Electronic Supporting Information for:

Reversible RS-NO Bond Cleavage and Formation at Copper(I) Thiolates

Marie M. Melzer, Ercheng Li, and Timothy H. Warren*

Georgetown University, Department of Chemistry,

Box 571227, Washington, DC 20057-1227

Contents

General Experimental Details Preparation of Compounds ¹H NMR Spectra for Transnitrosation Reactions (Figures S1-S5) VT ¹H and ¹⁵N NMR Spectra for S-nitrosothiols (Figures S6-S7) X-ray Structure and Refinement Details for 3, 4, and 5 ORTEP diagrams for Compounds 3, 4, and 5 (Figures S8-S10) with bond distances (Å) and angles (°)

General Experimental Details

All experiments were carried out in a dry nitrogen atmosphere using an MBraun glovebox and/or standard Schlenk techniques. 4A molecular sieves were activated *in vacuo* at 180 °C for 24 h. Dry toluene and dichloromethane were purchased from Aldrich and were stored over activated 4A molecular sieves under nitrogen. Diethyl ether and tetrahydrofuran (THF) were first sparged with nitrogen and then dried by passage through activated alumina columns.¹ Pentane was first washed with conc. HNO₃/H₂SO₄ to remove olefins, stored over CaCl₂ and then distilled before use from sodium/benzophenone. All deuterated solvents were sparged with nitrogen, dried over activated 4A molecular sieves and stored under nitrogen. ¹H and ¹³C NMR spectra were recorded on an Inova Varian 300 MHz, 400, or 500 MHz spectrometer (300, 400, or 500 and 75.4, 100.5, or 125.8 MHz, respectively). ¹⁹F NMR spectra were recorded at 282.3 or 375.8 MHz using an internal or external reference of C₆F₆ set to $\delta = -164.9$ ppm. ¹⁵N NMR spectra were recorded at 50.6 MHz using an external reference of Na¹⁵NO₂ (in D₂O) set to $\delta = 232$ ppm¹ or ¹BuO¹⁵NO (in toluene-*d*₈ or chloroform-*d*₁) set to $\delta = 196$ ppm. All NMR spectra were recorded at room temperature unless otherwise noted and were indirectly referenced to TMS using residual solvent signals as internal standards. Elemental analyses were performed on a Perkin-Elmer PE2400 microanalyzer in our laboratories.

^tBuSH and BnSH were obtained from Acros, anhydrous CuCl and NOBF₄ from Strem, and TlOEt, KO^tBu as well as (4-*tert*-butylphenyl)methanethiol from Aldrich; all were used as received. The thallium thiolates TlS^tBu, TlSBn, and TlSCH₂Ar^{tBu} (^{tBu}Ar = 4-*t*ert-butylphenyl) were synthesized following a modified literature procedure by the reaction of free thiol with TlOEt in ether followed by washing of the solids with pentane.¹ The *S*-nitrosothiols ^tBuSNO, BnSNO, and ^{tBu}ArCH₂SNO (^{tBu}Ar = p-^tBuC₆H₄) were synthesized *in situ* by the reaction of the corresponding thallium thiolates with 1 eq. NOBF₄ in CDCl₃ or C₆D₆. Use of an internal standard indicates > 95% purity of resulting RSNOs.² Caution! ^tBuSH is extremely volatile and possesses a pungent odor indistinguishable from ethanethiol contained in natural gas. Glyoxal-bis-(2,6diisopropylphenyl)imine,³ 1,3-bis-(diisopropylphenyl)imidazolium chloride,³ IPrCuCl,⁴ and [IPrCu(NCMe)]BF₄⁵ were synthesized according to published literature procedures.

Synthesis and reactivity of 1 - 5 with spectroscopic and analytical details included.

IPrCu-SBn (1). A yellow slurry of TISBn (0.135 g, 0.411 mmol) in 3 mL of THF was added to a stirring solution of IPrCuCl (0.200 g, 0.411 mmol) in 5 mL of THF upon which TICl immediately precipitates. The solution was allowed to stir for 1 h. The white precipitate was filtered out and the solution was concentrated down to 2 mL. Crystals suitable for X-ray analysis grew overnight at -30 °C yielding 0.161 mg of product (68%). ¹H NMR (CDCl₃, 25 °C) δ 7.486 (t, 2, *p*-Ar*H*- NHC), 7.300 (d, 4, *m*-Ar*H*-NHC), 7.112 (s, 2, C*H*-NHC), 7.067-6.900 (m, 5, CH₂*Ph*), 3.275 (s, 2, C*H*₂Ph), 2.600 (sept, 4, C*H*Me₂), 1.300 (d, 12, CH*M*e₂), 1.226 (d, 12, CH*M*e₂); ¹³C{¹H} NMR (CDCl₃, 25 °C) δ 181.72, 145.63, 144.83, 134.55, 130.32, 127.93, 127.74, 124.76, 124.03, 122.75, 28.68, 25.26, 24.77, 23.80. Anal. Calcd. for C₃₄H₄₃CuN₂S: C, 70.98; H, 7.53; N, 4.87. Found C, 71.22; H, 7.56; N, 4.87.

IPrCu-S'Bu (2). A yellow solution of TIS'Bu (0.151 g, 0.514 mmol) in 3 mL of THF was added to a stirring solution of IPrCuCl (0.250 g, 0.514 mmol) in 5 mL of THF upon which TICl immediately precipitates. The solution was allowed to stir for 1 h. The volatiles were removed *in vacuo* and the white residue was extracted with 3×5 mL of CH₂Cl₂ and filtered through Celite. The solvent was removed *in vacuo* and the residue washed with 5 mL of *n*-pentane. The remaining solid was dried *in vacuo* to afford 0.206 g (74%) of the product. ¹H NMR (CDCl₃, 25 °C) δ 7.451 (t, 2, *p*-ArH- NHC), 7.277 (d, 4, *m*-ArH-NHC), 7.123 (s, 2, CH-NHC), 2.615 (sept, 4, CHMe₂), 1.328 (d, 12, CHMe₂), 1.221 (d, 12, CHMe₂), 1.040 (s, 9, ^{*t*}Bu); ¹³C{¹H} NMR (CDCl₃, 25 °C) δ 182.73, 145.79, 134.88, 130.36, 124.20, 122.85, 39.27, 34.41, 28.88, 24.88, 24.22. Anal. Calcd. for C₃₁H₄₅CuN₂S: C, 68.78; H, 8.38; N, 5.18. Found C, 69.04; H, 8.37; N, 4.77.

IPrCu-SCH₂Ar^{tBu} (3). A yellow solution of TISCH₂Ar^{tBu} (0.330 g, 0.860 mmol) in 3 mL of THF was added to a stirring solution of IPrCuCl (0.419 g, 0.860 mmol) in 8 mL of THF upon which TICl immediately precipitates. The solution was allowed to stir for 1 h. The white precipitate was filtered out and the solution was concentrated down to 2 mL. Crystals suitable for X-ray analysis grew overnight at -30 °C yielding 0.420 mg of product (77 % yield). ¹H NMR (CDCl₃, 25 °C) δ 7.490 (t, 2, *p*-Ar*H*- NHC), 7.305 (d, 4, *m*-Ar*H*-NHC), 7.118 (s, 2, *CH*-NHC), 7.069 (d, 2, *o*-Ar*H*-CH₂Ar^{tBu}), 6.833 (d, 2, *m*-Ar*H*- CH₂Ar^{tBu}) 3.322 (s, 2, *CH*₂Ar^{tBu}), 2.615 (sept, 4, *CH*Me₂), 1.328 (d, 12, *CHMe*₂), 1.304 (s, 9, *CH*₂Ar^{tBu}), 1.221 (d, 12, *CHMe*₂), 1.040 (s, 9, ^t*Bu*); ¹³C{¹H} NMR (CDCl₃, 25 °C) δ 182.24, 145.95, 143.82, 134.86, 130.61, 127.83, 127.82, 125.01, 124.33, 122.98, 34.42, 31.65, 28.99, 25.83, 25.05, 24.10. Anal. Calcd. for C₃₈H₅₁CuN₂S: C, 72.28; H, 8.14; N, 4.44. Found C, 71.99; H, 7.80; N, 4.15.

¹H NMR Experiments for transnitrosation reactions of IPrCu-SR + R'SNO.

IPrCu-S^tBu + **BnSNO.** BnSNO was generated from the addition of TISBn (0.018 g, 0.055 mmol) in 0.500 mL CDCl₃ to stirring NOBF₄ (0.007 g, 0.055 mmol) crystals. The colorless solution immediately turned bright red and the solution was allowed to stir for 5 min. This solution is added to a light tan solution of IPrCu-S^tBu (0.030 g, 0.055 mmol) in 0.500 mL CDCl₃. The color of the red solution dimished and a hint of green appeared. This sample was analyzed by ¹H NMR spectroscopy. IPrCu-SBn and ^tBuSNO were both seen as new products (δ 3.278 and 1.939 ppm) with IPrCu-S^tBu (δ 1.065 ppm) and BnSNO (δ 4.670 ppm) reactants still present. We repeated this experiment three times and calculated the equilibrium constant of the reaction from the NMR integrals of all four species after letting the sample equilibrate for ca. 10 – 15 minutes (Figure S1a).

The experiment was similarly repeated in C_6D_6 . The SCH₂Ph peaks from IPrCu-SCH₂Ph and BnSNO formed one new peak at δ 3.978 ppm, similar to what is seen in the degenerate reaction between IPrCu-SBn and BnSNO in C_6D_6 . The two types of S^{*t*}Bu peaks from IPrCu-S^{*t*}Bu and ^tBuSNO overlap and equilibrium information cannot be taken from these spectra since the pure components appear at δ 1.480 and 1.506 ppm, respectively.

IPrCu-S^tBu + BnSNO
2 IPrCu-SBn + ^tBuSNO
2
$$K_{eq} = 0.25(5)$$
 1
in CDCl₃

Scheme S1. Transnitrosation between IPrCu-S^tBu (2) and BnSNO. The equilibrium favors the bulky, more strongly electron-donating S^tBu group at copper.

Figure S1. ¹H NMR spectra (300 MHz, 25 °C) in (a) $CDCl_3$ or (b) C_6D_6 illustrating transnitrosation between IPrCu-S^tBu (2) and BnSNO.

Transthiolation experiment between IPrCu-S^tBu + BnSH.

IPrCu-S^tBu + **BnSH.** BnSH (0.007 g, 0.055 mmol) in 0.100 mL CDCl₃ was added to a light tan solution of IPrCu-S^tBu (0.030 g, 0.055 mmol) in 0.500 mL CDCl₃. No color change is observed. This sample is analyzed by ¹H NMR and IPrCu-SBn (δ 3.278 ppm) and ^tBuSH (δ 1.469 and 1.786 ppm for ^{*t*}Bu and SH resonances, respectively) are both seen as new products with complete consumption of IPrCu-S^tBu and BnSNO reactants. Thus the reaction favors the primary copper thiolate and the tertiary thiol.

Scheme S2. Transthiolation between $IPrCu-S^tBu$ (2) and BnSH. The reaction goes to completion, favoring the less bulky copper complex IPrCu-SR.

Figure S2. ¹H NMR spectrum (300 MHz, 25 °C, CDCl₃) illustrating transthiolation between IPrCu-S^tBu (2) and BnSH.

Degenerate transnitrosation experiments

IPrCu-S'Bu with 'BuSNO. 'BuSNO was generated from the addition of TIS'Bu (0.016 g, 0.055 mmol) in 0.500 mL CDCl₃ to stirring NOBF₄ (0.007 g, 0.055 mmol) crystals. The colorless solution turned green and the solution was allowed to stir for 5 min. This solution was added to a light tan solution of IPrCu-S'Bu (0.030 g, 0.055 mmol) in 0.500 mL CDCl₃. No major color change was observed. This sample was then analyzed by ¹H NMR spectroscopy. Resonances for IPrCu-S'Bu (δ 1.065 ppm) and ^tBuSNO (δ 1.939 ppm) were both seen as sharp unshifted peaks. This suggests that the transnitrosation reaction is not fast on the ¹H NMR timescale. The experiment was repeated in C₆D₆ with identical results to the CDCl₃ experiment, IPrCu-S'Bu (δ 1.517 ppm; ^tBu) and ^tBuSNO (δ 1.485 ppm) appear at different chemical shifts in C₆D₆.

$$IPrCu-S^{t}Bu + {}^{t}BuSNO \longrightarrow IPrCu-S^{t}Bu + {}^{t}BuSNO 2$$

Scheme S3. Degenerate transnitrosation of ^tBuSNO and IPrCu-S^tBu (2).

Figure S3. ¹H NMR spectra (300 MHz, 25 °C) of degenerate transnitrosation between ^tBuSNO and IPrCu-S^tBu (2) in (a) benzene- d_6 and (b) chloroform- d_1 .

IPrCu-SBn with BnSNO. BnSNO was generated from the addition of TISBn (0.018 g, 0.055 mmol) in 0.500 mL CDCl₃ to stirring NOBF₄ (0.007 g, 0.055 mmol) crystals. The colorless solution immediately turned bright red and the solution wass allowed to stir for 5 min. This solution was added to a light tan solution of IPrCu-SBn (0.032 g, 0.055 mmol) in 0.500 mL CDCl₃. No major color changes was observed. This sample was analyzed by ¹H NMR. The SCH₂Ph resonances in IPrCu-SBn (δ 3.814 ppm) and BnSNO (δ 4.670 ppm) were both broad, but remain at the same chemical shift.

Scheme S4. Degenerate transnitrosation between BnSNO and IPrCu-SBn (1).

Figure S4. ¹H NMR spectra (300 MHz, 25 °C) in: (a) CDCl₃ of transnitrosation between IPrCu-SBn and BnSNO, two SCH₂Ph peaks present or (b) C_6D_6 of transnitrosation between IPrCu-SBn and BnSNO, one SCH₂Ph peak present.

When the reaction was performed analogously in benzene- d_6 one ¹H NMR peak at δ 3.988 ppm was observed for the SCH₂Ph protons. When different stoichiometric amounts (1/2, 1, and 2 eq.) of BnSNO are added to IPrCu-SBn, the chemical shift of the broad peak moved toward chemical shift for the pure compound that was in greater excess. A 200 mM stock solution of PhCH₂SNO was generated from the addition of TlSBn (0.131 g, 0.400 mmol) in 0.200 mL CDCl₃ to stirring NOBF₄ (0.047 g, 0.400 mmol) crystals. A 100 mM stock solution of IPrCu-SBn was prepared by dissolving (0.115 g, 0.200 mmol) in 0.200 mL of CDCl₃. ¹H NMR spectra were taken in C₆D₆ varying the ratio PhCH₂SNO to IPrCu-SBn: (1) 0:1, (2) 1:2, (3) 1:1, (4) 1:1/2, (5) 1:0. The final concentration of copper was kept constant throughout the reaction.

Table S1. Experimental set up for reaction of IPrCu-SBn (1) and BnSNO using varying equivalents of each reactant.

Spectrum	RSNO:CuSR	PhCH ₂ SNO	IPrCu-SCH ₂ Ph	C_6D_6	δ (ppm)
	Ratio	200 mM	100 mM		
1	0:1	0.200 mL	0 mL	0.800 mL	4.082
2	1:2	0.400 mL	0.400 mL	0.200 mL	4.021
3	1:1	0.200 mL	0.400 mL	0.400 mL	3.979
4	1:1/2	0.100 mL	0.400 mL	0.500 mL	3.867
5	0:1	0 mL	0.400 mL	0.600 mL	3.816

Figure S5. ¹H NMR spectra (300 MHz, 25 °C, C_6D_6) of mixtures containing different ratios of IPrCu-SBn and BnSNO. Only the SCH₂Ph region (δ 4.3 - 3.6 ppm) shown.

Table S1. Estimation of observed rate k for transnitrosation between IPrCu-SBn (1) and BnSNO when each is 40 mM in benzene- d_6 .

Compound	δ (ppm)	FWHH (Hz)	$k = \frac{\pi(\Delta v_0)^2}{2(1-1)^2} = \frac{\pi(79.8)^2}{2(42.0-10.5)^2}$	
IPrCuSBn	3.816	10.2	$= 2(h_e - h_0) = 2(48.9 - 10.5) \\ = 260(10) e^{-1}$	
BnSNO	4.082	10.8	= 200(10) s	
IPrCuSBn + BnSNO	3.978	48.9	$\Delta v_0 = 300 \text{MHz}(4.082 - 3.816 \text{ppm})$	
			= 79.8 Hz	

 h_e and h_0 are the FWHH peakwidths during exchange and in the absence of exchange. $h_e = 48.9$ Hz and h_0 estimated at 10.5 Hz, the average of the peakwidths for the two pure compounds.

Synthesis of ¹⁵N-labeled S-nitrosothiols; NMR spectroscopy of S-nitrosothiols

^t**BuO**¹⁵NO. ^tBuO¹⁵NO was synthesized according to the reported procedure from an acidic solution of sodium nitrite with slight modifications.⁶ To an ice cold solution of 18 M H₂SO₄ (1.04 ml, 19.55 mmol) and H₂O (1.04 mL) was added ^tBuOH (1.447 g, 19.55 mmol) dropwise followed by the addition of a solution of Na¹⁵NO₂ (1.500 g, 21.4 mmol) in 2 mL of H₂O. The reaction was kept at 0 °C during the addition. The reaction mixture was warmed to room temperature and allowed to stir for 2 hr. The aqueous layer was separated and the organic portion was washed with aq NaHCO₃ (0.500 g) and NaCl (0.200 g). The organic layer was dried over Na₂SO₄ and filtered through silica gel to remove any remaining alcohol to yield 1.580 g (78 % yield) of a yellow oil. ¹H NMR (toluene-*d*₈, 500 MHz, 25 °C): δ 1.263 (s, 9, *Me*₃CO¹⁵NO). ¹⁵N NMR (toluene-*d*₈, 500 MHz, 25 °C): δ 196 (s, 1, Me₃CO¹⁵NO) (referenced using external Na¹⁵NO₂ in D₂O set to δ 232 ppm).⁷

^{tBu}ArCH₂S¹⁵NO and PhCH₂S¹⁵NO. ^{tBu}ArCH₂S¹⁵NO was generated from the addition of ^{tBu}ArCH₂SH (112 μL, 0.060 mmol) in 0.300 mL chloroform- d_1 or toluene- d_8 followed by ^{tBuO15}NO (7 μL, 0.060 mmol) to give ^{tBu}ArCH₂S¹⁵NO at a concentration of 100 mM. ¹H NMR (toluene- d_8 , 500 MHz, 25 °C): δ 7.072 (d, 2, *o*-ArH), 6.778 (d, 2, *m*-ArH), 4.260 (s, 2, *CH*₂Ar^{tBu}), 1.128 (s, 9, *Me*₃CAr). ¹⁵N NMR (toluene- d_8 , 500 MHz, 25 °C): δ 195.860 (s, *syn*, ^{tBu}ArCH₂S¹⁵NO), 360.564 (s, *anti*, ^{tBu}ArCH₂S¹⁵NO).

An analogous procedure was used to prepare $PhCH_2S^{15}NO$. ¹H and ¹³C NMR data for $PhCH_2S^{15}NO$ are identical to those previously reported for $PhCH_2SNO$.⁸

Table S2. ¹H NMR chemical shifts (500 MHz) for syn / anti rotamers of the methylene peak of tBu ArC H_2 SNO.

Spectrum	^{tBu} Ar CH ₂ SNO	^{tBu} Ar <i>CH</i> ₂ SNO		
	-60 °C, CDCl ₃	-70 °C, C ₆ D ₅ CD ₃		
Syn	4.402	3.695		
Anti	6.207	5.488		
Average (25 °C)	4.656	4.158		

Table S3. ¹H and ¹⁵N NMR data for syn and anti rotomers of PhCH₂SNO and ^{tBu}ArCH₂SNO in toluene- d_8 at -70 °C. All chemical shifts given in ppm. ¹⁵N chemical referenced to external ^tBuO¹⁵NO in toluene- d_8 set to 196 ppm.

S-nitrosothiol	¹ H Shift	¹ H Shift	Syn:Anti	¹⁵ N Shift	¹⁵ N Shift	Syn:Anti
	Anti	Syn	¹ H NMR	Anti	Syn	¹⁵ N NMR
PhCH ₂ SNO	5.973	3.560	14:1	209.3	137.9	13:1
^{tBu} ArCH ₂ SNO	6.027	4.402	14:1	360.6	195.9	13:1

Figure S6. a) ¹H NMR spectra (300 MHz, toluene- d_8) of ^{tBu}ArCH₂SNO at 25 °C and -60 °C, CH₂ region shown only. b) ¹H NMR spectra (300 MHz, chloroform- d_1) of ^{tBu}ArCH₂SNO at 25 °C and -70 °C, CH₂ region shown only.

Figure S7. ¹⁵N{¹H} NMR spectra (30.428 MHz, toluene- d_8) at -70 °C, anti/syn 0.08:1.

Transnitrostation between ^{tBu}ArCH₂S¹⁵NO and IPrCu-SCH₂Ar^tBu observed by ¹⁵N NMR. t^{Bu}ArCH₂S¹⁵NO was generated from the addition of ^{tBu}ArCH₂SH (112 μ L, 0.060 mmol) in 0.300 mL chloroform- d_1 or toluene- d_8 followed by ^tBuO¹⁵NO (7 μ L, 0.060 mmol) to give concentrations of 100 mM of ^{tBu}ArCH₂S¹⁵NO. This solution was added to a light tan solution of IPrCu-SCH₂Ar^{tBu} (0.038 g, 0.060 mmol) in 0.300 mL chloroform- d_1 or toluene- d_8 . No major color changes were observed. Theses sample was analyzed by ¹⁵N NMR at -50 and 25 °C (chloroform- d_1) or -70 °C to 25 °C (toluene- d_8). The only ¹⁵N containing molecule in this reaction mixture is the *S*-nitrosothiol in both solvents. No new species was formed. This confirms that we do not observe the nitroxyl disulfide intermediate using our ligand system in these reaction conditions.

Scheme S5. Transnitrosation reaction between 3 and ^{tBu}ArCH₂SNO.

NO_{gas} and NO⁺ reactions with IPrCu-SR complexes

IPrCu-SR with NO_{gas}. When 1 equiv. NO_{gas} was added to IPrCu-SR (R = Bn (1) or ^tBu (2), there was no reaction by ¹H NMR in CDCl₃ at 25 °C. Addition of 2, 5, or 10 equiv. NO_{gas} did not cause a change in the ¹H NMR spectra. Thus NO_{gas} does not react with IPrCu-SR species under anaerobic conditions.

IPrCu-SBn with NOBF₄. To a stirring solution of IPrCu-SBn (0.100 g, 0.174 mmol) in 1.5 mL CDCl₃ was added NOBF₄ (0.020 g, 0.174 mmol). The solution immediately turned from light tan to red. This color change suggests the formation of BnSNO. This formation was confirmed by ¹H NMR spectroscopy (δ 4.684 ppm, Ar*CH*₂SNO). The IPrCu-S*CH*₂Ar peak was broad and almost completely disappeared into the baseline. A broad peak is also detected from 6.8-6.3 ppm. This peak is attributed to the aromatic peaks on the benzyl ring. Crystallization of this reaction mixture from toluene layered with pentane reveals this peak to be from the formation of a dicopper thiolate cation, [{IPrCu}₂(µ-SBn)]BF₄ (**4**).

Independent synthesis of [{IPrCu}₂(μ-SBn)]BF₄ (4). [IPrCu(MeCN)]BF₄ (0.200 g, 0.352 mmol) in 5 mL THF was added to a stirring solution of IPrCu-SBn (0.202 g, 0.352 mmol) in 5 mL THF. The reaction was allowed to stir for 10 minutes. The volatiles were removed *in vacuo* and the white residue was extracted with 3×5 mL of CH₂Cl₂ and filtered through Celite. The solvent was removed *in vacuo* and the residue washed with 5 mL of *n*-pentane. The remaining solid was dried *in vacuo* to afford 0.346 g (89 % yield) Analysis of this solid ¹H NMR confirmed it to be [{IPrCu}₂(μ-SBn)]BF₄. ¹H NMR (CDCl₃, 25 °C) δ 7.480 (t, 4, *p*-ArH- NHC), 7.268 (d, 8, *m*-ArH-NHC), (s, 4, 7.191, CH-NHC), 6.988 (br S, 3, *p*-Ar-Bn, *m*-Ar-Bn), 6.632 (br s, 2, *o*-Ar-Bn), 2.929 (br s, 2, *CH*₂-Bn), 2.512 (br sept, 8, *CHMe*₂), 1.208 (d, 24, *CHMe*₂), 1.137 (br s, 24, CH*Me*₂). ¹³C{¹H} NMR (CDCl₃, 25 °C) δ 180.26, 145.78, 134.51, 130.72, 128.28, 127.84, 124.35, 123.73, 29.24, 28.84, 25.05, 23.94, ¹⁹F{¹H} NMR (CDCl₃, 25 °C) δ -161.81. Several peaks in the ¹H NMR spectrum are broad (all of the Bn peaks, *CH*-NHC CH*Me*₂ on the NHC ligand) and two carbon peaks were missing in the ¹³C NMR spectra. We attribute this to exchange between IPrCuSBn and IPrCu⁺ in CDCl₃. Anal Calcd. for C₆₁H₇₉BCu₂F₄N₄S: C, 65.75; H, 7.15; N, 5.03. Found C, 65.56; H, 7.42; N, 5.20.

IPrCu-S^tBu with NOBF₄. To a stirring solution of IPrCu-S^tBu (0.100 g, 0.185 mmol) in 1.5 mL CDCl₃ was added NOBF₄ (0.022 g, 0.185 mmol). The solution immediately turned from light tan to green. This color change suggests the formation of ^tBuSNO. This formation is confirmed by ¹H NMR spectroscopy (δ 1.895 ppm, *Me*₃CSNO). A new S^tBu peak appeared at δ 0.582 ppm. Crystallization of this reaction mixture from THF reveals this peak to be from the formation of a dicopper thiolate cation, [{IPrCu}₂(μ -S^tBu)]BF₄(**5**).

Independent synthesis of [{IPrCu}₂(μ -S^tBu)]BF₄ (5). [IPrCu(MeCN)]BF₄ (0.200 g, 0.352 mmol) in 5 mL THF was added to a stirring solution of IPrCu-S^tBu (0.190 g, 0.352 mmol) in 5 mL THF. The reaction was allowed to stir for 10 minutes. The volatiles were removed *in vacuo* and the white residue was extracted with 3 × 5 mL of CH₂Cl₂ and filtered through Celite. The solvent was removed *in vacuo* and the residue washed with 5 mL of *n*-pentane. The remaining solid was dried *in vacuo* to afford 0.325 g (86 % yield) Analysis of this solid ¹H NMR confirms it to be [{IPrCu}₂(μ -S^tBu)]BF₄ (7). ¹H NMR (CDCl₃, 25 °C) δ 7.486 (t, 4, *p*-ArH- NHC), 7.330

(d, 8, *m*-ArH-NHC), 7.241 (s, 4, CH-NHC), 2.514 (sept, 8, CHMe₂), 1.227 (d, 24, CHMe₂), 1.090 (d, 24, CHMe₂), 0.582 (s, 9, ${}^{t}Bu$); ${}^{13}C{}^{1}H$ NMR (CDCl₃, 25 °C) δ 178.36, 145.52, 134.36, 130.70, 124.46, 124.14, 46.68, 38.58, 28.99, 24.99, 24.03, ${}^{19}F{}^{1}H$ NMR (CDCl₃, 25 °C) δ - 165.03. C₅₈H₈₃BCu₂F₄N₄S: Anal. Calcd. for C, 64.37; H, 7.73; N, 5.18. Found C, 64.22; H, 7.64; N, 5.25.

References

- 1. D. M. Jenkins, J. C. Peters J. Am. Chem. Soc. 2005, 127, 7148.
- 2. M. S. Varonka and T. H. Warren, *Inorg. Chim. Acta*, 2007, **360**, 317.
- 3. J. Huang, S. P. Nolan, J. Am. Chem. Soc. 1999, 121, 9889.
- 4. V. Jurkauskas, J. P. Sadighi and S. L. Buchwald, Org. Lett., 2003, 5, 2417.
- 5. M. R. Fructos, P. de Fremont, S. P. Nolan, M. M. Diaz-Requejo and P. J. Perez, *Organometallics*, 2006, **25**, 2237.
- 6. J. Das, S. N. Patil, R. Awasthi, C. P. Narasimhulu and S. Trehan, *Synthesis*, 2005, **11**, 1801.
- 7. N. Arulsamy, D. S. Bohle, J. A. Butt, G. J. Irvine, P. A. Jordan, E. Sagan, *J. Am. Chem. Soc.* **1999**, *121*, 7115 (footnote 56).
- 8. M. S. Varonka and T. H. Warren, *Inorg. Chem.* 2009, **48**, 5605.

X-ray Structure Refinement Details

Single crystals of each compound (**3** from pentane; **4** from toluene / pentane; **5** from THF) were mounted under mineral oil on glass fibers and immediately placed in a cold nitrogen stream at -100(2) °C or -173(2) °C on a Bruker SMART CCD system or Bruker APEX II CCD system. Either full spheres (triclinic) or hemispheres (monoclinic or higher) of data were collected ($0.3^{\circ} \omega$ -scans; $2\theta_{max} = 56^{\circ}$; monochromatic Mo Ka radiation, $\lambda = 0.7107$ Å) depending on the crystal system and integrated with the Bruker SAINT program. Structure solutions were performed using the SHELXTL/PC suite^a and XSEED.^b Intensities were corrected for Lorentz and polarization effects and an empirical absorption correction was applied using Blessing's method as incorporated into the program SADABS.^c Non-hydrogen atoms were refined with anisotropic thermal parameters and hydrogen atoms were included in idealized positions.

Because disordered pentanes of solvation were found in the initial refinement of **3** and **4** that could not be satisfactorily modeled, the SQUEEZE subroutine of PLATON was used.^d For **3**, 105 solvent electrons were identified in the unit cell corresponding to 2.5 molecules of pentane (ca. 1/3 molecule of pentane per IPrCu-SCH₂Ar^{tBu}). For **4**, 319 solvent electrons were identified corresponding to 1 molecule of pentane per [{IPrCu}₂(μ -SBn)]BF₄. The reflection data were refined excluding the solvent to give the results reported below.

In the structure of **5** • **2 THF**, disorder was observed in the positions of the bridging S^tBu group, the BF₄⁻ anion, and each THF. The SBu^t moiety was modeled over two sets of positions in which S1A, C55A, C56A, C57A, C58A and S1B, C55B, C56B, C57B, C58B were assigned occupancies of 0.530 and 0.470. Both positions were refined aniosotropically. Disorder in the BF₄⁻ anion was modeled by refining the fluorine atoms of BF₄ group over two sets of positions constrained by DFIX to be regular tetrahedra. F1A, F2A, F3A, F4A and F1B, F2B, F3B, F4B were assigned occupancies of 0.640 and 0.360 and were anisotropically refined. One THF (C59-C62;O63) was modeled with the O atom over two sets of positions (O63A and O63B) with equal occupancies. The other THF was modeled as two separate THF rings (C63-C66;O67) and (O68;C69-C72) with occupancies of 0.74 and 0.26, each sharing a common O atom (O67) at full occupancy. The major occupancy was refined aniostropically while the minor occupancy was refined isotropically.

References for X-ray Structure Refinement Details

- (a) SHELXTL-PC, Vers. 5.10; 1998, Bruker-Analytical X-ray Services, Madison, WI; G. M. Sheldrick, SHELX-97, Universität Göttingen, Göttingen, Germany.
- (b) L. Barbour, XSEED, 1999.
- (c) SADABS; G. M. Sheldrick, 1996, based on the method described in R. H. Blessing, *Acta Crystallogr., Sect. A*, 1995, **51**, 33.
- (d) PLATON; Spek, A. L. Acta Crystallogr. 1990, A46, C-34.

Cmpd.	3	4	5
Formula	$C_{38}H_{51}CuN_2S$	$C_{61}H_{79}BCu_2F_4N_4S$	$C_{58}H_{81}BCu_2F_4N_4S$
			• 2 C ₄ H ₈ O
Mol. Wt.	631.39	1114.23	1224.43
Temp.(K)	100(2)	100(2)	100(2)
Crystal description	Block	Plate	Block
Crystal color	Colorless	Colorless	Colorless
Crystal size (mm ³)	0.60×0.58×0.58	0.20×0.10×0.08	0.20×0.18×0.18
System	Monoclinic	Monoclinic	Triclinic
Space group	C2/c	C2/c	P-1
<i>a</i> (Å)	29.689(3)	32.857(3)	12.348(3)
<i>b</i> (Å)	15.6315(13)	12.3716(12)	17.138(4)
<i>c</i> (Å)	17.0794(14)	31.680(3)	17.187(4)
α (deg)	90	90	75.961(3)
β (deg)	94.8040(10)	95.4190(10)	75.033(3)
γ(deg)	90	90	72.937(3)
Volume (Å ³)	7898.4(11)	12820(2)	3303.9(14)
Z	8	8	2
θ range (deg)	1.86-27.00	1.25-25.00	1.25-25.00
Measd reflns	32710	46584	32174
Unique reflns	8618	11276	11602
GOF of F ²	1.078	0.898	1.059
$R_1 (I > 2\sigma(I))$	0.0405	0.0684	0.0503
wR2 (all data)	0.1078	0.1697	0.1377
Largest diff. peak and hole (e ⁻ .Å ⁻³)	0.366 and -0.298	0.866 and -0.443	1.564 and -0.666

Table S4. Crystallographic parameters for 3, 4, and 5.

Figure S8. ORTEP diagram of IPrCu-SCH₂Ar^{tBu} (**3**) (all H atoms omitted; thermal ellipsoids represented at the 50% probability level). Selected bond distances (Å) and angles (deg): Cu–C1 1.884(2), Cu–S 2.1304(7), S–C28 1.840(2), C1–Cu–S 172.90(6), C28–S–Cu 105.80(7), N2–C1–Cu 129.34(15), N1–C1–Cu 126.59(15), C29–C28–S 111.92(15).

Figure S9. X-ray structure of the $[{IPrCu}_2(\mu-SBn)]^+$ cation in **4** (all H atoms and BF₄ anion omitted; thermal ellipsoids represented at the 50% probability level). Selected bond distances (Å) and angles (deg): Cu–C1 1.882(6), Cu1–S 2.1570(16), Cu2-C28 1.874(6), Cu2-S 2.1462(16), Cu1⁻⁻⁻Cu2 3.575(1), S-C55 1.858(5), C55–S–Cu1 103.70(18), C55-S-Cu2 105.89(19), C1-Cu1-S 162.41(18), C28-Cu2-S 176.01(17), N2–C1–Cu1 131.8(4), N1–C1–Cu 123.5(4), N3–C28–Cu2 127.5(4), N4–C28–Cu2 128.2(4), Cu1-S-Cu2 112.34(7).

Figure S10. X-ray structure of the $[{IPrCu}_2(\mu-S^tBu)]^+$ cation in **5** (all H atoms, 2 THFs of solvation and BF₄ anion omitted; thermal ellipsoids represented at the 50% probability level). Two similar conformations of the S^tBu group are present in a 53:47 ratio. Only the major occupancy is shown for clarity. Selected bond distances (Å) and angles (deg): Cu–C1 1.894(3), Cu1–S1A 2.185(4), Cu2-C28 1.891(3), Cu2-S1A 2.164(4), Cu1⁻⁻Cu2 3.732(1), S1A–C55A 1.845(9), C1–Cu1–S1A 166.63(14), Cu1-S1A-Cu2 118.19(18), C28-Cu2-S1A 167.02(14), C55A–S1A–Cu1 108.2(3), C55A-S1A-Cu2 104.8(3), N1–C1–Cu1 125.5(2), N2–C1–Cu1 130.4(2), N3–C28–Cu2 125.6(2), N4–C28–Cu2 130.9(2).