Direct Functionalization of Benzylic C-Hs with Vinyl Acetates

via Fe-Catalysis

Chun-Xiao Song, Gui-Xin Cai, Thomas R. Farrell, Zhong-Ping, Jiang, Hu Li, Liang-Bing Gan,* and Zhang-Jie Shi*

Beijing National Laboratory of Molecular Sciences (BNLMS), PKU Green Chemistry Center and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871 and State Key Laboratory of Organometallic Chemistry Chinese Academy of Sciences, Shanghai 200032, China

E-mail: zshi@pku.edu.cn

gan@pku.edu.cn

Table of Contents for SI:

General procedure	SI 2
Analytical and spectral data for diphenylmethane derivatives 1f-1g	SI 3-4
Analytical and spectral data for 1-phenylvinyl acetate derivatives 2a-2h	SI 4-6
Procedure for the reaction of diphenylmethane with styrene	SI 7
Analytical and spectral data for 3aa-3la	SI 8-13
Analytical and spectral data for 3ab-3ah	SI13-15
References	SI 15
NMR spectrum of compounds	SI 16-36

General procedure. All the reactions were carried out under nitrogen atmosphere unless otherwise noted. Most diphenylmethane derivatives were purchased as analytical pure and used without further purification. FeCl₂ was purchased from Strem Chemicals. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) were registered on Varian 300 M spectrometers; ¹H NMR (200 MHz) and ¹³C NMR (50 MHz) were registered on Varian 200 M spectrometers, all with CDCl₃ as solvent and tetramethylsilane (TMS) as internal standard. Chemical shifts were reported in units (ppm) by assigning TMS resonance in the ¹H spectrum as 0.00 ppm and CDCl₃ resonance in the ¹³C spectrum as 77.0 ppm. All coupling constants (*J* values) were reported in Hertz (Hz). LRMS was performed on Agilent Technologies 6890N/5973i GC-MS. HRMS were performed by the State-authorized Analytical Center in Peking University.

General procedure for 4-Benzyl anisole $(1f)^{[1]}$: 4-Benzylphenol (1.5 g, 8 mmol) in THF (3 ml) was added dropwise, under an nitrogen atmosphere, to sodium hydride (70% dispersion in mineral oils) (0.31 g, 9 mmol) in THF (18 ml) at 0 °C. The mixture was refluxed for 1 h, followed by cooling to room temperature and the addition of methyl iodide (1.42 g, 10 mmol) in THF (2.5 ml). The mixture was stirred at room temperature for 15 h, quenched by saturated aq. anmonium chloride (10 ml), diluted with water (15 ml) and extracted with methylene chloride. The combined organic phases were washed with 1 M sodium hydroxide and brine, dried over MgSO₄. Solvent was concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (eluting with ethyl acetate/petroleum ether = 1:9) and the fraction with an Rf = 0.8 was collected and concentrated to give the title product **1f**.

4-Benzyl anisole (1f).

¹H NMR (CDCl₃, 300MHz) δ 7.29-7.11 (m, 7H), 6.82 (d, 2H, *J*= 8.7), 3.91 (s, 2H), 3.76 (s, 3H) ppm; ¹³C NMR (CDCl₃, 75MHz) 157.9, 141.5, 133.2, 129.8, 128.8, 128.4, 125.9, 113.8, 55.2, 41.0 ppm.

2-Benzyl anisole (1g).

¹H NMR (CDCl₃, 200MHz) δ 7.24-7.14 (m, 6H), 7.06-7.03 (m, 1H), 6.89-6.81 (m, 2H), 3.96 (s, 2H), 3.76 (s, 3H) ppm; ¹³C NMR (CDCl₃, 75MHz) 157.3, 141.0, 130.2, 129.6, 128.9, 128.2, 127.3, 125.7, 125.7, 120.4, 110.3, 55.2, 35.8 ppm.

General procedure for 1-phenylvinyl acetate (2a) ^[2]: To a mixture of acetophenone (4.85 ml, 5 g, 42.5 mmol) and 2-propenyl acetate (23.13 ml, 0.213 mol, 5 equiv.) was added *p*-toluenesulfonic acid (0.75 g, 3.925 mmol, 0.09 equiv). The resulting mixture was refluxed for 20 h in a 100 ml flask equipped with a condenser and a drying tube. The solvent was then cooled to room temperature, and the solvent was evaporated *in vacuo*. Ether was added (100 ml), and the resulting solvent was washed with water (3 x 50 ml) and dried over MgSO₄. The solvent was evaporated in vacuo to give a dark orange/red oily residue. This residue was purified by column chromatography on silica gel to yield a yellow oil. Sometimes a further distillation to remove remained acetophenone is necessary.

1-phenylvinyl acetate (2a)

¹H NMR (CDCl₃, 200MHz) δ 7.49-7.45 (m, 2H), 7.38-7.32 (m, 3), 5.48 (d, 1H, *J* = 2.0), 5.03 (d, 1H, *J* = 2.0), 2.27 (s, 3H) ppm; ¹³C NMR (CDCl₃, 50MHz) 169.2, 152.9, 134.2, 129.0, 128.5, 124.8, 102.1, 20.8 ppm.

Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2009

1-p-tolylvinyl acetate (2b)

¹H NMR (CDCl₃, 300MHz) δ 7.35 (d, 2H, *J* = 8.4), 7.14 (d, 2H, *J* = 8.1), 5.42 (d, 1H, *J* = 1.8), 4.96 (d, 1H, *J* = 1.8), 2.34 (s, 3H), 2.26 (s, 3H) ppm; ¹³C NMR (CDCl₃, 75MHz) 169.1, 153.9, 138.9, 131.4, 129.1, 124.7, 101.2, 21.2, 20.9 ppm.

1-*m*-tolylvinyl acetate (2c)

¹H NMR (CDCl₃, 200MHz) δ 7.38-7.13 (m, 4H), 5.46 (d, 1H, *J* = 2.2), 5.00 (d, 1H, *J* = 2.0), 2.35 (s, 3H), 2.27 (s, 3H) ppm; ¹³C NMR (CDCl₃, 50MHz) 169.2, 153.2, 138.2, 134.2, 129.8, 128.5, 125.5, 122.0, 102.0, 21.4, 20.9 ppm.

1-o-tolylvinyl acetate (2d)

¹H NMR (CDCl₃, 300MHz) δ 7.38-7.35 (m, 1H), 7.26-7.16 (m, 3H), 5.17 (d, 1H, J = 1.5), 5.01 (d, 1H, J = 2.0), 2.41 (s, 3H), 2.13 (s, 3H) ppm; ¹³C NMR (CDCl₃, 75MHz) 168.7, 153.8, 135.9, 135.3, 130.3, 129.0, 128.7, 125.6, 105.6, 21.0, 20.3 ppm.

1-(4-methoxyphenyl)vinyl acetate (2e)

¹H NMR (CDCl₃, 200MHz) δ 7.44-7.38 (m, 2H), 6.91-6.85 (m, 2H), 5.36 (d, 1H, J = 2.0), 4.92 (d, 1H, J = 2.0), 3.81 (s, 3H), 2.27 (s, 3H) ppm; ¹³C NMR (CDCl₃, 50MHz) 169.2, 160.2, 152.8, 126.9, 126.3, 113.9, 100.2, 55.2, 20.9 ppm.

1-(4-fluorophenyl)vinyl acetate (2f)

¹H NMR (CDCl₃, 300MHz) δ 7.47-7.42 (m, 2H), 7.06-7.00 (m, 2H, *J* = 9.0), 5.40 (d, 1H, *J* = 2.1), 5.01 (d, 1H, *J* = 2.4), 2.27 (s, 3H), 2.27 (s, 3H) ppm; ¹³C NMR (CDCl₃, 75MHz) 169.0, 164.7, 152.0, 126.9, 126.7, 115.7, 115.4, 102.0, 20.9 ppm.

1-(4-bromophenyl)vinyl acetate (2g)

¹H NMR (CDCl₃, 200MHz) δ 7.47 (d, 2H, J = 8.4), 7.32 (d, 2H, J = 8.1), 5.47 (d, 1H, J = 2.0), 5.06 (d, 1s, J = 2.4), 2.34 (s, 3H), 2.26 (s, 3H) ppm.

methyl 4-(1-acetoxyvinyl)benzoate (2h)

¹H NMR (CDCl₃, 300MHz) δ 8.02 (d, 2H, *J* = 8.4), 7.52 (d, 2H, *J* = 8.4), 5.59 (d, 1H, *J* = 2.1), 5.15 (d, 1H, *J* = 2.4), 3.92 (s, 3H), 2.29 (s, 3H) ppm; ¹³C NMR (CDCl₃, 75MHz) 168.9, 166.5, 152.0, 138.4, 130.3, 129.8, 124.7, 104.3, 52.1, 20.9 ppm.

Procedure for the reaction of diphenylmethane with styrene: To a mixture of FeCl₂(12.6 mg, 0.1 mmol), 4Å molecular sieves (Alfa, 0.4-0.8mm beads, 100 mg) in a Schlenck tube was added diphenylmethane (1 mL, 6.0 mmol), distilled styrene (57 μ l, 0.5 mmol) and di-*tert*-butyl peroxide (0.183 mL, 1.0 mmol). The septum-sealed tube was cooled dawn with aq. N₂ and then evacuated and refilled with N₂ three times. The resulting mixture was heated at 80 °C in an oil bath for 24h. After that the reaction mixture was cooled down to room temperature and then directly purified by flash column chromatography on silica gel. Use petroleum ether to remove most of the diphenylmethane and collect the rest fraction and then evacuate the eluent to get a residue. The desired product (E)-prop-2-ene-1,1,3-triyltribenzene can be confirmed from the crude ¹H-NMR of the residue after comparing with the data reported by DeShong, P et al.^[3]. ¹H NMR (CDCl₃, 300MHz) δ 6.67 (dd, 1H, *J* = 15.8, 7.4), 6.35 (d, 1H, *J* = 16.2), 4.90 (d, 1H, *J* = 7.2) ppm. (Please refer to ¹H NMR data at page S 15).

General procedure for 3: Diphenylmethane (0.67 mL, 4.0 mmol) and 1-phenylvinyl acetate (81.1 mg, 0.5 mmol) were added successively to a 25 mL Schlenk tube containing FeCl₂(12.6 mg, 0.1 mmol). The septum-sealed tube was evacuated at room temperature and refilled with N₂ three times. Then di-*tert*-butyl peroxide (0.110 mL, 0.6 mmol) was added in under N₂. The resulting mixture was heated at 100 °C in an oil bath for 24 h. The reaction mixture was cooled down to room temperature and directly purified by flash column chromatography on silica gel (eluent: first petroleum ether then ethyl acetate/petroleum ether = 1/30) and the fraction with an R_f = 0.4 (ethyl acetate/petroleum ether = 1/30) was collected and concentrated to gave the titled product **3aa**.

Procedure for 3aa with the slow addition of DTBP: Diphenylmethane **1a** (0.67 mL, 4.0 mmol), 1-phenylvinyl acetate **2a** (81.1 mg, 0.5 mmol), and di-*tert*-butyl peroxide (0.010 mL, 0.05 mmol) were added successively to a 25 mL Schlenk tube containing FeCl₂ (6.3 mg, 0.05 mmol). The septum-sealed tube was evacuated at room temperature and refilled with N₂ three times. The mixture was heated at 100 in an oil bath for half an hour. Under N₂, the remaining di-*tert*-butyl peroxide (0.10 mL, 0.55 mmol) was added in 10 h (0.010 mL was added per hour). The reaction mixture was heated at 100 totally for 24 h and then cooled down to room temperature. The product was purified directly by flash column chromatography on silica gel (eluent: first petroleum ether then dichloromethane/petroleum ether = 1/4) to give the titled product 3**aa** 100 mg. Yield 70%.

1,3,3-triphenylpropan-1-one (3aa)

¹H NMR (CDCl₃, 300MHz) δ 7.93-7.90 (m, 2H), 7.55-7.49 (m, 1H), 7.44-7.39 (m, 2H), 7.25-7.21 (m, 8H), 7.20-7.14 (m, 2H), 4.83 (t, 1H, *J* = 7.2), 3.73 (d, 2H, *J* = 7.2) ppm; ¹³C NMR (CDCl₃, 75MHz) 197.9, 144.1, 137.0, 130.0, 128.5, 128.0, 127.8, 126.3, 45.8, 44.6 ppm; IR v 2960, 2925, 2853, 1684, 1259, 1023, 865 cm⁻¹; MS (EI): (m/z) (%): 286 (29) [M⁺], 105 (100).

3-(biphenyl-4-yl)-1,3-diphenylpropan-1-one (3ba)

¹H NMR (CDCl₃, 300MHz) δ 7.95-7.93 (m, 2H), 7.55-7.24 (m, 16H), 7.22-7.14 (m, 1H), 4.87 (t, 1H, *J* = 7.5), 3.76 (d, 2H, *J* = 7.5) ppm; ¹³C NMR (CDCl₃, 75MHz) 197.9, 144.0, 143.2, 140.8, 139.2, 137.0, 133.1, 128.6, 128.2, 128.0, 127.8, 127.2, 127.0, 126.9, 126.4, 45.6, 44.7 ppm; IR v 2961, 2924, 1684, 1259, 1089, 1019, 800 cm⁻¹; HRMS (ESI): Anal. Calcd. for C₂₇H₂₂NaO 385.15629, Found: 385.15646.

3-(4-fluorophenyl)-1,3-diphenylpropan-1-one (3ca)

¹H NMR (CDCl₃, 300MHz) δ 7.92-7.89 (m, 2H), 7.53-7.48 (m, 1H), 7.42-3.37 (m, 2H), 7.28-7.13 (m, 7H), 6.95-6.89 (m, 1H), 4.80 (t, 1H, *J* = 7.5), 3.68 (d, 2H, *J* = 7.2) ppm; ¹³C NMR (CDCl₃, 75MHz) 197.7, 162.9, 159.7, 143.9, 139.8, 139.7, 136.8, 133.1, 129.2, 129.1, 128.5, 127.9, 127.6, 126.4, 115.3, 115.1, 45.1, 44.6 ppm; IR v 2926, 2856, 1738, 1671, 1301, 1239,842 cm⁻¹; HRMS (ESI): Anal. Calcd. for C₂₁H₁₇FNaO 327.11556, Found: 327.11606.

3-(4-chlorophenyl)-1,3-diphenylpropan-1-one (3da)

¹H NMR (CDCl₃, 300MHz) δ 7.90 (d, 2H, *J* = 7.8), 7.52-7.48 (m, 1H), 7.42-7.36 (m, 2H), 7.28-7.15 (m, 9H), 4.79 (t, 1H, *J* = 7.5), 3.68 (d, 2H, *J* = 7.2) ppm; ¹³C NMR (CDCl₃, 75MHz) 197.5, 143.6, 142.5, 136.7, 133.1, 132.0, 139.1, 128.6, 128.5, 127.9, 127.6, 126.5, 45.1, 44.4 ppm; IR v 2955, 2922, 2854, 1686, 1448, 1091, 985 cm⁻¹; HRMS (ESI): Anal. Calcd. for C₂₁H₁₇ClNaO 343.08601 Found: 343.08676.

3,3-bis(4-fluorophenyl)-1-phenylpropan-1-one (3ea)

¹H NMR (CDCl₃, 200MHz) δ 7.93-7.89 (m, 2H), 7.56-7.38 (m, 3H), 7.22-7.08 (m, 4H), 6.96-6.89 (m, 4H), 4.79 (t, 1H, *J* = 7.2), 3.66 (d, 2H, *J* = 7.2) ppm. ¹³C NMR (CDCl₃, 50MHz) 197.5, 163.8, 158.9, 139.7, 139.6, 136.8, 133.2, 129.2, 129.0, 128.6, 127.9, 115.5, 115.1, 44.7, 44.3 ppm; IR v 2955, 2923, 2853, 1684, 1507, 1458, 1377, 1225, 834 cm⁻¹; HRMS (ESI): Anal. Calcd. for C₂₁H₁₆F₂NaO 345.10614 Found: 345.10616.

3-(4-methoxyphenyl)-1,3-diphenylpropan-1-one (3fa)

¹H NMR (CDCl₃, 300MHz) δ 7.99-7.96 (m, 2H), 7.60-7.55 (m, 1H), 7.49-7.44 (m, 2H), 7.31-7.29 (m, 4H), 7.26-7.19 (m, 3H), 6.87-6.84 (m, 2H), 4.83 (t, 1H, *J* = 7.5), 3.78 (s, 3H), 3.75 (d, 2H, *J* = 7.2) ppm; ¹³C NMR (CDCl₃, 75MHz) 198.0, 157.9, 144.5, 137.0, 136.2, 133.0, 128.7, 128.5, 128.0, 127.8, 126.2, 113.8, 55.1, 45.1, 44.7 ppm; IR v 2923, 2853, 1674, 1597, 1448, 1248, 1212, 873 cm⁻¹; HRMS (ESI): Anal. Calcd. for C₂₂H₂₀NaO₂ 339.13555, Found: 339.13702.

3-(2-methoxyphenyl)-1,3-diphenylpropan-1-one (3ga)

¹H NMR (CDCl₃, 300MHz) δ 7.96-7.92 (m, 2H), 7.55-6.64 (m, 12H), 5.18 (t, 1H, J = 7.2), 3.76-3.69 (m, 5H) ppm. IR v 2959, 2920, 2850, 1684, 1492, 1243, 1028, 847 cm⁻¹

2-(10,11-Dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)-1-phenyl-ethane-1-one (3ha)

¹H NMR (CDCl₃, 300MHz) δ 7.87-7.84 (m, 2H), 7.49-7.42 (m, 1H), 7.40-7.33 (m, 2H), 7.09-7.04 (m, 6H), 5.02 (t, 1H, *J* = 6.6), 3.74 (d, 2H, *J* = 6.6) 3.42-3.30 (m, 2H), 3.14-3.04 (m, 2H) ppm; ¹³C NMR (CDCl₃, 75MHz) 197.8, 141.1, 139.2, 137.0, 132.9, 130.2, 129.3, 128.4, 127.9, 126.7, 126.1, 46.4, 33.2 ppm; IR v 3059, 1736, 1685, 1596, 1492, 1447, 1245, 1202, 980, 750 cm⁻¹; HRMS (ESI): Anal. Calcd. for C₂₃H₂₀NaO 335.14064, Found: 335.14078.

3-(naphthalen-2-yl)-1,3-diphenylpropan-1-one (3ia)

¹H NMR (CDCl₃, 200MHz) δ 7.96-7.92 (m, 3H), 7.77-7.71 (m, 4H), 7.56-7.16 (m,13H), 4.99(t, 1H, *J* = 7.2), 3.83 (d, 2H, *J* = 6.8) ppm; ¹³C NMR (CDCl₃, 50MHz) 197.9, 143.9, 143.3, 141.5, 137.0, 133.4, 133.0, 131.9, 128.6, 128.2, 128.0, 127.9, 127.7, 127.5, 126.7, 126.4, 125.9, 125.7, 125.5, 45.9, 44.5 ppm; IR v 2955, 2924, 1684, 1596, 1447, 1260, 1030, 800 cm⁻¹; HRMS (ESI): Anal. Calcd. for C₂₅H₂₀NaO 359.14064, Found: 359.14074.

2-(isochroman-1-yl)-1-phenylethanone (3ja)

¹H NMR (CDCl₃, 200MHz) δ 7.99-7.96 (m, 2H), 7.55-7.37 (m, 4H), 7.23-7.05 (m, 5H), 5.50-5.45 (m, 1H), 4.11-4.01 (m,1H), 3.81-3.70 (m,1H), 3.69-3.51 (m,1H), 3.32-3.22 (m,1H), 3.05-2.90 (m,1H), 2.71-2.61 (m,1H) ppm; ¹³C NMR (CDCl₃, 50MHz) 197.9, 137.4, 137.0, 133.8, 132.9, 128.8, 128.3, 128.1, 126.4, 126.1, 124.3, 72.5, 63.2, 45.2, 28.7 ppm; IR v 2928, 2853, 1685, 1579, 1280, 1202, 1105, 774 cm⁻¹; HRMS (ESI): Anal. Calcd. for $C_{17}H_{17}O_2$ 253.12231, Found: 253.12214.

3-(3,5-di-tert-butyl-4-hydroxyphenyl)-1-phenylpropan-1-one(3ka)

¹H NMR (CDCl₃, 300MHz) δ 7.82-7.79 (m, 2H), 7.37-7.23 (m, 3H), 6.92 (broad peak, 2H), 4.98 (broad peak, 1H), 3.14 (t, 2H, *J* = 7.2), 2.87 (t, 2H, *J* = 7.2), 1.30 (broad

peak, 19H) ppm; ¹³C NMR (CDCl₃, 75MHz) 199.6, 151.9, 136.9, 135.9, 132.8, 131.6, 128.4, 127.9, 124.8, 41.0, 34.2, 30.2 ppm; IR v 2957, 1684, 1434, 1232, 1159, 977 cm⁻¹; HRMS (ESI): Anal. Calcd. for C₂₃H₃₀NaO₂ 361.21380, Found: 361.21387.

1,3-diphenylpropan-1-one(3la)

¹H NMR (CDCl₃, 200MHz) δ 7.98-7.94 (m, 2H), 7.59-7.34 (m, 3H), 7.30-7.20 (m, 5H), 3.31 (t, 2H, *J* = 7.2), 3.06 (t, 2H, *J* = 7.0), ppm; ¹³C NMR (CDCl₃, 50MHz) 199.2, 141.2, 136.8, 133.0, 128.5, 128.4, 128.3, 128.0, 126.1, 40.4, 30.1 ppm; IR v 2954, 2926, 1770, 1684, 1448, 1245, 974 cm⁻¹; HRMS (ESI): Anal. Calcd. for C₁₅H₁₅O 211.11174, Found: 211.11203.

3,3-diphenyl-1-p-tolylpropan-1-one (3ab)

¹H NMR (CDCl₃, 300MHz) δ 7.80 (d, 2H, J = 8.1), 7.23-7.09 (m, 12H), 4.81 (t, 1H, J = 7.2), 3.66 (d, 2H, J = 7.5), 2.32 (s, 3H) ppm; ¹³C NMR (CDCl₃, 75MHz) 197.3, 144.1, 134.6, 134.4, 129.1, 128.4, 128.0, 127.7, 126.1, 45.8, 44.4, 21.4 ppm; IR v 2920, 2852, 1684, 1607, 1261, 1180, 1030, 977 cm⁻¹; HRMS (ESI): Anal. Calcd. for C₂₂H₂₁O 301.15869, Found: 301.15919.

3,3-diphenyl-1-m-tolylpropan-1-one (3ac)

¹H NMR (CDCl₃, 300MHz) δ 7.71-7.69 (m, 2H), 7.31-7.10 (m, 12H), 4.82 (t, 1H, J = 7.5), 3.69 (d, 2H, J = 7.5), 2.33 (s, 3H) ppm; ¹³C NMR (CDCl₃, 75MHz) 197.7, 144.1, 138.2, 137.0, 133.7, 128.5, 128.4, 128.3, 127.7, 126.2, 125.1, 45.8, 44.6, 21.2 ppm. IR v 3026, 2921, 1682, 1493, 1450, 1275, 1260, 1156 908 cm⁻¹; HRMS (ESI): Anal. Calcd. for C₂₂H₂₁O 301.15869, Found: 301.15867.

3,3-diphenyl-1-o-tolylpropan-1-one (3ad)

¹H NMR (CDCl₃, 300MHz) δ 7.54-7.51(m, 1H), 7.35-7.15 (m, 13H), 4.74 (t, 1H, J = 7.8), 3.63 (d, 2H, J = 7.8), 2.21 (s, 3H) ppm; ¹³C NMR (CDCl₃, 75MHz) 202.5, 143.8, 138.4, 137.9, 131.7, 131.0, 128.5, 127.8, 126.4, 125.5, 47.8, 46.5, 20.6 ppm. IR v 2926, 1738, 1679, 1494, 1241, 1034, 940, 908 cm⁻¹; HRMS (ESI): Anal. Calcd. for C₂₂H₂₁O 301.15869, Found: 301.15878.

1-(4-methoxyphenyl)-3,3-diphenylpropan-1-one (3ae)

¹H NMR (CDCl₃, 400MHz) δ 7.91 (d, 2H, *J* = 9.2), 7.26-7.14 (m, 10H), 6.89 (d, 2H, *J* = 8.8), 4.81 (t, 1H, *J* = 7.2), 3.82 (s, 3H), 3.67 (d, 2H, *J* = 7.2) ppm; ¹³C NMR (CDCl₃, 100MHz) 196.5, 163.4, 144.2, 130.3, 130.1, 128.5, 127.8, 126.3, 113.7, 55.4, 46.0, 44.3 ppm. IR v 2922, 2849, 1675, 1599, 1509, 1254, 1168, 983, 813 cm⁻¹; HRMS (ESI): Anal. Calcd. for C₂₂H₂₁O₂ 317.15361, Found: 317.15383.

1-(4-fluorophenyl)-3,3-diphenylpropan-1-one (3af)

¹H NMR (CDCl₃, 300MHz) δ 7.95-7.90 (m, 2H), 7.28-7.23 (m, 7H), 7.23-7.14 (m, 2H), 7.09-7.04 (m, 2H), 4.80 (t, 1H, *J* = 7.2), 3.68 (d, 2H, *J* = 7.2); ¹³C NMR (CDCl₃, 75MHz) 196.3, 167.3, 163.9, 143.9, 133.4, 133.5, 130.7, 130.5, 128.5, 127.7, 126.4, 115.7, 115.4, 45.9, 44.5 ppm. IR v 2953, 2924, 2853, 1687, 1597, 1261, 1029, 985, 837 cm⁻¹; HRMS (ESI): Anal. Calcd. for C₂₁H₁₈FO 305.13362, Found: 305.13350.

1-(4-bromophenyl)-3,3-diphenylpropan-1-one (3ag)

¹H NMR (CDCl₃, 300MHz) δ 7.81-7.76 (m, 2H), 7.59-7.53 (m, 2H), 7.29-7.22 (m, 82H), 7.20-7.14 (m, 2H), 4.79 (t, 1H, *J* = 7.5), 3.67 (d, 2H, *J* = 7.5); ¹³C NMR (CDCl₃, 75MHz) 197.0, 143.8, 135.7, 131.8, 129.5, 128.5, 128.2, 127.7, 126.4, 45.9, 44.6 ppm;. IR v 2960, 2925, 1685, 1584, 1260, 1070, 982, 837 cm⁻¹; MS (EI) (m/z) (%): 365 (8) [M⁺], 167 (100).

methyl 4-(3,3-diphenylpropanoyl)benzoate (3ah)

¹H NMR (CDCl₃, 200MHz) δ 7.93-7.8 (m, 2H), 7.35-7.10 (m, 9H), 6.92-6.86 (m, 9H), 4.82 (t, 1H, *J* = 7.2), 3.82 (s, 3H), 3.75 (d, 2H, *J* = 7.2) ppm. ¹³C NMR (CDCl₃, 50MHz) 196.4, 163.4, 144.2, 130.2, 130.1, 128.4, 127.8, 126.2, 113.6, 55.3, 46.0, 44.2 ppm;. IR v 2953, 2921, 2849, 1763, 1720, 1685, 1433, 1277, 1203, 1108, 1017, 859 cm⁻¹; HRMS (ESI): Anal. Calcd. for C₂₃H₂₀NaO₃ 367.13047, Found: 367.13064.

References:

- [1] J. A. Wilkinson, S. B. Rossington, S. Ducki, J. Leonard, N. Hussain, *Tetrahedron* 2006, 62, 1833.
- [2] A. Berkessel, M. L. Sebastian-Ibarz, T. N. Muller, Angew. Chem. Int. Ed. 2006,
- [3] R, Correia, P. DeShong, J. Org. Chem. 2001, 66, 7159.45, 6567.

