Supporting Information

Addition of ArSSAr to Dienes via Intramolecular C-C Bond Formation Initiated by a Catalytic Amount of ArS^{+}
Kouichi Matsumoto, Shunsuke Fujie, Seiji Suga, Toshiki Nokami and Jun-ichi Yoshida*
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.

General Remarks.

GC analysis was performed on a SHIMADZU GC-2014 gas chromatograph equipped with a flame ionization detector and a fused silica capillary column (column, CBPI; $0.25 \mathrm{~mm} \times 25 \mathrm{~m}$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} on Varian MERCURY plus-400 (${ }^{1} \mathrm{H} 400 \mathrm{MHz},{ }^{13} \mathrm{C} 100 \mathrm{MHz}$) or JEOL ECA-600P $\left({ }^{1} \mathrm{H} 600 \mathrm{MHz}\right.$, $\left.{ }^{13} \mathrm{C} 150 \mathrm{MHz}\right)$ spectrometer with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard unless otherwise noted. EI mass spectra were recorded on JMS-SX102A spectrometer. FAB mass spectra were recorded on JMX-HX110A spectrometer. Thin-layer chromatography (TLC) was carried out by using Merck precoated silica gel F_{254} plates (thickness 0.25 mm). Flash chromatography was carried out on a column of silica gel (Kanto Chem. Co., Silica Gel N , spherical, neutral, $40-100 \mu \mathrm{~m}$). Gel permeation chromatography (GPC) was carried out on Japan Analytical Industry LC-908 equipped with JAIGEL-1H and 2 H using CHCl_{3} as eluent. High performance liquid chromatography (HPLC) was carried out on Shimadu LC-10 equipped with YMC 12S05-2520WT and SL12S05-2546WT. All reactions were carried out under Ar atmosphere unless otherwise noted.

Materials.

$\mathrm{Bu}_{4} \mathrm{NB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}$ was prepared from $\mathrm{Bu}_{4} \mathrm{NBr}(35.1 \mathrm{~g}, 109 \mathrm{mmol})$ and aqueous solution of $\mathrm{NaB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}(10 \mathrm{wt} \%, 499 \mathrm{~g}, 71.1 \mathrm{mmol})$ in water $(100 \mathrm{~mL})$. The mixture was diluted with EtOAc and was washed with water. After drying over MgSO_{4} and removal of solvent, the precipitate was recrystallized from $\mathrm{CHCl}_{3} /$ hexane and was dried at 50 ${ }^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$ overnight to give $\mathrm{Bu}_{4} \mathrm{NB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}(65.1 \mathrm{~g}, 70.6 \mathrm{mmol}, ~ 99 \%)$. Dichloromethane was washed with water, distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$, redistilled from dried $\mathrm{K}_{2} \mathrm{CO}_{3}$ to remove a trace amount of acid, and was stored over molecular sieves 4A. $\operatorname{ArSSAr}\left(\mathrm{Ar}=p-\mathrm{FC}_{6} \mathrm{H}_{4}\right)$ was prepared according to the procedure in the literature, ${ }^{1}$ and was identified by the comparison of its spectral data with that of authentic sample. ${ }^{2}$ $\operatorname{ArSSAr}\left(\mathrm{Ar}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)$ was prepared according to the procedure in the literature ${ }^{1}$: TLC $R_{f} 0.33$ (hexane/EtOAc 10:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.79(\mathrm{~s}, 6 \mathrm{H}), 6.80-6.85$ $(\mathrm{m}, 4 \mathrm{H}), 7.36-7.42(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.3$, 114.6, 128.4, 132.6, 159.9; LRMS (EI) m/z $278\left(\mathrm{M}^{+}\right), 139\left(\mathrm{M}^{+}-\mathrm{S}\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)\right)$; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right) 278.0435$, found 278.0436.

Synthesis of Dienes.

(4,4,7-Trimethylocta-1,6-dienyl)benzene (3a).

3,3,6-trimethylhept-5-enal was prepared according to the procedure in the literature ${ }^{3}$: TLC $R_{f} 0.37$ (hexane/EtOAc 20:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.05$ (s, $6 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $2 \mathrm{H}), 5.15-5.22(\mathrm{~m}, 1 \mathrm{H}), 9.83(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.9$, 26.0, 27.4, 34.7, 40.9, 54.5, 120.0, 134.3, 203.7; LRMS (EI) m/z 153 (M^{+}-H); HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}\left(\mathrm{M}^{+}\right) 154.1358$, found 154.1362.

To a solution of benzyltriphenylphosphonium bromide ($6.91 \mathrm{~g}, 16 \mathrm{mmol}$) in DMF (40 mL) was added $\mathrm{NaH}(55 \%$ in oil, $693 \mathrm{mg}, 16 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h . Then 3,3,6-trimethylhept-5-enal ($811 \mathrm{mg}, 5.3 \mathrm{mmol}$) in DMF (20 mL) was added slowly, and the mixture was stirred at room temperature for 3 h . The reaction mixture was partitioned between ether and saturated brine. The organic phase was separated and washed with saturated brine and dried over MgSO_{4}. After removal of the solvent, the crude product was purified via flash chromatography (hexane) followed by GPC to give the title compound (3a) ($769 \mathrm{mg}, 3.4 \mathrm{mmol}, 64 \%$). This compound was obtained as a mixture of E / Z isomers ($Z: E=1.4: 1$ by ${ }^{1} \mathrm{H}$ NMR analysis): TLC $\mathrm{R}_{f} 0.54$ (hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(\mathrm{~s}, 6 \mathrm{H}, Z$ isomer), $0.90(\mathrm{~s}, 6 \mathrm{H}, E$ isomer), 1.57 (s, $3 \mathrm{H}, Z$ isomer), 1.61 (s, $3 \mathrm{H}, E$ isomer), 1.66 (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}, Z$ isomer), 1.74 (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}, E$ isomer), 1.90 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, Z$ isomer), 1.93 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, E$ isomer), 2.09 (dd, $J=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}, E$ isomer), 2.25 (dd, $J=7.6,2.0 \mathrm{~Hz}, 2 \mathrm{H}, Z$ isomer), $5.08-5.14(\mathrm{~m}, 1 \mathrm{H}, Z$ isomer), $5.19-5.26(\mathrm{~m}, 1 \mathrm{H}, E$ isomer), $5.76(\mathrm{dt}, J=12.0$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}, Z$ isomer), 6.25 (dt, $J=15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, E$ isomer), 6.36 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, E isomer), 6.49 (dt, $J=12.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, Z$ isomer), 7.16-7.37 (m, 5 H$) ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.9$ and 18.0, 26.0 and 26.1, 26.8 and $26.9,34.8$ and $35.1,39.9$ and 40.0, 40.2 and $45.4,121.10$ and 121.14, 126.0 and $128.0,126.3$ and $128.5,126.8$ and 128.8 , 128.1 and 129.7, 130.0 and 131.9, 132.88 and 132.92, 138.0 and 138.0; LRMS (EI) m/z $228\left(\mathrm{M}^{+}\right), 159\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 111\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHPh}\right)$; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{24}\left(\mathrm{M}^{+}\right)$228.1878, found 228.1878.

(4,4,7-Trimethylocta-1,6-dienyl)benzene (3b).

To a solution of diethylbenzylphosphonate ($24.3 \mathrm{~g}, 106.5 \mathrm{mmol}$) in THF (200 mL) was added n - $\mathrm{BuLi}\left(1.65 \mathrm{M}\right.$ in hexane, $67 \mathrm{~mL}, 110.6 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h and then the solution of 3,3,6-trimethylhept-5-enal (1.26 g , 8.2 mmol) in THF (20 mL) was added slowly. The mixture was warmed gradually to room temperature and was stirred for 3.5 h . The reaction mixture was partitioned between ether and saturated aqueous NaHCO_{3}. The organic phase was separated and washed with saturated brine and dried over MgSO_{4}. After removal of the solvent, the crude product was purified via flash chromatography (hexane) followed by GPC to give the title compound (3b) ($819.1 \mathrm{mg}, 3.6 \mathrm{mmol}, 44 \%$, purity ca. 98% by GC analysis): TLC $R_{f} 0.54$ (hexane); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.89(\mathrm{~s}, 6 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.74$ (d, $J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{dd}, J=7.6,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.20-5.25(\mathrm{~m}$, $1 \mathrm{H}), 6.25(\mathrm{dt}, J=15.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.0,26.1,26.9,35.1,40.2,45.4,121.1,126.0,126.8,128.0$, 128.5, 131.9, 132.9, 138.0; LRMS (EI) m/z 228 (M^{+}); HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{24}\left(\mathrm{M}^{+}\right)$ 228.1878, found 228.1880.

1-Methyl-4-(4,4,7-trimethylocta-1,6-dienyl)benzene (3c).

To a solution of p-methylbenzylbromide $(9.5 \mathrm{~g}, 51.3 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(100 \mathrm{~mL})$ was added triphenylphosphine $(13.5 \mathrm{~g}, 51.5 \mathrm{mmol})$. Then the mixture was stirred at reflux condition over night. The removal of the solvent gave p-methylbenzyltriphenylphosphonium bromide ($21.8 \mathrm{~g}, 48.7 \mathrm{mmol}$, ca. 95%), and this material was used for the subsequent reaction without further purification. To a solution of p-methylbenzyltriphenylphosphonium bromide (7.0 g , ca. 15.6 mmol) in DMF (80 mL) was added $\mathrm{NaH}(55 \%$ in oil, $749 \mathrm{mg}, 17.2 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2.5 h . Then, 3,3,6-trimethylhept-5-enal ($925 \mathrm{mg}, 6.0 \mathrm{mmol}$) in DMF (18 mL)
was added slowly, and the mixture was stirred at room temperature over night. The reaction mixture was partitioned between ether and saturated brine. The organic phase was separated and washed with saturated brine and dried over MgSO_{4}. After removal of the solvent, the crude product was purified via flash chromatography (hexane) followed by GPC to give the title compound (3c) ($980 \mathrm{mg}, 4.0 \mathrm{mmol}, 67 \%$). This compound was obtained as a mixture of E / Z isomers ($Z: E=1.2: 1$ by ${ }^{1} \mathrm{H}$ NMR analysis): TLC $\mathrm{R}_{f} 0.36$ (hexane); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87$ ($\mathrm{s}, 6 \mathrm{H}, Z$ isomer), 0.89 (s, $6 \mathrm{H}, E$ isomer), 1.58 (s, $3 \mathrm{H}, Z$ isomer), 1.60 (s, $3 \mathrm{H}, E$ isomer), 1.67 (s, $3 \mathrm{H}, Z$ isomer), 1.73 (s, $3 \mathrm{H}, E$ isomer), $1.91(\mathrm{t}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, E$ and Z isomers), 2.08 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, E$ isomer), 2.24 (dd, $J=7.3,1.7 \mathrm{~Hz}, 2 \mathrm{H}, Z$ isomer), 2.32 (s, $3 \mathrm{H}, E$ isomer), 2.34 (s, $3 \mathrm{H}, Z$ isomer), 5.10-5.14 (m, 1H, Z isomer), $5.20-5,24$ (m, $1 \mathrm{H}, E$ isomer), 5.71 (dt, $J=11.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}$, Z isomer), 6.19 (dt, $J=15.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}, E$ isomer), 6.32 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, E$ isomer), 6.45 (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, Z$ isomer), 7.09-7.26 (m, $5 \mathrm{H}, E$ and Z isomers); ${ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 17.9$ and 18.0, 21.12 and 21.16, 26.0 and 26.1, 26.8 and 26.9, 34.8 and $35.1,39.98$ and $40.0,40.2$ and $45.4,121.16$ and $121.20,125.9$ and 127.0, 128.7 and $128.8,129.1$ and $129.2,129.8$ and 131.7, 132.8 and $132.9,135.1$ and 135.2, 136.0 and 136.5; LRMS (EI) m/z $242\left(\mathrm{M}^{+}\right), 227\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 173\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{26}\left(\mathrm{M}^{+}\right) 242.2035$, found 242.2033.

1-Chloro-4-(4,4,7-trimethylocta-1,6-dienyl)benzene (3d).

To a solution of p-chlorobenzylbromide ($20.8 \mathrm{~g}, 101 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(100 \mathrm{~mL})$ was added triphenylphosphine ($27.3 \mathrm{~g}, 104 \mathrm{mmol}$). Then the mixture was stirred at reflux condition over night. The removal of the solvent gave p-chlorobenzyltriphenylphosphonium bromide ($45.8 \mathrm{~g}, 98 \mathrm{mmol}$, ca. 97%), and this material was used for the subsequent reaction without further purification. To a solution of p-chlorobenzyltriphenylphosphonium bromide $(8.3 \mathrm{~g}$, ca. 17.7 mmol) in DMF (70 mL) was added $\mathrm{NaH}(55 \%$ in oil, $788 \mathrm{mg}, 18.1 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h . Then, 3,3,6-trimethylhept-5-enal ($1.02 \mathrm{~g}, 6.6 \mathrm{mmol}$) in DMF (17 mL) was added slowly, and the mixture was stirred at room temperature over night. The reaction mixture was partitioned between ether and saturated aqueous NaHCO_{3}. The organic phase was separated and washed with saturated aqueous NaHCO_{3} and dried over MgSO_{4}. After removal of the solvent, the crude product was purified via flash chromatography
(hexane) followed by GPC to give the title compound (3d) ($1.17 \mathrm{~g}, 4.5 \mathrm{mmol}, 68 \%$). This compound was obtained as a mixture of E / Z isomers ($Z: E=2.2: 1$ by ${ }^{1} \mathrm{H}$ NMR analysis): TLC $\mathrm{R}_{f} 0.60$ (hexane); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87$ (s, $6 \mathrm{H}, Z$ isomer), $0.90(\mathrm{~s}, 6 \mathrm{H}$, E isomer), 1.57 (s, $3 \mathrm{H}, Z$ isomer), 1.60 (s, $3 \mathrm{H}, E$ isomer), 1.67 (s, $3 \mathrm{H}, Z$ isomer), 1.73 (s, $3 \mathrm{H}, E$ isomer), 1.89 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, Z$ isomer), 1.92 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, E$ isomer), 2.08 (dd, $J=7.2,0.7 \mathrm{~Hz}, 2 \mathrm{H}, E$ isomer), 2.19 (dd, $J=7.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}, Z$ isomer), 5.07-5.13 (m, 1H, Z isomer), $5.19-5.24$ (m, $1 \mathrm{H}, E$ isomer), 5.77 (dt, $J=11.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}$, Z isomer), 6.22 (dt, $J=15.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}, E$ isomer), $6.30(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, E$ isomer), $6.43\left(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, Z\right.$ isomer), 7.18-7.29 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 17.9$ and $18.0,26.0$ and 26.1, 26.8 and $26.9,34.8$ and $35.1,39.87$ and $39.93,40.2$ and $45.4,120.96$ and $121.03,127.1$ and $128.2,128.6$ and $130.1,128.81$ and $128.84,130.5$ and 130.7, 132.0 and $132.3,132.97$ and 133.04, 136.36 and 136.44; LRMS (EI) m/z 262 $\left(\mathrm{M}^{+}\right), 193\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{Cl}_{1}\left(\mathrm{M}^{+}\right) 262.1488$, found 262.1488 .

1-Methyl-2-(4,4,7-trimethylocta-1,6-dienyl)benzene (3e).

To a solution of o-methylbenzylbromide ($20.3 \mathrm{~g}, 110 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(100 \mathrm{~mL})$ was added triphenylphosphine ($28.8 \mathrm{~g}, 110 \mathrm{mmol}$). Then the mixture was stirred at reflux condition over night. The removal of the solvent gave o-methylbenzyltriphenylphosphonium bromide $(46.4 \mathrm{~g}, 104 \mathrm{mmol}$, ca. 95%), and this material was used for the subsequent reaction without further purification. To a solution of o-methylbenzyltriphenylphosphonium bromide (9.0 g , ca. 20.1 mmol) in DMF (70 mL) was added $\mathrm{NaH}(55 \%$ in oil, $915 \mathrm{mg}, 21 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . Then, 3,3,6-trimethylhept-5-enal ($933 \mathrm{mg}, 6.0 \mathrm{mmol}$) in DMF was added slowly, and the mixture was stirred at room temperature for 5 h . The reaction mixture was partitioned between ether and saturated brine. The organic phase was separated and washed with saturated brine and dried over MgSO_{4}. After removal of the solvent, the crude product was purified via flash chromatography (hexane) followed by GPC to give the title compound ($\mathbf{3 e}$) ($1.15 \mathrm{~g}, 4.7 \mathrm{mmol}, 78 \%$). This compound was obtained as a mixture of E / Z isomers ($Z: E=1.3: 1$ by ${ }^{1} \mathrm{H}$ NMR analysis): TLC $\mathrm{R}_{f} 0.52$ (hexane); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.82$ ($\mathrm{s}, 6 \mathrm{H}, Z$ isomer), 0.91 ($\mathrm{s}, 6 \mathrm{H}, E$ isomer), $1.56(\mathrm{~s}, 3 \mathrm{H}, Z$ isomer), 1.61 (s, $3 \mathrm{H}, E$ isomer), 1.65 (d, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}, Z$ isomer), 1.74 (d, $J=0.7 \mathrm{~Hz}$,
$3 \mathrm{H}, E$ isomer), 1.85 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, Z$ isomer), 1.93 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, E$ isomer), 2.06 (dd, $J=7.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}, Z$ isomer), 2.12 (dd, $J=7.6,1.0 \mathrm{~Hz}, 2 \mathrm{H}, E$ isomer), 2.24 (s, $3 \mathrm{H}, Z$ isomer), 2.33 (s, $3 \mathrm{H}, E$ isomer), $5.02-5.18(\mathrm{~m}, 1 \mathrm{H}, Z$ isomer), $5.20-5.27(\mathrm{~m}, 1 \mathrm{H}, E$ isomer), $5.80(\mathrm{dt}, J=11.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}, Z$ isomer), $6.10(\mathrm{dt}, J=15.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}, E$ isomer), $6.50(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, Z$ isomer), $6.54(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, E$ isomer), 7.09-7.17 (m, $4 \mathrm{H}, Z$ isomer and $3 \mathrm{H}, E$ isomer), 7.41 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, E$ isomer); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 17.8$ and 18.0, 19.9 and 19.9, 26.0 and 26.1, 26.8 and 26.9, 34.7 and $35.0,39.7$ and $39.8,40.3$ and $45.7,121.2$ and 121.2, 125.1 and 125.1, 125.6 and $126.0,126.6$ and $126.7,129.2$ and $129.4,129.5$ and 129.6, 129.9 and 130.1, 132.7 and 132.9, 134.9 and 136.2, 137.0 and 137.3; LRMS (EI) $\mathrm{m} / \mathrm{z} 242\left(\mathrm{M}^{+}\right), 173$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{26}\left(\mathrm{M}^{+}\right)$242.2035, found 242.2036.

(7-Methylocta-1,6-dienyl)benzene (7).

(E)-6-Phenyl-5-hexenal was prepared according to the procedure in the literature using 1st generation Grubbs catalyst. ${ }^{4}$ To a solution of isopropyltriphenylphosphonium iodide ($7.5 \mathrm{~g}, 17.3 \mathrm{mmol}$) in DMF was added $\mathrm{NaH}(55 \%$ in oil, $847 \mathrm{mg}, 19.4 \mathrm{mmol})$ at 0 ${ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h . Then, (E)-6-phenyl-5-hexenal ($836 \mathrm{mg}, 4.8$ mmol) in DMF (20 mL) was added slowly, and the mixture was stirred at room temperature over night. The reaction mixture was partitioned between ether and saturated brine. The organic phase was separated and washed with saturated brine and dried over MgSO_{4}. After removal of the solvent, the crude product was purified via flash chromatography (hexane) followed by GPC to give the title compound (7) ($298 \mathrm{mg}, 1.5$ $\mathrm{mmol}, 31 \%$). This compound was obtained as a mixture of E / Z isomers ($E: Z=19>: 1$ by ${ }^{1} \mathrm{H}$ NMR analysis): TLC $\mathrm{R}_{f} 0.34$ (hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, E$ isomer) $\delta 1.51$ (quintet, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.61(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.03(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{qd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.18(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{dt}, J=15.6,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.38(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.36(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}, E$ isomer) $\delta 17.7,25.8,27.5,29.5,32.6,124.4,125.9,126.7,128.4,129.8$, 131.0, 131.7, 137.9; LRMS (EI) m/z $200\left(\mathrm{M}^{+}\right)$; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{20}\left(\mathrm{M}^{+}\right)$ 200.1565 , found 200.1568 .

2,5,5,8-Tetramethylnona-2,7-diene (9).

To a solution of isopropyltriphenylphosphonium iodide ($5.15 \mathrm{~g}, 11.9 \mathrm{mmol}$) in DMF (23 mL) was added $\mathrm{NaH}(55 \%$ in oil, $570 \mathrm{mg}, 13.1 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h . Then, 3,3,6-trimethylhept-5-enal ($1.07 \mathrm{~g}, 6.9 \mathrm{mmol}$) was added slowly, and the mixture was stirred at room temperature for 0.5 h . The reaction mixture was partitioned between ether and saturated brine. The organic phase was separated and washed with saturated brine and dried over MgSO_{4}. After removal of the solvent, the crude product was purified via flash chromatography (hexane) followed by GPC to give the title compound (9) ($820 \mathrm{mg}, 4.5 \mathrm{mmol}, 65 \%$): TLC $\mathrm{R}_{f} 0.84$ (hexane); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.83(\mathrm{~s}, 6 \mathrm{H}), 1.59(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.72(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.86(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 5.15-5.22(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.8,26.1,26.7,35.3$, 40.1, 121.5, 132.5; LRMS (EI) m/z $180\left(\mathrm{M}^{+}\right), 111\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{24}\left(\mathrm{M}^{+}\right) 180.1878$, found 180.1877 .

(E)-1-Phenyl-(E)-7-phenyl-1,6-heptadiene (11).

To a solution of diethylbenzylphosphonate ($11.6 \mathrm{~g}, 51 \mathrm{mmol}$) in THF (120 mL) was added n - $\mathrm{BuLi}\left(1.59 \mathrm{M}\right.$ in hexane, 36 mL , 57 mmol) at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 3.5 h and then the solution of glutaraldehyde $(2.13 \mathrm{~g}, 21.3 \mathrm{mmol})$ in THF (15 mL) was added slowly. The mixture was warmed gradually to room temperature and stirred for 9 h . The reaction mixture was partitioned between ether and saturated brine. The organic phase was separated, and washed with saturated brine, and dried over MgSO_{4}. After removal of the solvent, the crude product was purified via flash chromatography (hexane/EtOAc 100:1) followed by GPC to give the title compound (11) (288 mg, $1.2 \mathrm{mmol}, 6 \%$): TLC $R_{f} 0.37$ (hexane/EtOAc 20:1); ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 1.66$ (quintet, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.28(\mathrm{qd}, J=7.6,1.2 \mathrm{~Hz}, 4 \mathrm{H}$), $6.24(\mathrm{dt}, J=16.0$, $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.37(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.0,32.5,125.9,126.8,128.5,130.2,130.6,137.8$; LRMS (EI) $\mathrm{m} / \mathrm{z} 248\left(\mathrm{M}^{+}\right)$; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20}\left(\mathrm{M}^{+}\right) 248.1565$, found 248.1568.

A Typical Procedure for Addition of ArSSAr to (E)- $\boldsymbol{\beta}$-Methylstyrene Using a Catalytic Amount of ArS(ArSSAr) ${ }^{+}$.

The anodic oxidation was carried out in an H-type divided cell (4G glass filter) equipped with a carbon felt anode and a platinum plate cathode ($40 \mathrm{~mm} \times 20 \mathrm{~mm}$). In the anodic chamber was placed a solution of $\operatorname{ArSSAr}\left(\mathrm{Ar}=p-\mathrm{FC}_{6} \mathrm{H}_{4}\right)(258.5 \mathrm{mg}, 1.02 \mathrm{mmol})$ in $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL})$. In the cathodic chamber were placed 0.1 M $\mathrm{Bu}_{4} \mathrm{NB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL})$ and trifluoromethanesulfonic acid ($15.4 \mathrm{mg}, 0.103$ mmol). The constant current electrolysis (8 mA) was carried out at $-78^{\circ} \mathrm{C}$ with magnetic stirring until $0.06 \mathrm{~F} / \mathrm{mol}$ of electricity was consumed. After the electrolysis, the temperature in the anodic chamber containing electrogenerated $\operatorname{ArS}(\mathrm{ArSSAr})^{+} \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}{ }^{-}$ (0.06 mmol) was changed at $-50{ }^{\circ} \mathrm{C}$. Then, to the anodic chamber containing electrogenerated $\operatorname{ArS}(\operatorname{ArSSAr})^{+} \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}{ }^{-}$, was added (E) - β-methylstyrene (36.4 mg , 0.308 mmol) and the mixture was stirred for 0.5 h at $-50^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$. The solvent was removed under reduced pressure and the residue was quickly filtered through a short column ($2 \times 3 \mathrm{~cm}$) of silica gel to remove $\mathrm{Bu}_{4} \mathrm{NB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}$. The silica gel was washed with ether $(150 \mathrm{~mL})$. The crude product was purified via flash chromatography (hexane/EtOAc 20:1) to give 1-methyl-2-phenyl-2-(4-fluorophenylthio)ethyl(4-fluorophenyl)sulfide (1a) $(90.8 \mathrm{mg}$, $0.244 \mathrm{mmol}, 79 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.42(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.55(\mathrm{dq}, J=$ $6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.92-7.00(\mathrm{~m}, 2 \mathrm{H})$, 7.10-7.28 (m, 7H), 7.30-7.37 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.1,50.4,60.7$, $115.8(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 116.0(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 127.4,128.2,128.6,129.61(\mathrm{~d}, J=3.1 \mathrm{~Hz})$, 129.64 (d, $J=2.8 \mathrm{~Hz}$), 135.0 (d, $J=8.0 \mathrm{~Hz}$), 135.6 (d, $J=8.3 \mathrm{~Hz}$), 139.9, 162.3 (d, $J=$ $245.9 \mathrm{~Hz}), 162.5(\mathrm{~d}, J=246.4 \mathrm{~Hz})$; LRMS (FAB) m/z $372\left(\mathrm{M}^{+}\right)$; HRMS (FAB) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right) 372.0818$, found 372.0833 .

1-Methyl-2-phenyl-2-(4-methoxyphenylthio)ethyl(4-methoxyphenyl)sulfide (1b).

Prepared from $\operatorname{ArSSAr}\left(\mathrm{Ar}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(277.9 \mathrm{mg}, 0.998 \mathrm{mmol})$ and (E)- β-methylstyrene ($36.6 \mathrm{mg}, 0.310 \mathrm{mmol}$) with $0.06 \mathrm{~F} / \mathrm{mol}$ of electricity and purified via GPC to give the title compound (1b) $(94.9 \mathrm{mg}, 0.239 \mathrm{mmol}, 77 \%)$: TLC $R_{f} 0.27$ (hexane/EtOAc 10:1); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.41(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.48(\mathrm{dq}$, $J=6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.70(\mathrm{~m}$, $2 \mathrm{H})$, 6.78-6.82 (m, 2H), 7.10-7.14 (m, 2H), 7.17-7.26 (m, 5H), 7.30-7.34 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.2,50.3,55.20,55.28,60.9,114.2,114.4,124.9,125.0$, 127.1, 128.0, 128.7, 135.3, 136.0, 140.6, 159.4, 159.6; LRMS (EI) m/z 396 (M ${ }^{+}$), 257 $\left(\mathrm{M}^{+}-\mathrm{S}\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)\right)$; HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right) 396.1218$, found 396.1219.

1-Methyl-2-phenyl-2-(4-fluorophenylthio)ethyl(4-fluorophenyl)sulfide (2a).

Prepared from $\operatorname{ArSSAr}\left(\mathrm{Ar}=p-\mathrm{FC}_{6} \mathrm{H}_{4}\right)(254.9 \mathrm{mg}, \quad 1.00 \mathrm{mmol})$ and (Z) $-\beta$-methylstyrene ($36.0 \mathrm{mg}, 0.305 \mathrm{mmol}$) with $0.06 \mathrm{~F} / \mathrm{mol}$ of electricity and purified via flash chromatography (hexane/EtOAc 20:1) to give the title compound (2a) (80.2 mg , $0.215 \mathrm{mmol}, 70 \%$): TLC $\mathrm{R}_{f} 0.23$ (hexane/EtOAc 20:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.51(\mathrm{dq}, J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.84-6.90 (m, 2H), 6.94-7.02 (m, 2H), 7.16-7.30 (m, 7H), 7.31-7.38 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.7,48.2,58.7,115.9(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 116.1(\mathrm{~d}, J=21.4 \mathrm{~Hz})$, $127.6,128.0,129.0,129.2(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 129.5(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 135.0(\mathrm{~d}, J=7.9 \mathrm{~Hz})$, $135.5(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 138.0,162.4(\mathrm{~d}, J=246.4 \mathrm{~Hz}), 162.5(\mathrm{~d}, J=246.8 \mathrm{~Hz})$; LRMS (EI) $\mathrm{m} / \mathrm{z} 372\left(\mathrm{M}^{+}\right), 245\left(\mathrm{M}^{+}-\mathrm{S}\left(p-\mathrm{FC}_{6} \mathrm{H}_{4}\right)\right)$; HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right)$ 372.0818, found 372.0815 .

1-Methyl-2-phenyl-2-(4-methoxyphenylthio)ethyl(4-methoxyphenyl)sulfide (2b).

Prepared from $\operatorname{ArSSAr}\left(\mathrm{Ar}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(282.4 \mathrm{mg}, 1.01 \mathrm{mmol})$ and (Z) - β-methylstyrene ($34.5 \mathrm{mg}, 0.292 \mathrm{mmol}$) with $0.06 \mathrm{~F} / \mathrm{mol}$ of electricity and purified via GPC to give the title compound (2b) $(68.0 \mathrm{mg}, 0.171 \mathrm{mmol}, 59 \%)$: TLC $\mathrm{R}_{f} 0.16$ (hexane/EtOAc 20:1) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), 3.47 (dq, J $=6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.83(\mathrm{~m}, 4 \mathrm{H})$, 7.14-7.31 (m, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.2,48.0,55.2,55.3,58.6,114.3$, $114.5,124.7,125.0,127.3,127.8,129.2,135.0,135.6,138.4,159.3,159.5$; LRMS (EI) $\mathrm{m} / \mathrm{z} 396\left(\mathrm{M}^{+}\right)$; HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right) 396.1218$, found 396.1218.

A Typical Procedure for Addition of ArSSAr to Dienes via Intramolecular C-C Bond Formation Using a Catalytic Amount of ArS(ArSSAr) ${ }^{+}$(Method A).

The anodic oxidation was carried out in an H-type divided cell as described above. In the anodic chamber was placed a solution of $\operatorname{ArSSAr}\left(\mathrm{Ar}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)$ ($282.6 \mathrm{mg}, 1.02 \mathrm{mmol} \mathrm{mmol}$) in $\left.0.1 \mathrm{M} \mathrm{Bu}{ }_{4} \mathrm{NB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right)_{4} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL})$. In the cathodic chamber were placed $0.1 \quad \mathrm{M} \quad \mathrm{Bu}_{4} \mathrm{NB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4} / \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(8.0 \quad \mathrm{~mL}) \quad$ and trifluoromethanesulfonic acid ($16.6 \mathrm{mg}, 0.111 \mathrm{mmol}$). The constant current electrolysis (8 mA) was carried out at $-78{ }^{\circ} \mathrm{C}$ with magnetic stirring until $0.06 \mathrm{~F} / \mathrm{mol}$ of electricity was consumed. After the electrolysis, the temperature in the anodic chamber containing electrogenerated $\operatorname{ArS}(\operatorname{ArSSAr})^{+} \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}{ }^{-}(0.06 \mathrm{mmol})$ was changed at $0{ }^{\circ} \mathrm{C}$. Then, to the anodic chamber containing electrogenerated $\operatorname{ArS}(\mathrm{ArSSAr})^{+} \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}{ }^{-}$, was added (4,4,7-trimethylocta-1,6-dienyl)benzene (3a) ($69.9 \mathrm{mg}, 0.306 \mathrm{mmol}$), and the mixture was stirred for 0.5 h at $0{ }^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$. The solvent was removed under reduced pressure and the residue was quickly filtered through a short column ($2 \times 3 \mathrm{~cm}$) of silica gel to remove $\mathrm{Bu}_{4} \mathrm{NB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}$. The silica gel was washed with ether (150 mL). The crude product was purified via GPC to give 1-(4-methoxyphenylthio)-2,2,5,5-tetramethyl-3-(phenyl(4-methoxyphenylthio)methyl)-
cyclohexane (5a) ($120.0 \mathrm{mg}, 0.237 \mathrm{mmol}, 77 \%$). This compound was characterized as a mixture of two diasteromers (1.1:1 by ${ }^{1} \mathrm{H}$ NMR analysis). The stereochemistry was determined by the proton-proton coupling constant and proton homonuclear NOE experiments: TLC $R_{f} 0.28$ (hexane/EtOAc 10:1); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.47$ (s, $3 \mathrm{H})$ and $1.22(\mathrm{~s}, 3 \mathrm{H}), 0.69(\mathrm{~s}, 3 \mathrm{H})$ and $0.83(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H})$ and $0.97(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}$, $3 \mathrm{H})$ and $1.36(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.74(\mathrm{~m}, 7 \mathrm{H}$, which means mixture of two diastereomers), 1.86-1.96 (m, 3 H , which means mixture of two diastereomers), 2.74 (dd, $J=13.0,4.4 \mathrm{~Hz}$, $1 \mathrm{H})$ and $2.80(\mathrm{dd}, J=13.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$ and $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$ and $3.78(\mathrm{~s}, 3 \mathrm{H}), 4.28(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$ and $4.54(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.82(\mathrm{~m}, 4 \mathrm{H})$, 7.02-7.33 (m, 9H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.8$ and 15.7, 24.6 and 25.1, 27.4 and $28.2,31.7$ and $31.8,32.9$ and $33.1,36.2$ and $36.6,39.97$ and $40.09,43.8$ and $44.0,48.0$ and $50.8,55.16$ and $55.21,55.2$ and $55.2,56.2$ and $56.5,59.2$ and $59.5,114.2$ and 114.3, 114.4 and $114.4,125.9$ and $126.2,126.3$ and $126.9,127.1$ and $127.3,127.6$ and 127.9, 128.1 and 129.8, 134.1 and 134.1, 134.5 and $135.5,140.8$ and 145.7, 158.8 and 158.9, 159.1 and 159.4; LRMS (EI) m/z $506\left(\mathrm{M}^{+}\right), 367\left(\mathrm{M}^{+}-\mathrm{S}\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)\right)$; HRMS (EI) calcd for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right) 506.2313$, found 506.2318 .

NOE Data for 5a:

Signal Irradiated	NOE's observed
H_{b} (diastereomer 1)	$\mathrm{H}_{\mathrm{a}}(8.1$ \%)
Ha_{a} (diastereomer 1)	$\mathrm{H}_{\mathrm{b}}(5.6$ \%)
H_{b} (diastereomer 2)	$\mathrm{H}_{\mathrm{a}}(8.5 \%)$
H_{a} (diastereomer 2)	H_{b} (8.9 \%)

1-(4-Methoxyphenylthio)-2,2,5,5-tetramethyl-3-benzylcyclohexane (6): Cathodic Reduction of 1-(4-Methoxyphenylthio)-2,2,5,5-tetramethyl-3-(phenyl(4-methoxyphenylthio)methyl)cyclohexane (5a). ${ }^{5}$

The cathodic reduction was carried out in an H-type divided cell (4G glass filter) equipped with a carbon felt cathode and a platinum plate anode ($10 \mathrm{~mm} \times 10 \mathrm{~mm}$). In the cathodic chamber was placed a solution of 1-(4-methoxyphenylthio)-2,2,5,5-tetramethyl-3-(phenyl(4-methoxyphenylthio)methyl)cyclohexane (5a) ($116.5 \mathrm{mg}, 0.230 \mathrm{mmol}$, a mixture of two diastereomers) in 0.2 M $\mathrm{Bu}_{4} \mathrm{NHSO}_{4} / \mathrm{CH}_{3} \mathrm{CN}(4.0 \mathrm{~mL})$. In the anodic chamber was placed 0.2 M $\mathrm{Bu}_{4} \mathrm{NHSO}_{4} / \mathrm{CH}_{3} \mathrm{CN}(4.0 \mathrm{~mL})$. The constant current electrolysis (25 mA) was carried out
at $0{ }^{\circ} \mathrm{C}$ with magnetic stirring ($5.2 \mathrm{~F} / \mathrm{mol}$ of electricity) until starting material (5a) was consumed completely. After the electrolysis, the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}$ (1 mL). The solvent was removed under reduced pressure and the residue was quickly filtered through a short column ($2 \times 3 \mathrm{~cm}$) of silica gel to remove $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}$. The silica gel was washed with ether (150 mL). The crude product was purified via flash chromatography (hexane/EtOAc 90:1) and ${ }^{1} \mathrm{H}$ NMR analysis using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as an internal standard indicated that 1-(4-methoxyphenylthio)-2,2,5,5-tetramethyl-3-benzylcyclohexane (6) was formed in 70% yield as a single diastereomer: TLC $R_{f} 0.48$ (hexane/EtOAc 10:1); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.66(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}$, $3 \mathrm{H}), 1.01-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.62(\mathrm{~m}, 3 \mathrm{H}), 2.06(\mathrm{dd}, J=13.4,11.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.93 (dd, $J=12.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=13.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 6.81-6.85$ $(\mathrm{m}, 2 \mathrm{H}), 7.08-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.38(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.3,24.7,27.7,31.4,32.8,37.3,38.6,39.8,44.1,45.8$, $55.3,58.9,114.4,125.6,127.5,128.2,128.9,134.1,142.0,158.8$; LRMS (EI) m/z 368 $\left(\mathrm{M}^{+}\right)$; HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{1} \mathrm{~S}_{1}\left(\mathrm{M}^{+}\right) 368.2174$, found 368.2174.

A Typical Procedure for Cyclization Using a Catalytic Amount of Electricity (Method B, In-Cell Electrolysis).

The anodic oxidation was carried out in an H-type divided cell as described above. In the anodic chamber was placed a solution of (4,4,7-trimethylocta-1,6-dienyl)benzene (3a) ($70.1 \mathrm{mg}, 0.307 \mathrm{mmol}$) and $\operatorname{ArSSAr}(\mathrm{Ar}=$ $\left.p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(280.0 \mathrm{mg}, 1.01 \mathrm{mmol})$ in $0.1 \mathrm{M} \mathrm{Bu}{ }_{4} \mathrm{NB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL})$. In the cathodic chamber were placed $0.1 \mathrm{M} \quad \mathrm{Bu}_{4} \mathrm{NB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4} / \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(8.0 \mathrm{~mL})$ and trifluoromethanesulfonic acid ($15.0 \mathrm{mg}, 0.10 \mathrm{mmol}$). The constant current electrolysis (8 mA) was carried out at $0{ }^{\circ} \mathrm{C}$ with magnetic stirring until $0.20 \mathrm{~F} / \mathrm{mol}$ of electricity (based on 3a) was consumed. The mixture was stirred for 0.5 h at $0^{\circ} \mathrm{C}$, and then the reaction was quenched with $E t_{3} \mathrm{~N}(1 \mathrm{~mL})$. The solvent was removed under reduced pressure and the residue was quickly filtered through a short column ($2 \times 3 \mathrm{~cm}$) of silica gel to remove $\mathrm{Bu}_{4} \mathrm{NB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}$. The silica gel was washed with ether $(150 \mathrm{~mL})$. The crude product was purified via GPC to give $\mathbf{5 a}$ ($128.0 \mathrm{mg}, 0.253 \mathrm{mmol}, 82 \%$). This compound was characterized as a mixture of two diasteromers (1.1:1 by ${ }^{1} \mathrm{H}$ NMR analysis).

1-(4-Methoxyphenylthio)-2,2,5,5-tetramethyl-3-((4-methylphenyl)(4-methoxyphenyl thio)methyl)cyclohexane (5c).

Prepared from $\operatorname{ArSSAr}\left(\mathrm{Ar}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(281.4 \mathrm{mg}, 1.01 \mathrm{mmol})$ and 1-methyl-4-(4,4,7-trimethylocta-1,6-dienyl)benzene (3c) ($72.5 \mathrm{mg}, 0.299 \mathrm{mmol}$) with $0.06 \mathrm{~F} / \mathrm{mol}$ of electricity (method A, reaction temperature: $0^{\circ} \mathrm{C}$), and purified via GPC to give $\mathbf{3 c}(132.6 \mathrm{mg}, 0.255 \mathrm{mmol}, 85 \%$, purity ca. $95 \%)$. This compound was characterized as a mixture of two diasteromers (1.1:1 by ${ }^{1} \mathrm{H}$ NMR analysis): TLC $R_{f} 0.33$ (hexane/EtOAc 5:1); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.47(\mathrm{~s}, 3 \mathrm{H})$ and $1.21(\mathrm{~s}, 3 \mathrm{H}), 0.69(\mathrm{~s}$, $3 \mathrm{H})$ and $0.82(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H})$ and $0.96(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H})$ and $1.35(\mathrm{~s}, 3 \mathrm{H})$, $1.40-1.93(\mathrm{~m}, 5 \mathrm{H}), 2.72(\mathrm{dd}, J=12.7,4.1 \mathrm{~Hz}, 1 \mathrm{H})$ and $2.80(\mathrm{dd}, J=13.0,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H})$ and $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$ and $3.78(\mathrm{~s}, 3 \mathrm{H}), 4.26(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$ and $4.54(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.82(\mathrm{~m}, 4 \mathrm{H}), 7.00-7.32(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 14.9$ and $15.6,21.0$ and 21.1, 24.6 and 25.2, 27.4 and $28.2,31.7$ and $31.8,32.9$ and $33.2,36.1$ and $36.6,39.9$ and $40.1,43.9$ and $44.0,47.9$ and 51.0, 55.2 and 55.3, 55.3 and $55.3,55.7$ and $56.2,59.3$ and $59.5,114.2$ and $114.3,114.4$ and $114.4,126.1$ and $126.5,127.2$ and $127.4,127.5$ and 128.6, 128.8 and $129.6,134.1$ and 134.1, 134.3 and 135.4, 135.8 and 136.6, 137.6 and 142.7, 158.2 and 158.8, 159.0 and 159.4; LRMS (EI) $\mathrm{m} / \mathrm{z} 520\left(\mathrm{M}^{+}\right), 381\left(\mathrm{M}^{+}-\mathrm{S}\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)\right)$; HRMS (EI) calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right)$ 520.2470, found 520.2468.

1-(4-Methoxyphenylthio)-2,2,5,5-tetramethyl-3-((4-chlorophenyl)(4-methoxyphenylt hio)methyl)cyclohexane (5d).

Prepared from $\operatorname{ArSSAr}\left(\mathrm{Ar}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(280.2 \mathrm{mg}, 1.01 \mathrm{mmol})$ and 1-chloro-4-(4,4,7-trimethylocta-1,6-dienyl)benzene (3d) ($78.6 \mathrm{mg}, 0.299 \mathrm{mmol}$) with $0.06 \mathrm{~F} / \mathrm{mol}$ of electricity (method A, reaction temperature: $0{ }^{\circ} \mathrm{C}$), and purified via GPC to give $\mathbf{5 d}(147.6 \mathrm{mg}, 0.273 \mathrm{mmol}, 91 \%)$. This compound was characterized as a mixture
of two diasteromers (1.2:1 by ${ }^{1} \mathrm{H}$ NMR analysis): TLC $R_{f} 0.38$ (hexane/EtOAc 10:1); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.48(\mathrm{~s}, 3 \mathrm{H})$ and $1.22(\mathrm{~s}, 3 \mathrm{H}), 0.68(\mathrm{~s}, 3 \mathrm{H})$ and $0.84(\mathrm{~s}, 3 \mathrm{H})$, $0.94(\mathrm{~s}, 3 \mathrm{H})$ and $0.96(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$ and $1.34(\mathrm{~s}, 3 \mathrm{H}), 1.25-1.96(\mathrm{~m}, 5 \mathrm{H}), 2.75(\mathrm{dd}$, $J=13.1,4.1 \mathrm{~Hz}, 1 \mathrm{H})$ and $2.79(\mathrm{dd}, J=13.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$ and $3.76(\mathrm{~s}, 3 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H})$ and $3.78(\mathrm{~s}, 3 \mathrm{H}), 4.25(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$ and $4.48(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, 6.66-6.82 (m, 4H), 7.03-7.33 (m, 8H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.0$ and 15.7, 24.6 and $25.1,27.5$ and 28.3, 31.7 and $31.8,32.9$ and $33.1,36.4$ and $36.5,40.0$ and 40.1, 43.8 and $43.9,48.0$ and $50.9,55.19$ and 55.23, 55.2 and $55.2,55.5$ and $56.0,59.2$ and 59.4, 114.3 and $114.4,114.5$ and $114.5,125.4$ and 125.7, 127.0 and 127.2, 128.0 and $128.3,129.0$ and $131.1,131.9$ and $132.6,134.2$ and $134.2,134.6$ and 135.5, 139.5 and 144.2, 158.88 and $158.90,159.2$ and 159.6 ; LRMS (EI) m/z $540\left(\mathrm{M}^{+}\right), 401$ $\left(\mathrm{M}^{+}-\mathrm{S}\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)\right)$; HRMS (EI) calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{Cl}_{1} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right) 540.1923$, found 540.1923.

1-(4-Methoxyphenylthio)-2,2,5,5-tetramethyl-3-((2-methylphenyl)(4-methoxyphenyl thio)methyl)cyclohexane (5e).

Prepared from $\operatorname{ArSSAr}\left(\mathrm{Ar}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(277.6 \mathrm{mg}, 0.997 \mathrm{mmol})$ and 1-methyl-2-(4,4,7-trimethylocta-1,6-dienyl)benzene (3e) ($71.7 \mathrm{mg}, 0.296 \mathrm{mmol}$) with $0.06 \mathrm{~F} / \mathrm{mol}$ of electricity (method A, reaction temperature: $0^{\circ} \mathrm{C}$), and purified via GPC to give $5 \mathbf{e}(129.2 \mathrm{mg}, 0.248 \mathrm{mmol}, 84 \%)$. This compound was characterized as a mixture of two diasteromers ($2.2: 1$ by ${ }^{1} \mathrm{H}$ NMR analysis): TLC $R_{f} 0.30$ (hexane/EtOAc 10:1); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.52(\mathrm{~s}, 3 \mathrm{H})$ and $1.20(\mathrm{~s}, 3 \mathrm{H}), 0.74(\mathrm{~s}, 3 \mathrm{H})$ and $0.80(\mathrm{~s}, 3 \mathrm{H})$, $0.95(\mathrm{~s}, 3 \mathrm{H})$ and $0.98(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$ and $1.36(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.96(\mathrm{~m}, 5 \mathrm{H}), 1.97(\mathrm{br} \mathrm{s}$, $3 \mathrm{H})$ and $2.21(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{dd}, J=12.7,4.1 \mathrm{~Hz}, 1 \mathrm{H})$ and $2.80(\mathrm{dd}, J=12.7,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H})$ and $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$ and $3.78(\mathrm{~s}, 3 \mathrm{H}), 4.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$ and $4.70(\mathrm{~d}, J$ $=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-7.70(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.7$ and 15.8, 19.6 and $20.4,24.68$ and $24.74,28.2$ and $28.3,31.8$ and $31.9,33.0$ and $33.2,37.1$ and 37.4 , 39.7 and $40.3,43.9$ and $44.0,48.2$ and 49.3, 50.7 and $51.5,55.18$ and $55.18,55.23$ and 55.23, 59.5 and 59.6, 114.1 and $114.2,114.4$ and $114.4,125.7$ and $125.8,126.1$ and $126.2,126.6$ and 127.2, 127.4 and 128.7, 129.6 and 129.9, 130.4 and 132.6, 134.1 and 134.4, 134.1 and $135.5,135.5$ and 136.2, 139.8 and 143.7, 158.8 and 158.8, 159.4 and 159.6; LRMS (EI) m/z $520\left(\mathrm{M}^{+}\right), 381\left(\mathrm{M}^{+}-\mathrm{S}\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)\right)$; HRMS (EI) calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right) 520.2470$, found 520.2476 .

1-(4-Methoxyphenylthio)-2,2-dimethyl-3-(phenyl(4-methoxyphenylthio)methyl)cycl ohexane (8).

Prepared from $\operatorname{ArSSAr}\left(\mathrm{Ar}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(282.5 \mathrm{mg}, 1.01 \mathrm{mmol})$ and (7-methylocta-1,6-dienyl)benzene (7) ($59.2 \mathrm{mg}, 0.296 \mathrm{mmol}$) with $0.06 \mathrm{~F} / \mathrm{mol}$ of electricity (method A, reaction temperature: $0{ }^{\circ} \mathrm{C}$), and purified via GPC to give $\mathbf{8}$ (81.7 $\mathrm{mg}, 0.171 \mathrm{mmol}, 58 \%$, purity ca. 95%). This compound was characterized as a mixture of three diasteromers (12.1:1.8:1 by ${ }^{1} \mathrm{H}$ NMR analysis). The stereochemistry of the major isomer was determined by the further transformation (vide infra) due to the overlapping of signals: TLC $R_{f} 0.30$ (hexane/EtOAc 10:1); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta 1.03-1.13(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.97(\mathrm{~m}, 6 \mathrm{H}), 2.60(\mathrm{dd}, J=12.7,4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.33(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.63-6.82(\mathrm{~m}, 4 \mathrm{H})$, 7.00-7.37 (m, 9H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{~Hz}, \mathrm{CDCl}_{3}$, major isomer) $\delta 16.5,23.5,27.2,28.5$, $30.9,40.3,55.2,55.3,55.8,56.5,63.2,114.2,114.4,126.3,127.1,127.8,128.2,129.8$, 134.2, 134.9, 145.7, 158.98, 159.05; LRMS (EI) m/z 478 (M ${ }^{+}$); HRMS (EI) calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right) 478.2000$, found 478.1998 .

This compound was further transformed by the cathodic reduction in order to determine the stereochemistry of the major isomer completely.

The cathodic reduction was carried out in an H-type divided cell as described above. In the cathodic chamber was placed a solution of 1-(4-methoxyphenylthio)-2,2-dimethyl-3-(phenyl(4-methoxyphenylthio)methyl)cyclohe xane (8) $(92.1 \mathrm{mg}, 0.192 \mathrm{mmol}$, a mixture of three diastereomers) in 0.2 M $\mathrm{Bu}_{4} \mathrm{NHSO}_{4} / \mathrm{CH}_{3} \mathrm{CN}(4.0 \mathrm{~mL})$. In the anodic chamber was placed 0.2 M $\mathrm{Bu}_{4} \mathrm{NHSO}_{4} / \mathrm{CH}_{3} \mathrm{CN}(4.0 \mathrm{~mL})$. The constant current electrolysis (25 mA) was carried out at $0{ }^{\circ} \mathrm{C}$ with magnetic stirring ($6.5 \mathrm{~F} / \mathrm{mol}$ of electricity) until starting material (8) was consumed completely. After the electrolysis, the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}$ (1
mL). The solvent was removed under reduced pressure and the residue was quickly filtered through a short column ($2 \times 3 \mathrm{~cm}$) of silica gel to remove $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}$. The silica gel was washed with ether (150 mL). The crude product was purified via flash chromatography (hexane/EtOAc 20:1) and ${ }^{1} \mathrm{H}$ NMR analysis using $\left(\mathrm{Cl}_{2} \mathrm{CH}\right)_{2}$ as an internal standard indicated that 1-(4-methoxyphenylthio)-2,2-dimethyl-3-benzylcyclohexane was formed in 58% yield. The stereochemistry of the major isomer was determined by the proton-proton coupling constant and proton homonuclear NOE experiments: TLC $R_{f} 0.46$ (hexane/EtOAc $10: 1$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.97-1.03(\mathrm{~m}, 1 \mathrm{H}), 1.06-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{tt}, J=11.0,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.37-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.85(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{dd}, J=$ $13.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=12.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=13.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ $(\mathrm{s}, 3 \mathrm{H}), 6.81-6.85(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.37-7.40(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}, major isomer) $\delta 15.1,26.6,26.6,27.9,31.1,37.4,38.8,50.8,55.3,62.9,114.4$, 125.6, 127.2, 128.1, 129.1, 134.9, 142.2, 159.0; LRMS (EI) m/z $340\left(\mathrm{M}^{+}\right)$; HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{1} \mathrm{~S}_{1}\left(\mathrm{M}^{+}\right) 340.1861$, found 340.1862 .

NOE Data for 1-(4-methoxyphenylthio)-2,2-dimethyl-3-benzylcyclohexane:

1-(4-Methoxyphenylthio)-2,2,5,5-tetramethyl-3-(dimethyl(4-methoxyphenylthio)met hyl)cyclohexane (10).

Prepared from $\operatorname{ArSSAr}\left(\mathrm{Ar}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(283.2 \mathrm{mg}, 1.02 \mathrm{mmol})$ and 2,5,5,8-tetramethylnona-2,7-diene (9) ($54.4 \mathrm{mg}, 0.302 \mathrm{mmol}$) with $0.06 \mathrm{~F} / \mathrm{mol}$ of electricity (method A, reaction temperature: $-78{ }^{\circ} \mathrm{C}$), and purified via GPC to give $\mathbf{1 0}$ ($106.6 \mathrm{mg}, 0.232 \mathrm{mmol}, 77 \%$). This compound was obtained as a single diastereomer. The stereochemistry was determined by the proton-proton coupling constant and proton homonuclear NOE experiments: TLC $R_{f} 0.21$ (hexane/EtOAc 20:1); ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H})$, $1.46(\mathrm{t}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.68(\mathrm{~m}, 3 \mathrm{H}), 2.02(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=13.1$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 6.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.5$,
$24.3,27.0,30.3,31.5,32.4,33.1,38.9,41.4,44.8,50.5,55.26,55.29,56.0,61.5,113.9$, 114.5, 123.7, 127.6, 134.1, 139.2, 158.8, 160.3; LRMS (EI) m/z 458 (M ${ }^{+}$); HRMS (EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right) 458.2313$, found 458.2311.

NOE Data for 10:

1-(4-Methoxyphenylthio)-2-phenyl-3-(phenyl(4-methyoxyphenylthio)methyl)cyclohe xane (12).

Prepared from $\operatorname{ArSSAr}\left(\mathrm{Ar}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(281.5 \mathrm{mg}, 1.01 \mathrm{mmol})$ and (E)-1-phenyl-(E)-7-phenyl-1,6-heptadiene (11) ($74.8 \mathrm{mg}, 0.301 \mathrm{mmol}$) with $0.06 \mathrm{~F} / \mathrm{mol}$ of electricity (method A, reaction temperature: $33{ }^{\circ} \mathrm{C}$), and purified via GPC. ${ }^{1} \mathrm{H}$ NMR analysis using $\left(\mathrm{Cl}_{2} \mathrm{CH}\right)_{2}$ as an internal standard indicated that the title compound (12) was formed in 84% yield. This compound was characterized as a mixture of three diasteromers (11.5:1.1:1 by ${ }^{1} \mathrm{H}$ NMR analysis). Analytical sample was further purified by HPLC (hexane/EtOAc 20:1) to obtain three compounds (diastereomer 12-1, 12-2 and 12-3).

Diastereomer 12-1 (main diastereomer)

The stereochemistry was determined based on the proton-proton coupling constants because proton homonuclear NOE experiments could not provide clear results due to the overlapping of signals: TLC $R_{f} 0.23$ (hexane/EtOAc 10:1); ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.14(\mathrm{qt}, J=13.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{qd}, J=13.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.52(\mathrm{~m}$, $1 \mathrm{H}), 1.72-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{tt}, J=11.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-2.08(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{td}, J=$
$11.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H})$, 6.55-6.58 (m, 2H), 6.72-6.76 (m, 2H), 6.92-6.96 (m, 2H), 7.09-7.13 (m, 1H), 7.15-7.21 (m, 6H), 7.27-7.30 (m, 1H), 7.33-7.42 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $25.4,26.0,34.6,52.4,53.3,54.6,55.1,55.2,57.9,114.08$, 114.13, 125.0, 126.0, 126.5, 127.0, 127.9, 128.5, 133.2, 133.2, 136.0, 136.0, 142.2, 142.6, 158.6, 159.2; LRMS (EI) $\mathrm{m} / \mathrm{z} 526\left(\mathrm{M}^{+}\right), 387\left(\mathrm{M}^{+}-\mathrm{S}\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)\right)$; HRMS (EI) calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right)$ 526.2000 , found 526.2000.

Diastereomer 12-2 (second diastereomer)

diastereomer 12-2
($\mathrm{Ar}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$)
The stereochemistry was not determined: TLC $R_{f} 0.23$ (hexane/EtOAc $10: 1$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.75(\mathrm{br} \mathrm{d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-2.10(\mathrm{~m}, 4 \mathrm{H}), 2.57-2.64(\mathrm{~m}$, $1 \mathrm{H}), 2.69$ (br d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.96-3.04 (m, 1H), 3.29 (br s, 1 H), 3.60 (d, $J=11.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 6.56-6.61(\mathrm{~m}, 4 \mathrm{H}), 6.73-6.80(\mathrm{~m}, 4 \mathrm{H}), 6.90-6.95(\mathrm{~m}, 2 \mathrm{H})$, 6.96-7.00 (m, 2H), 7.01-7.05 (m, 1H), 7.08-7.14 (m, 3H), 7.25-7.30 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.0,25.1,26.9,38.9,46.2,53.5,55.2,55.3,59.5,113.9,114.4$, $124.8,125.7,126.2,126.3,127.5,127.9,128.6,130.0,135.5,136.1,141.0,142.3,159.3$, 159.3; LRMS (EI) m/z $526\left(\mathrm{M}^{+}\right), 387\left(\mathrm{M}^{+}-\mathrm{S}\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)\right)$; HRMS (EI) calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right) 526.2000$, found 526.2003.

Diastereomer 12-3 (third diastereomer)

diastereomer 12-3
($\mathrm{Ar}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$)
The stereochemistry was not determined: TLC $R_{f} 0.23$ (hexane/EtOAc $10: 1$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.00-1.35(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.94(\mathrm{~m}, 1 \mathrm{H})$, 2.10-2.18 (m, 2H), 2.42-2.48 (m, 1H), 2.73-2.80 (m, 1H), 3.73 (s, 3H), 3.81 (s, 3H), 3.96 $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.93-7.02(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.17$ $(\mathrm{m}, 4 \mathrm{H}), 7.22-7.32(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.0,26.1,34.8,46.8,52.8$, $55.2,55.3,55.5,56.6,114.0,114.3,125.4,126.8,127.2,127.7,127.7,128.3,129.6$, 129.6, 135.5, 135.6, 138.0, 142.1, 159.1, 159.4; LRMS (EI) m/z 526 (M ${ }^{+}$), 387 $\left(\mathrm{M}^{+}-\mathrm{S}\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)\right)$; HRMS (EI) calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right) 526.2000$, found 526.2000.
(4-Methoxyphenylthio)-2,2,5,5-tetramerhyl-3-(prop-1-en-2-yl)cyclohexane (13).

Prepared from $\operatorname{ArSSAr}\left(\mathrm{Ar}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(278.9 \mathrm{mg}, 1.00 \mathrm{mmol})$ and 2,5,5,8-tetramethylnona-2,7-diene (9) ($55.8 \mathrm{mg}, 0.309 \mathrm{mmol}$) with $0.06 \mathrm{~F} / \mathrm{mol}$ of electricity (method A, reaction temperature: $-78{ }^{\circ} \mathrm{C}$) and allyltrimethylsilane (114.3 mg , 1.00 mmol , reaction temperature was gradually increased from $-78{ }^{\circ} \mathrm{C}$ to room temperature for 0.5 h .). Then, the reaction was quenched by the addition of $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$. This compound was purified via GPC to give $13(86.1 \mathrm{mg}, 0.270 \mathrm{mmol}, 87 \%)$. This compound was obtained as a single diastereomer. The stereochemistry was determined by the proton-proton coupling constant and proton homonuclear NOE experiments: TLC $R_{f} 0.45$ (hexane/EtOAc 10:1); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.916(\mathrm{~s}, 3 \mathrm{H})$, $0.919(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{dt}, J=13.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.74(\mathrm{t}, J=$ $0.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.06(\mathrm{dd}, J=13.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=11.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, 4.65-4.67 (m, 1 H$), 4.86-4.88(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.85(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.38(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.3,24.2,25.1,28.6,31.7,33.0,39.0,40.9,44.0,50.8,55.3,59.3$, 113.3, 114.4, 127.6, 134.1, 147.1, 158.8; LRMS (EI) m/z 318 (M ${ }^{+}$); HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{1} \mathrm{~S}_{1}\left(\mathrm{M}^{+}\right) 318.2017$, found 318.2015.

NOE Data for 13:

References

1. R. Leino, J. E. Lönnqvist, Tetrahedron Lett., 2004, 45, 8489.
2. D. P. Becker, C. I. Villamil, T. E. Barta, L. J. Bedell, T. L. Boehm, G. A. DeCrescenzo, J. N. Freskos, D. P. Getman, S. Hockerman, R. Heintz, S. C. Howard, M. H. Li, J. J. McDonald, C. P. Carron, C. L. Funckes-Shippy, P. P. Mehta, G. E. Munie, C. A. Swearingen, J. Med. Chem., 2005, 48, 6713.
3. N. H. Andersen, D. W. Ladner, Snthetic Commun., 1978, 8, 449.
4. K. Yoshikai, T. Hayama, K. Nishimura, K. Yamada, K. Tomioka, J. Org. Chem., 2005, 70, 681.
5. N. S. Ltter, E. Steckhan, Tetrahedron, 1987, 43, 2475.

568.65 T
$9 \tau 亠 \cdot 8 \tau \tau$

E89.9L
$\angle T E \cdot \angle L$
$\angle I E \cdot \angle L$
\qquad
я䒠•яะт

z $\varepsilon \varepsilon \cdot \varsigma \varsigma$

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2009

Abstract

 580° T9I $69 z^{\circ} \tau$ I عะL•غяโ-

${ }_{9 \tau \tau \cdot \tau}{ }^{66 \tau \cdot}$

