate was prepared from the corresponding readily available bromobenzaldehyde after several steps.

(b) Synthesis of substrate:

(c) Synthesis of 2-trimethylsilanylethynyl benzaldehyde (S-1):

To a solution of CuI (0.103 g, 10 mol %) in Et₃N (30 ml), was added 2-bromo-benzaldehyde (1.0 g, 5.43 mmol) and degassed with nitrogen for 15 minutes at 23 . To this resulting solution was added Pd(PPh₃)₄ (0.315 g, 5 mol %), and the mixture was stirred for 15 min before being treated with ethynyltrimethylsilane (0.586 g, 5.98 mmol) drop wise. The resulting solution was stirred at room temperature for 10 h, and then filtered through a celite pad, concentrated and eluted through a silica column to give the desired trimethylsilanylethynyl benzaldehyde (S-1) (0.92 g, 84%).

(d) Synthesis of 2-trimethylsilanylethynyl-nirtone (S-2):

Compound S-1 1g (5.2 m.mol) was dissolved in dry CH_2Cl to this solution methyl hydroxylamine hydrochloride 1.24g (7.8 m.mol) and anhydrous MgSo₄ 1.32g (10.4 m.mol) powdered molecularsives 1g, was added under nitrogen atmosphere, and stirred for 20h at room temperature. After completion of starting material reaction mixture was filtered and concentrated and purified by column chromatography, which yielded compound-(S-2) 86% (1.3g).

(e) Synthesis of 2-arylethynyl-nitrone (2a):

Compound-(S-2) 0.9g (3.0m.mol) was dissolved in CH_2Cl_2 and MeOH (4:1 ratio mixture) and to this solution K_2CO_3 0.83g (6.0 m.mol) was added and stirred at room temperature for 6 h. Completion of starting material reaction mixture was filtered and concentrated and purified by column chromatography, which yielded compound-(2a) 80 %(500mg).

(f) Typical procedure for the synthesis of compound (3a):

A catalytic tube contains TpRuPPh₃ (CH₃CN)₂SbF₆ (72 mg 0.084 mmol) was applied to vacuum for 15 minutes, and evacuated with argon gas. Then compound (**2a**) (150mg 0.84 m.mol) was dissolved in dry toluene this solution was added to above catalytic tube by using syringe, and degassed by purging argon gas into reaction mixture, then this reaction mixture was heated to 90°C and reaction monitored by TLC. After completion of starting material heating was stopped, and cooled to room temperature, filter through small celite bed. Solvent was removed under vacuum and purified by column chromatography over flurosil,

which yielded compound-(3a) 75% (120mg).

(2) Spectral data for key compounds:

Spectral data for compound 1a:

IR (neat, cm⁻¹): 3250 (s), 2250 (m), 1680 (s), 1540(s), 1464 (s), 1250(m), 1093 (s), 820(s), 776 (m); ¹H NMR (400 MHz, CDCl₃): δ 7.60 (s, 1 H), 7.35-7.41 (m, 5 H), 4.88 (s, 2H), 3.31 (s, 3H), 2.84 (m, 2H), 2.24 (m, 2H), 1.57 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 138.6, 135.5, 133.3, 129.2, 128.83, 128.8, 84.8, 82.6, 71.1, 31.0, 26.7, 21.7, 21.3; HRMS calcd for C₁₆H₁₇NO: 239.1310, found 239.1314.

Spectral data for compound 1b:

IR (neat, cm⁻¹): 3280 (s), 2989 (m), 2050(m), 1950(w), 1650(m), 1440 (s), 1204 (s), 1093 (s), 830(s); ¹H NMR (400 MHz, CDCl₃): δ 7.46 (s, 1 H), 7.33-7.42 (m, 5 H), 4.89 (s, 2H), 3.48 (s, 1H), 3.15-3.10 (m, 2H), 2.49-2.45 (m, 2H), 1.92-1.84 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 143.3, 133.2, 131.6, 129.1, 128.8, 128.0, 87.1, 70.5, 36.2, 33.8, 23.0 ; HRMS calcd for C₁₅H₁₅NO: 225.1154, found 225.1150.

Spectral data for compound 1c :

IR (neat, cm⁻¹): 3280 (s), 2950 (m), 1643 (s), 1540(b), 1460(s), 1320(m), 1204 (s),

1093 (s), 706 (m); ¹H NMR (400 MHz, CDCl₃): δ 8.04 (s, 1H), 7.31 (d, *J* = 5.2 Hz, 1H,), 7.13 (d, *J* = 5.2 Hz, 1H,), 3.87 (s, 3H) 3.34 (s, 1H) ; ¹³C NMR (100 MHz, CDCl₃): δ 135.5, 130.0, 129.4, 127.8, 121.5, 83.2, 77.3, 52.0 ; HRMS calcd C₈H₇NOS for: 165.0248, found 165.0252.

Spectral data for compound 1d :

IR (neat, cm⁻¹): 3320 (s), 3000(s), 2830 (m), 1673 (s),1540(m), 1310(s), 1240 (s), 1093 (s), 760 (m); ¹H NMR (400 MHz, CDCl₃): δ 7.64. (d, *J* = 6.4 Hz, 1H), 7.63 (s, 1H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.39 (m, 1H), 7.30(m, 1H), 3.93 (s, 3H), 3.66 (s, 1H) ; ¹³C NMR (100 MHz, CDCl₃): δ 154.2, 150.5, 127.4, 127.2, 124.0, 123.9, 120.4, 112.3, 87.7, 73.7, 54.5 ; HRMS calcd for C₁₂H₉NO₂: 199.0633, found 199.0637.

Spectral data for compound 1e :

IR (neat, cm⁻¹): 3238 (s), 2989 (m), 2920(s), 2750(s), 1654 (s), 1270(s), 1204 (s), 1093 (s), 705 (m); ¹H NMR (400 MHz, CDCl₃): δ 8.20 (s, 1H), 7.91 (m, 1H,), 7.84(m, 1H), 7.43(m, 2H), 3.93 (s, 3H), 3.71 (s, 1H) ; ¹³C NMR (100 MHz, CDCl₃): δ 139.2, 137.9, 136.5, 130.8, 126.4, 125.1, 122.6, 122.5, 117.3, 86.3, 76.5, 52.6 ; HRMS calcd for C₁₂H₉NOS: 215.0405, found215.0409.

Spectral data for compound 2a:

IR (neat, cm⁻¹): 3180 (s), 2940(s), 2890 (m), 1653 (s), 1426(m), 1280(s), 1204 (s), 1093 (s), 740 (m); ¹H NMR (400 MHz, CDCl₃): δ 9.25 (d, *J* = 8 Hz, 1 H), 7.97 (s, 1 H), 7.53(d, *J* = 0.8 Hz, 1H), 7.44-7.30 (m, 2H), 3.91 (s, 3H), 3.40(s, 1H),; ¹³C NMR (100 MHz, CDCl₃): δ 132.8, 131.6, 129.6, 129.2, 127.3, 120.8, 83.3, 80.9, 54.9 ; HRMS calcd for C₁₀H₉NO, 169.0684, found169.0687.

Spectral data for compound 2b:

IR (neat, cm⁻¹): 3280 (s), 2960(s), 2850 (m), 1630 (s), 1460(m), 1280(s),, 746 (m); ¹H NMR (400 MHz, CDCl₃): δ 9.29 (d, J = 3.2 Hz, 1 H), 8.03 (S, 1 H), 7.29-7.51(m, 8H), 5.06 (s, 1 H); 3.32 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 133.0, 132.6, 132.0, 131.6, 129.6, 129.2, 128.9, 127.5, 121.2, 83.2, 80.8, 71.6; HRMS calcd for C₁₆H₁₃NO: 235.0997, found 235.0994.

Spectral data for compound 2c:

IR (neat, cm⁻¹): 3230 (s), 2900(s), 2840 (m), 1680 (s), 1436(m), 1305(s), 1243 (s), 756 (m); ¹H NMR (400 MHz, CDCl₃): δ 9.05 (d, J = 2.4 Hz, 1H,), 7.92 (s, 1H), 7.47-7.43 (m, 1H), 7.01-6.96(m, 1H), 3.87 (s, 3H), 3.38 (s, 1H) ; ¹³C NMR (100 MHz, CDCl₃): δ 163.0, 161.1, 134.4 (d, J = 42), 133.5 132.0, 116.8 (d, J = 35),

114.2 (d), 83.1, 80.0, 55.1; HRMS calcd for C₁₀H₈FNO:177.0590, found177.0593.

Spectral data for compound 2d:

IR (neat, cm⁻¹): 3238 (s), 2980 (m), 1645 (s), 1295(s), 1245 (s), 1190 (s), 786 (m); ¹H NMR (400 MHz, CDCl₃): δ 9.36 (d, *J* = 8.6 Hz, 1H), 7.89 (s, 1H), 7.21-7.18 (m, 1H), 7.12-7.07 (m, 1H), 3.87 (s, 3H), 3.45 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 163.0, 161.1, 134.4 (d, *J* = 32 Hz), 133.5, 132.0, 116.8 (d, *J* = 88 Hz), 114.2 (d, *J*=35 Hz), 83.1, 80.0, 55.1; HRMS calcd forC₁₀H₈FNO:177.0590, found177.0593.

Spectral data for compound 2e:

IR (neat, cm⁻¹): 3300 (s), 3100 (s), 2940 (m), 1658 (s), 1304 (s), 1253 (s), 850 (m); ¹H NMR (400 MHz, CDCl₃): δ 9.35(d, J = 2.8 Hz, 1H), 7.93(s, 1H), 7.44(d, J = 8.4 Hz, 1H), 7.30(dd, J = 6.4 Hz, 1H), 3.91 (s, 3H), 3.44(s, 1H) ; ¹³C NMR (100 MHz, CDCl₃): δ 135.6, 133.6, 133.0, 131.8, 129.8, 127.1, 119.1, 84.2,80.1, 55.2; HRMS calcd for C₁₀H₈CINO: 193.0294, found193.0291.

Spectral data for compound 2f:

IR (neat, cm⁻¹): 3280 (s), 3150 (s), 2800 (m), 1650 (s), 1314 (s), 1260, 840 (m); ¹H NMR (400 MHz, CDCl₃): δ 9.27 (d, J = 8.8 Hz, 1H), 7.91(s, 1H), 7.39(s, 1H), 7.37(dd, J = 2.4 Hz, 1H,), 3.90 (s, 3H), 3.44(s,1H) ; ¹³C NMR (100 MHz, CDCl₃): S7 δ 135.1, 132.6, 132.0, 130.2, 129.5, 128.5, 122.4, 84.4,79.6, 55.0; HRMS calcd for C₁₀H₈ClNO: 193.0294, found193.0297.

Spectral data for compound 2g:

IR (neat, cm⁻¹): 3180 (s), 3050(s), 2900 (m), 1640 (s), 1330(s), 1290 (m), 1053 (s), 750 (m); ¹H NMR (400 MHz, CDCl₃): δ 9.65 (s, 1H), 8.0 (s, 1H), 7.63 (d, *J* = 8 Hz, 1H) 7.56(m, 1H), 3.94 (s, 3H), 3.53 (s, 1H) ; ¹³C NMR (100 MHz, CDCl₃): δ 133.1, 132.3, 131.6, 126.0, 125.9, 124.0, 123.9, 85.6, 79.6, 55.1 ; HRMS calcd for C₁₁H₈F₃NO₂: 227.0558, found 227.0561.

Spectral data for compound 2h :

IR (neat, cm⁻¹): 3250(s), 2960(s), 2850 (m), 1640 (s), 1530(m), 1460(m), 1425(s), 1300(s),1050(s), 780 (m); ¹H NMR (400 MHz, CDCl₃): δ 9.23 (d, *J* = 8.8 Hz, 1 H), 7.96 (s, 1H), 7.43-7.32 (m, 5 H), 7.01(s, 1H), 6.89 (d, *J* = 8 Hz, 1H) 5.03 (s, 2 H), 3.79 (s, 1 H), 3.24 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 160.1, 133.2, 131.9, 129.6, 129.3, 128.9, 124.8, 122.9, 118.0, 114.8, 83.1, 80.6, 71.2, 55.4 ; HRMS calcd for C₁₇H₁₅NO₂: 265.1103, found265.1107.

Spectral data for compound 2i :

IR (neat, cm⁻¹): 3180(s), 2960(s), 2850 (m), 1640 (s), 1530(m), 1460(m), 1425(s), 1300(s), 1050(s), 780 (m); ¹H NMR (400 MHz, CDCl₃): δ 9.30 (d, J = 8.8 Hz, 1 H), 7.87 (S, 1 H), 7.04 (d, J = 2.8 Hz, 1 H), 6.94 (dd, J = 2.8 Hz, 1 H); 3.87 (s, 3H), 3.82 (s, 3H), 3.39 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 159.7, 132.3, 130.1, 129.0, 124.6, 122.4, 117.7, 114.6, 83.1, 80.4, 55.1, 54.2 ; HRMS calcd for C₁₁H₁₁NO₂:189.0790, found189.0793.

Spectral data for compound 2j :

IR (neat, cm⁻¹): 3300 (s), 2990 (m), 2850(s), 1663 (s),1305(m), 1204 (s), 1093 (s), 750 (m); ¹H NMR (400 MHz, CDCl₃): δ 9.30 (d, *J* = 8.8 Hz, 1 H), 7.87 (S, 1 H), 7.04 (d, *J* = 2.8 Hz, 1 H), 6.94 (dd, *J* = 2.8 Hz, 1 H); 3.87 (s, 3H), 3.82 (s, 3H), 3.39 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 159.7, 132.3, 130.1, 129.0, 124.6, 122.4, 117.7, 114.6, 83.1, 80.4, 55.1, 54.2; HRMS calcd for C₁₁H₁₁NO₂:189.0790, found189.0793.

Spectral data for compound 2k :

IR (neat, cm⁻¹): 3260(s), 2960(s), 2850 (m), 1640 (s), 1530(m), 1460(m), 1425(s), 1305(s), 1050(s); ¹H NMR (400 MHz, CDCl₃): δ 9.32 (d, *J* = 8.8 Hz, 1 H), 7.90 (s, 1 H), 7.45-7.37 (m, 5 H), 7.02 (s,1H), 6.89 (d, *J* = 7.6 Hz, 1H), 5.03 (s, 2 H); 3.79

(s, 3H), 3.29 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 160.1, 133.2, 131.9, 129.6, 129.3, 128.9, 124.8, 122.9, 118.0, 114.8, 83.1, 80.6, 71.2, 55.4 ; HRMS calcd for C₁₇H₁₅NO₂: 265.1103, found265.1107.

Spectral data for compound 21 :

IR (neat, cm⁻¹): 3150(s), 3040 (s), 2989 (m), 2850 (m), 2150 (m), 1640 (s), 1530(m), 1460(m), 1425(s), 1300(s), 1050(s); ¹H NMR (400 MHz, CDCl₃): δ 9.07 (s, 1 H), 7.97 (s, 1 H), 7.48-7.35 (m, 5 H), 6.97 (s, 1 H), 5.04 (s, 2H), 3.90 (s, 3 H), 3.87 (s, 3 H), 3.28 (s, 3H) ; ¹³C NMR (100 MHz, CDCl₃): δ 160.1, 133.2, 131.9, 129.6, 129.3, 128.9, 124.8, 122.9, 118.0, 114.8, 83.1, 81.0, 55.9, 55.8 ; HRMS calcd for C₁₈H₁₇NO₃: 295.1208, found295.1211.

Spectral data for compound 2m :

IR (neat, cm⁻¹): 3300 (s), 2950 (m), 2850(s), 2150(s), 1653 (s), 1450(m), 1307(m), 1210 (s), 1093 (s), 750 (m) ; ¹H NMR (400 MHz, CDCl₃): δ 9.10 (s, 1 H), 7.89 (s, 1 H), 7.0 (s, 1 H), 3.94 (s, 3 H), 3.89 (s, 3 H), 3.88 (s, 3H), 3.35 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 149.6, 149.2, 133.1, 126.0, 114.7, 114.3, 109.9, 82.1, 81.0, 55.9, 54.6 ; HRMS calcd for C₁₂H₁₃NO₃: 219.0895, found219.0897.

Spectral data for compound 2n :

IR (neat, cm⁻¹): 3250 (s), 3050 (m), 2850(s), 2405(m), 2100(s), 1670 (s), 1450(m), 645(m) ; ¹H NMR (400 MHz, CDCl₃): δ 8.89 (s, 1 H), 7.95 (s, 1 H), 7.24-7.46 (m, 5 H), 6.92 (s, 1 H), 5.98 (s, 2 H), 5.02 (s, 2 H), 3.24 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 148.4, 148.2, 133.1, 132.2, 129.3, 128.9, 127.4, 116.1, 112.8, 107.8, 101.9, 82.3, 80.8, 71.4 ; HRMS calcd forC₁₇H₁₃NO₃: 279.0895, found 279.0897. **Spectral data for compound 3a :**

solid; m.p: 180-184°C; IR (neat, cm⁻¹): 3050 (s), 2940(s), 2860 (m), 2150(s), 1670(s), 1623 (s), 1540(m), 1430(s), 1204 (s), 1053 (s), 840 (m); ¹H NMR (400 MHz, CDCl₃): δ 8.13 (s, 1H), 7.34 (d, *J* = 8.4 Hz, 1H), 7.18-7.22 (m, 2H), 6.85 (t, *J* = 7.2 Hz, 1H), 6.70 (s, 1H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.9, 142.8, 140.5, 131.3, 124.6, 122.1, 117.3, 109.7, 39.2 ; HRMS calcd for C₁₀H₉NO:159.0684, found159.0683.

Spectral data for compound 3b :

solid; m.p: 190-195°C; IR (neat, cm⁻¹): 3100 (s), 2840(s), 2450 (m), 2150(s), 1670(s), 1623 (s), 1545(m), 1430(s), 1224 (s), 1053 (s), 780 (m); ¹H NMR (400 MHz, CDCl₃): δ 8.11 (s, 1 H), 7.15-7.3 (m, 8H), 6.83 (s, 1 H), 6.58 (s, 1 H), 5.25 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 161.1, 143.6, 136.9, 135.3, 125.2, S11

122.9, 118.2, 110.5, 53.8; HRMS calcd for C₁₆H₁₃NO: 235.0997, found 235.0993.

Spectral data for compound 3c :

solid; m.p: 78-82 °C; IR (neat, cm⁻¹): 3050 (s), 2960(s), 2850(s), 2430(m), 2150(s), 1680(s), 1623 (s), 1545(m), 1430(s), 1245 (s), 769(s); ¹H NMR (400 MHz, CDCl₃): δ 8.07 (s,1H), 7.29-7.26 (m, 1H), 7.07 (m, 1H), 6.96(m, 1H), 6.76(s, 1H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.7, 158.7, 156.2, 140.4, 139.1(d, J = 35.2 Hz), 127.7(d J = 32 Hz), 124.1, 123.8, 111.0, 108.0(d, j=88 Hz), 39.3;HRMS calcd for C₁₀H₈FNO:177.0590, found177.0587.

Spectral data for compound 3d :

solid; IR (neat, cm⁻¹): 3050 (s), 2980(s), 2840(s), 2430(m), 2150(s), 1670(s), 1623 (s), 1540(m), 1420(s), 1245 (s), 780(s); ¹H NMR (400 MHz, CDCl₃): δ 8.14 (s,1H), 7.40 (dd, *J* = 5.6, 1H), 6.83 (dd, *J* = 2, 1H), 6.72(m, 1H), 6.65(s, 1H), 3.80 (s, 3H) ; ¹³C NMR (100 MHz, CDCl₃): δ 165.3, 162.7, 160.6, 144.0, 141.0, 130.1(d, *J* = 40 Hz), 114.9, 114.6, 109.0, (d, *J* = 32 Hz), 106.2, 106.0, 39.2; HRMS calcd for C₁₀H₈FNO:177.0590, found177.0592.

Spectral data for compound 3e:

solid; IR (neat, cm⁻¹): 3100 (s), 2840(s), 2450 (m), 2150(s), 1670(s), 1623 (s), 1545(m), 1430(s), 1224 (s), 1053 (s), 840 (m); ¹H NMR (400 MHz, CDCl₃): δ 8.06 (s, 1H), 7.30 (s,1H), 7.18 (d, *J* = 8.8 Hz, 1H), 7.07(d, *J* = 8.8 Hz, 1H), 6.69 (s, 1H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.8, 140.9, 139.6, 132.5, 127.3, 126.6, 124.8, 117.1, 110.6, 39.3; HRMS calcd for C₁₀H₈ClNO: 193.0294, found 193.0291.

Spectral data for compound 3f:

solid; IR (neat, cm⁻¹): 3100 (s), 2840(s), 2420 (m), 2150(s), 1670(s), 1630 (s), 1545(m), 1425(s), 1230 (s), 1060 (s), 840 (m); ¹H NMR (400 MHz, CDCl₃): δ 8.13 (s, 1H), 7.31 (d, *J* = 9.2 Hz, 1H), 7.25(s, 1H), 6.82(d, *J* = 2 Hz, 1H), 6.60 (s, 1H),3.78 (s, 3H) ; ¹³C NMR (100 MHz, CDCl₃): δ 161.2, 143.2, 141.2 , 138.2 129.3, 124.0 , 123.1 (d), 115.6, 109.3, 39.6 ; HRMS calcd for C₁₀H₈ClNO: 193.0294, found 193.0298.

Spectral data for compound 3g:

solid; m.p: 128-130°C ; IR (neat, cm⁻¹): 3180 (s), 2950 (m), 2430(s), 1710(s), 1623 (s), 1450(s), 1320(s), 780 (m); ¹H NMR (400 MHz, CDCl₃): δ 8.28 (s, 1H), 7.68(s, 1H), 7.30 (d, J = 9.2Hz, 1H), 7.26(s, 1H), 6.82(dd, J = 1.6 Hz, 1H), 6.62 (s, 1H), 3.80 (s, 3H) ; ¹³C NMR (100 MHz, CDCl₃): δ 161.2, 142.8, 142.6, 126.3(d J = 10.2 Hz), 126.1-126.2(m) 126.0, 124.0, 115.1, 110.4, 39.4 ; HRMS calcd for

C₁₀H₈CF₃NO: 227.0558, found 227.0562.

Spectral data for compound 3h:

solid; m.p: 140-145°C ; IR (neat, cm⁻¹): 3100 (s), 2840(s), 2450 (m), 2150(s), 1670(s), 1625 (s), 1545(m), 1430(s), 1040 (s), 780 (m); ¹H NMR (400 MHz, CDCl₃): δ 7.88 (s, 1 H), 7.25-7.34 (m, 5 H), 7.17 (d, , J = 9.2 Hz, 1H), 6.93 (d, J = 2.4 Hz, 1H), 6.72 (s, 1 H), 6.46 (s, 1 H), 5.26 (s, 2H), 3.74 (s, 3H) ; ¹³C NMR (100 MHz, CDCl₃): δ 160.3, 154.6, 140.0, 136.2, 136.0, 128.9, 128.8, 128.6, 128.5, 128.3, 128.2, 127.7, 126.5, 117,9, 111.5, 101.0, 55.1, 52.9 ; HRMS calcd for C₁₇H₁₅NO₂: 265.1103, found265.1105.

Spectral data for compound 3i :

solid; m.p: 130-134 °C; IR (neat, cm⁻¹): 3050 (s), 2940(s), 2840(s), 2450 (m), 2150(s), 1720(s), 1625 (s), 1545(m), 1040 (s), 780 (m); ¹H NMR (400 MHz, CDCl₃): δ 7.897 (s, 1 H), 7.26 (s, 1 H), 7.23 (s,1H), 6.57-6.54 (m, 2H), 6.42 (d, *J*=2 Hz, 1 H), 3.82 (s, 3H), 3.73(s, 3 H), ; ¹³C NMR (100 MHz, CDCl₃): δ 161.6, 161.0, 144.8, 139.6, 129.0, 118.2, 114.2, 107.5, 99.2, 55.3, 38.8; HRMS calcd for C₁₁H₁₁NO₂:189.0790, found189.0792.

Spectral data for compound 3j :

solid; m.p: 133-136 °C; IR (neat, cm⁻¹): 3080 (s), 2950(s), 2840(s), 2450 (m), 2150(s), 1720(s), 1625 (s), 1545(m), 1040 (s), 780 (m); ¹H NMR (400 MHz, CDCl₃): δ 7.98 (s, 1 H), 7.25 (d, *J* = 9.2 Hz, 1H), 6.56 (m, 2 H), 6.41 (d, *J* = 2 Hz, 1H), 3.83 (s, 3H), 3.74 (s, 3H) ; ¹³C NMR (100 MHz, CDCl₃): δ 161.7, 161.0, 144.8, 139.9, 129.0, 118.2, 114.2, 107.5, 99.2, 55.3, 38.8 ; HRMS calcd for C₁₁H₁₁NO₂:189.0790, found189.0793.

Spectral data for compound 3k :

solid; m.p: 155-159 °C; IR (neat, cm⁻¹): 3100(s), 2840(s), 2450 (m), 2150(s), 1670(s), 1625 (s), 1545(m), 1420(s), 1250 (s), 780 (m; ¹H NMR (400 MHz, CDCl₃): δ 7.91 (s, 1 H), 7.34-7.26 (m, 5 H), 7.17 (d, *J* = 9.2 Hz, 1H), 6.93 (d, *J* = 2.4 Hz, 1H), 6.72 (s, 1 H), 6.46 (s, 1 H), 5.26 (s, 2H), 3.74 (s, 3H) ; ¹³C NMR (100 MHz, CDCl₃): δ 160.3, 154.6, 140.0, 136.2, 136.0, 128.9, 128.8, 128.6, 128.5, 128.3, 128.2, 127.7, 126.5, 117,9, 111.5, 101.0, 55.1, 52.9 ; HRMS calcd for C₁₇H₁₅NO₂: 265.1103, found265.1101.

Spectral data for compound 31 :

solid; m.p: 143-146 °C; IR (neat, cm⁻¹): 3150 (s), 2850(s), 2140(s), 1720(s),

1625 (s), 1545(m), 1280(s), 1040 (s), 780 (m); ¹H NMR (400 MHz, CDCl₃): δ 7.76 (s, 1 H), 7.28-7.33 (m, 5 H), 6.60 (d, J = 4.26 Hz, 1H), 6.45 (d, J = 12.3 Hz, 2 H), 5.32 (s, 2H), 3.89 (s, 3 H), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.4, 155.1, 147.9, 141.25, 136.3, 135.6, 128.9, 128.5, 128.3, 114.3, 108.8, 102.8, 100.9, 56.1, 55.7, 52.5 ; HRMS calcd for C₁₆H₂₀O₂: 244.1463, found 244.1467.

Spectral data for compound 3m :

solid; m.p: 167-171 °C; IR (neat, cm⁻¹): 3038 (s), 2989 (m), 1603 (s), 1204 (s), 1093 (s), 776 (m); ¹H NMR (400 MHz, CDCl₃): δ 7.81 (s, 1 H), 6.51 (d, J = 3.2 Hz, 2 H,), 6.40 (s, 1H), 3.90 (s, 3 H), 3.82 (s, 3 H), 3.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.6, 154.8, 147.8, 147.2, 141.2, 136.7, 113.9, 108.2, 102.6, 100.9, 56.0, 55.7, 38.6; HRMS calcd for C₁₂H₁₃NO₃: 219.0895, found219.0893.

Spectral data for compound 3n :

solid; m.p: 210-215 °C; IR (neat, cm⁻¹): 3050 (s), 2840(s), 2450 (m), 2150(s), 1680(s), 1625 (s), 1535(m), 1425(m), 1050 (s), 680 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.69 (s, 1 H), 7.27-7.31 (m, 5 H), 6.60 (s, 1 H), 5.89 (s, 2 H), 5.29 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 160.2, 152.6, 145.6, 152.5, 136.2, 135.9, 128.9, 128.5, 128.2, 128.1, 114.8, 110.3, 101.2, 100.2, 98.6, 52.4 ; HRMS calcd for C₁₇H₁₃NO₃:279.0895, found 279.0897.

Spectral data for compound 5a :

solid; m.p: 120-124 °C; IR (neat, cm⁻¹): 3138 (s), 2859 (m), 1683 (s), 1425(s), 1375(m), 1254 (s), 1093 (s), 760 (m); ¹H NMR (400 MHz, CDCl₃): δ 7.18-7.27 (m, 5 H), 6.92 (s, 1H), 6.29 (s, 1H), 5.04 (s, 2H), 2.54 (d, J = 6 Hz, 2 H), 2.38 (d, J = 5.6 Hz, 2 H), 1.60-1.63 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 161.7, 151.7, 136.7, 134.1, 128.5, 127.8, 127.5, 117.9, 116.4, 51.1, 28.6,25.1, 22.5, 21.9 ; HRMS calcd for C₁₆H₁₇NO: 229.1310, found 229.1313.

Spectral data for compound 5b :

solid; m.p: 98-102 °C; IR (neat, cm⁻¹): 3058 (s), 2809 (m), 1603 (s), 1540(s), 1450(b), 1224 (s), 1093 (s), 830 (m); ¹H NMR (400 MHz, CDCl₃): δ 7.27-7.25 (m, 3 H), 7.21 (d, *J* = 1.6 Hz, 1H,), 7.16-7.14 (m, 2H), 7.03 (s, 1H), 5.08 (s, 2H), 2.86 (m, 2H), 2.78 (t, *J* = 7.6 Hz, 2H), 1.98 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 166.0, 150.9, 142.6, 133.5, 131.3, 129.1, 127.8, 118.6, 63.5, 31.3, 30.2, 23.7 ; HRMS calcd for C₁₅H₁₅NO: 225.1154, found 225.1152.

Spectral data for compound 5c :

solid; m.p: 92-94 °C; IR (neat, cm⁻¹): 3080 (s), 2949 (m), 2450(s), 1683 (s), 1304 (s), 1093 (s), 706 (m); ¹H NMR (400 MHz, CDCl₃): δ 7.82 (s, 1H), 7.44 (d, *J* = 5.6 s17

Hz, 1H), 6.82 (d, J = 5.2 Hz, 1H), 6.75 (s, 1H), 3.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.5, 152.4, 136.7, 132.2, 121.7, 119.0, 109.4, 38.8; HRMS calcd for C₇H₈NOS: 165.0248, found 165.0246.

Spectral data for compound 5d :

solid; m.p: 210-214 °C; IR (neat, cm⁻¹): 3100(s), 2940(s), 2850(m), 1673(s), 1540(m), 1240 (s), 1093 (s), 760 (m); ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, J = 7.6 Hz, 1H), 7.58 (s, 1H), 7.54 (m, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.27 (m, 1H), 6.93 (s, 1H), 3.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.7, 159.7, 141.6, 140.2, 131.6, 123.2, 121.6, 119.7, 112.0, 107.4, 38.8; HRMS calcd for C₁₂H₉NO₂: 199.0633, found 199.0635.

Spectral data for compound 5e :

solid; m.p: 235-240°C ; IR (neat, cm⁻¹): 3100(s), 2930 (m), 2780(s), 1668(s), 1540(m),1450(m), 1320(s), 1240 (s), 1053 (s), 705 (s); ¹H NMR (400 MHz, CDCl₃): δ 7.92 (m, 1H), 7.70 (s, 1H), 7.62 (d, *J* = 8 Hz, 1H), 7.46 (m, 1H), 7.37 (m, 1H), 7.15 (s, 1H), 3.68 (s, 3H) ; ¹³C NMR (100 MHz, CDCl₃): δ 161.9, 149.3, 143.2, 132.4, 131.3, 130.5, 125.0, 123.8, 117.7, 109.3, 39.7; HRMS calcd for C₁₂H₉NOS: 215.0405, found 215.0403.

(3) NMR spectra- for key compounds:

1

(4) X-ray data for compound(5e) :

Table 1. Crystal data and structure refinement for 090119 0m.

Identification code	090119_0m	
Empirical formula	C12 H9 N O S	
Formula weight	215.26	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	<i>P</i> 2(1)/ <i>n</i>	
Unit cell dimensions	a = 11.749(4) Å	砀=90°.
	b = 5.6906(18) Å	弱=106.489(10)°.
	c = 15.174(5) Å	砀 = 90°.
Volume	972.8(6) Å ³	
Z	4	
Density (calculated)	1.470 Mg/m ³	
Absorption coefficient	0.299 mm ⁻¹	
F(000)	448	
Crystal size	0.30 x 0.15 x 0.03 mm ³	
Theta range for data collection	1.95 to 25.12°.	
Index ranges	-14≤h≤13, -6≤k≤4, -18≤l≤16	
Reflections collected	4566	
Independent reflections	1716 [R(int) = 0.0343]	
Completeness to theta = 25.12°	98.5 %	
Absorption correction	Empirical	
Max. and min. transmission	0.7452 and 0.5579	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	1716 / 0 / 137	
Goodness-of-fit on F ²	1.039	
Final R indices [I>2sigma(I)]	R1 = 0.0431, wR2 = 0.1158	
R indices (all data)	R1 = 0.0554, wR2 = 0.1255	
Largest diff. peak and hole	0.408 and -0.302 e.Å ⁻³	

				· · · · · · · · · · · · · · · · · · ·
	Х	У	Z	U(eq)
		4700(4)	2004(2)	
C(1)	9933(2)	4709(4)	2004(2)	42(1)
C(2)	10493(2)	4711(5)	1318(2)	51(1)
C(3)	11286(2)	6482(5)	1310(2)	55(1)
C(4)	11517(2)	8238(5)	1973(2)	53(1)
C(5)	10960(2)	8247(5)	2655(2)	45(1)
C(6)	10154(2)	6463(4)	2677(2)	39(1)
C(7)	9472(2)	6116(4)	3329(1)	36(1)
C(8)	9416(2)	7452(4)	4062(2)	40(1)
C(9)	8681(2)	6801(4)	4627(2)	42(1)
C(10)	8130(2)	3300(4)	3674(2)	42(1)
C(11)	8780(2)	4022(4)	3118(2)	38(1)
C(12)	7363(2)	3836(5)	4983(2)	57(1)
N(1)	8098(2)	4636(3)	4413(1)	40(1)
O(1)	8533(2)	7980(4)	5271(1)	58(1)
S(1)	8912(1)	2598(1)	2136(1)	49(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for 090119_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-C(2)	1.380(3)
C(1)-C(6)	1.399(3)
C(1)-S(1)	1.750(2)
C(2)-C(3)	1.375(4)
C(2)-H(2)	0.9300
C(3)-C(4)	1.389(4)
C(3)-H(3)	0.9300
C(4)-C(5)	1.372(3)
C(4)-H(4)	0.9300
C(5)-C(6)	1.396(3)
C(5)-H(5)	0.9300
C(6)-C(7)	1.451(3)
C(7)-C(8)	1.365(3)
C(7)-C(11)	1.427(3)
C(8)-C(9)	1.427(3)
C(8)-H(8)	0.9300
C(9)-O(1)	1.237(3)
C(9)-N(1)	1.402(3)
C(10)-C(11)	1.353(3)
C(10)-N(1)	1.365(3)
C(10)-H(10)	0.9300
C(11)-S(1)	1.742(2)
C(12)-N(1)	1.457(3)
C(12)-H(12A)	0.9600
C(12)-H(12B)	0.9600
C(12)-H(12C)	0.9600
C(2)-C(1)-C(6)	121.4(2)
C(2)-C(1)-S(1)	125.2(2)
C(6)-C(1)-S(1)	113.36(17)
C(3)-C(2)-C(1)	118.5(2)
C(3)-C(2)-H(2)	120.8
C(1)-C(2)-H(2)	120.8
C(2)-C(3)-C(4)	121.0(2)
C(2)-C(3)-H(3)	119.5

Table 3. Bond lengths [Å] and angles [°] for 090119_0m.

C(4)-C(3)-H(3)	119.5
C(5)-C(4)-C(3)	120.8(3)
C(5)-C(4)-H(4)	119.6
C(3)-C(4)-H(4)	119.6
C(4)-C(5)-C(6)	119.2(2)
C(4)-C(5)-H(5)	120.4
C(6)-C(5)-H(5)	120.4
C(5)-C(6)-C(1)	119.2(2)
C(5)-C(6)-C(7)	128.7(2)
C(1)-C(6)-C(7)	112.2(2)
C(8)-C(7)-C(11)	119.4(2)
C(8)-C(7)-C(6)	130.1(2)
C(11)-C(7)-C(6)	110.52(19)
C(7)-C(8)-C(9)	121.5(2)
C(7)-C(8)-H(8)	119.2
C(9)-C(8)-H(8)	119.2
O(1)-C(9)-N(1)	119.3(2)
O(1)-C(9)-C(8)	125.3(2)
N(1)-C(9)-C(8)	115.4(2)
C(11)-C(10)-N(1)	119.7(2)
С(11)-С(10)-Н(10)	120.1
N(1)-C(10)-H(10)	120.1
C(10)-C(11)-C(7)	120.1(2)
C(10)-C(11)-S(1)	126.52(19)
C(7)-C(11)-S(1)	113.38(16)
N(1)-C(12)-H(12A)	109.5
N(1)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
N(1)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(10)-N(1)-C(9)	123.62(19)
C(10)-N(1)-C(12)	118.2(2)
C(9)-N(1)-C(12)	118.1(2)
C(11)-S(1)-C(1)	90.52(11)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	38(1)	44(1)	42(1)	-2(1)	6(1)	5(1)
C(2)	55(1)	60(2)	40(1)	-7(1)	14(1)	5(1)
C(3)	57(2)	64(2)	46(2)	6(1)	20(1)	7(1)
C(4)	50(1)	58(2)	53(2)	6(1)	18(1)	-5(1)
C(5)	45(1)	45(2)	43(1)	2(1)	9(1)	-1(1)
C(6)	34(1)	41(1)	38(1)	0(1)	5(1)	3(1)
C(7)	32(1)	35(1)	36(1)	0(1)	4(1)	3(1)
C(8)	38(1)	38(1)	40(1)	-5(1)	6(1)	-3(1)
C(9)	40(1)	44(1)	39(1)	-1(1)	6(1)	3(1)
C(10)	39(1)	36(1)	48(1)	-1(1)	7(1)	-1(1)
C(11)	35(1)	37(1)	40(1)	-3(1)	6(1)	1(1)
C(12)	64(2)	61(2)	53(2)	5(1)	26(1)	-8(1)
N(1)	41(1)	41(1)	38(1)	4(1)	11(1)	2(1)
O(1)	64(1)	63(1)	51(1)	-19(1)	25(1)	-9(1)
S(1)	49(1)	48(1)	51(1)	-16(1)	13(1)	-6(1)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 090119_0m. The anisotropicdisplacement factor exponent takes the form: $-2\hbar\pi^2 [h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}]$

	Х	у	Z	U(eq)
H(2)	10337	3541	871	62
H(3)	11673	6505	853	66
H(4)	12055	9422	1954	64
H(5)	11118	9428	3097	54
H(8)	9866	8818	4197	47
H(10)	7708	1898	3553	50
H(12A)	6597	4568	4779	86
H(12B)	7735	4252	5612	86
H(12C)	7273	2161	4932	86

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for 090119_0m.