Electronic Supplementary Information of

Thermosensitve Hydrogels Composed of Cyclodextrin Pseudorotaxanes. Role of [3]Pseudorotaxane in the Gel Formation

Toshiaki Taira, Yuji Suzaki, Kohtaro Osakada*

Chemical Resources Laboratory R1-3, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8503, Japan. Fax: +81-45-924-5224; Tel: +81-45-924-5224 E-mail: kosakada@res.titech.ac.jp

Experimental Section

General. Cl(CH₂)₁₀OC₆H₃-3,5-(OMe)₂ was prepared by the literature method.¹ Other chemicals were commercially available. NMR spectra (¹H, ¹³C{¹H}) ware recorded on Varian MERCURY300 spectrometer, JEOL EX-400 spectrometer or JEOL JNM La-500 spectrometer. ¹³C CP/MAS NMR spectra were recorded on JEOL JNM La-500. Fast atom bombardment mass spectra (FABMS) were obtained from a JEOL JMS-700 (matrix, (2-nitrophenyl)(n-octyl) ether (NPOE) or 3-nitrobenzyl alcohol (NBA)) spectrometer. Matrix assisted laser desorption ionization time of flight mass spectra (MALDI-TOFMS) were obtained from a Shimadzu AXIMA-CFR Plus (matrix, 2-hydroxy-5-methoxybenzoic acid (super DHB); cationization agent, silver trifluoroacetate) spectrometer. Elemental analyses were carried out with a Yanaco MT-5 CHN autorecorder. The absorption spectrum were recorded using JASCO V-530 UV/Vis spectrometer. Before measuring, the samples were stored at an adequate temperature using a JASCO EHC-477 peltire-type thermostated cell holder.

 $Cl(CH_2)_8OC_6H_3$ -3,5-(OMe)₂: A solution of 3,5-dimethoxyphenol (8.0 g, 52 mmol) and NaOH (3.2 g, 80 mmol) in DMF (35 mL) was stirred for 8 h at room temperature, followed by the addition of 1,8-dichlorooctane (18.0 mL, 95 mmol). The mixture was stirred for 24 h at 110 °C. The reaction was quenched by addition of 1 M HCl, and the organic product was extracted with CH_2Cl_2 and dried over MgSO₄. Evaporation of the solvent give a crude product which was

purified by SiO₂ column chromatography (hexane/CH₂Cl₂ = 5/1). Further purification of the product by recrystallization from solution at 3 °C and washing with cold hexane yield Cl(CH₂)₈C₆H₃-3,5-(OMe)₂ as white solid (1.67 g, 5.6 mmol, 11%). ¹H NMR (300 MHz, CDCl₃): δ 1.24-1.57 (8H, CH₂), 1.69-1.85 (4H, CH₂), 3.54 (t, 2H, *J* = 7 Hz, ClCH₂), 3.77 (s, 6H, OCH₃), 3.91 (t, 2H, *J* = 6 Hz, OCH₂), 6.08 (3H, *ortho-*, *para*-C₆H₃). ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 25.8 (CH₂), 26.7 (CH₂), 28.7 (CH₂), 29.0 (CH₂), 29.1 (CH₂), 32.5 (CH₂), 44.9 (ClCH₂), 55.1 (OCH₃), 67.7 (OCH₂), 92.6 (C₆H₃), 93.1 (C₆H₃), 160.9 (C₆H₃), 161.3 (C₆H₃). Anal. calcd. for C₁₆H₂₅ClO₃: C, 63.88; H, 8.38; Cl, 11.79. Found: C, 63.59; H, 8.62; Cl, 12.08. FABMS: *m/z* = 301 [M+H]⁺.

Br(CH₂)₁₂OC₆H₃-3,5-(OMe)₂: An acetone (30 mL) solution containing 3,5-dimethoxyphenol (4.1 g, 27 mmol), K₂CO₃ (3.4 g, 25 mmol) and 1,12-dibromododecane (17 g, 52 mmol) was refluxed for 21 h. Evaporation of the solvent give a crude product which was purified by SiO₂ column chromatography (hexane/CH₂Cl₂ = 2/1) to yields Br(CH₂)₁₂OC₆H₃-3,5-(OMe)₂ as white solid (6.0 g, 15 mmol, 56%). ¹H NMR (300 MHz, CDCl₃): δ 1.19–1.51 (16H, CH₂), 1.76 (m, 2H, OCH₂CH₂), 1.85 (m, 2H, BrCH₂CH₂), 3.40 (t, 2H, *J* = 7 Hz, ClCH₂), 3.76 (s, 6H, OCH₃), 3.91 (t, 2H, *J* = 6 Hz, OCH₂), 6.08 (3H, *ortho-*, *para*-C₆H₃). ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 26.0 (CH₂), 28.1 (CH₂), 28.7 (CH₂), 29.2 (2C, CH₂), 29.3 (CH₂), 29.4 (2C, CH₂), 29.5 (2C, CH₂), 32.8 (CH₂), 34.0 (BrCH₂), 55.2 (OCH₃), 67.9 (OCH₂), 92.7 (C₆H₃), 93.2 (C₆H₃), 161.0 (C₆H₃), 161.4 (C₆H₃). Anal. calcd. for C₂₀H₃₃BrO₃+0.25(H₂O): C, 59.18; H, 8.32; Br, 19.69. Found: C, 59.43; H, 8.39; Br, 19.48. FABMS: *m/z* = 401 [M+H]⁺.

 $[py-N-(CH_2)_8OC_6H_3-3,5-(OMe)_2]^+(CI^-)$ DMF (1a): А solution (5 mL) of Cl(CH₂)₈OC₆H₃-3,5-(OMe)₂ (1.0 g, 3.3 mmol) and pyridine (1.3 mL, 16 mmol) was stirred at 110 °C for 27 h. The solution was poured into diethyl ether (200 mL). The precipitate was collected by filtration and washed with diethyl ether to yield **1a** as a white solid (1.27 g, 3.3 mmol, quant.). ¹H NMR (300 MHz, CDCl₃): δ 1.18–1.39 (8H, CH₂), 1.62 (m, 2H, CH₂), 1.95 $(m, 2H, CH_2), 3.66$ $(s, 6H, OCH_3), 3.78$ $(t, 2H, J = 6 Hz, OCH_2), 4.88$ $(t, 2H, J = 7 Hz, NCH_2),$ 5.96 (3H, ortho-, para-C₆H₃), 8.07 (t, 2H, J = 7 Hz, C₅H₅N), 8.42 (t, 1H, J = 7 Hz, C₅H₅N), 9.44 (d, 2H, J = 7 Hz, C₅H₅N). ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 25.6 (CH₂), 25.7 (CH₂), 28.7 (CH₂), 28.8 (CH₂), 28.9 (CH₂), 31.7 (CH₂), 55.1 (OCH₃), 61.7 (NCH₂), 67.6 (OCH₂), 92.6 (ortho-C₆H₃), 93.1 (para-C₆H₃), 128.3 (C₅H₅N), 144.9 (C₅H₅N), 145.0 (C₅H₅N), 160.7 (*meta*-C₆H₃), 161.2 (*ipso*-C₆H₃). Anal. calcd. for C₂₁H₃₀ClNO₃+(H₂O): C, 63.38; H, 8.11; N, 3.52; Cl, 8.91. Found: C, 63.45; H, 8.21; N, 3.59; Cl, 9.31. FABMS: *m*/*z* = 344 [M-Cl]⁺.

 $[py-N-(CH_2)_{10}OC_6H_3-3,5-(OMe)_2]^+(Cl^-)$ (1b): А DMF solution (10 mL) of $Cl(CH_2)_{10}OC_6H_3$ -3,5-(OMe)₂ (2.1 g, 6.4 mmol) and pyridine (2.5 mL, 31 mmol) was stirred at 110 °C for 24 h. The solution was poured into diethyl ether (200 mL). The precipitate was collected by filtration and wash with diethyl ether to yield **1b** as a white solid (2.0 g, 4.9 mmol, 77%). ¹H NMR (300 MHz, DMSO-*d*₆): δ 1.20–1.42 (12H, CH₂), 1.65 (m, 2H, CH₂), 1.89 (m, 2H, CH₂), 3.68 (s, 6H, OCH₃), 3.88 (t, 2H, J = 6 Hz, OCH₂), 4.57 (t, 2H, J = 7 Hz, NCH₂), 6.05 $(3H, ortho-, para-C_6H_3)$, 8.14 (t, 2H, J = 8 Hz, C_5H_5N), 8.59 (t, 1H, J = 8 Hz, C_5H_5N), 9.08 (d, 2H, J = 6 Hz, C_5H_5N). ¹³C{¹H} NMR (75.5 MHz, DMSO- d_6): δ 25.5 (CH₂), 25.6 (CH₂), 28.5 (CH₂), 28.7 (CH₂), 28.8 (2CH₂), 28.9 (CH₂), 30.9 (CH₂), 55.2 (OCH₃), 60.6 (NCH₂), 67.4 (OCH₂), 92.7 (*ortho*-C₆H₃), 93.2 (*para*-C₆H₃), 128.1 (C₅H₅N), 144.9 (C₅H₅N), 145.5 (C₅H₅N), 160.6 (meta- C_6H_3), 161.2 (*ipso*- C_6H_3). Anal. calcd. for $C_{23}H_{34}CINO_3+1.3(H_2O)$: C, 64.04; H, 8.55; N, 3.25. Found: C, 63.95; H, 8.71; N, 3.32. FABMS: *m*/*z* = 372 [M-Cl]⁺.

 $[py-N-(CH_2)_{12}OC_6H_3-3,5-(OMe)_2]^+(Br^-)$ (1c): DMF solution (20)А mL) of $Br(CH_2)_{12}OC_6H_3-3,5-(OMe)_2$ (3.0 g, 7.5 mmol) and pyridine (3.0 mL, 39 mmol) was stirred at 110 °C for 16 h. The solution was poured into diethyl ether (300 mL). The precipitate was collected by filtration and wash with diethyl ether to yield 1c as a white solid (3.5 g, 7.3 mmol, 97%). ¹H NMR (300 MHz, CDCl₃): δ 1.11–1.40 (16H, CH₂), 1.65 (m, 2H, CH₂), 1.97 (m, 2H, CH₂), 3.67 (s, 6H, OCH₃), 3.81 (t, 2H, J = 6 Hz, OCH₂), 4.91 (t, 2H, J = 7 Hz, NCH₂), 5.97 (3H, *ortho-*, *para-*C₆H₃), 8.09 (t, 2H, *J* = 7 Hz, C₅H₅N), 8.45 (t, 1H, *J* = 7 Hz, C₅H₅N), 9.50 (d, 2H, *J* = 6 Hz, C_5H_5N). ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 25.7 (CH₂), 25.8 (CH₂), 28.8 (CH₂), 28.9 (CH₂), 29.1 (2C, CH₂), 29.2 (3C, CH₂), 31.8 (CH₂), 55.1 (OCH₃), 61.7 (NCH₂), 67.8 (OCH₂), 92.5 ($ortho-C_6H_3$), 93.1 ($para-C_6H_3$), 128.3 (C_5H_5N), 144.9 (2C, C_5H_5N), 160.8 ($meta-C_6H_3$), 161.2 (ipso-C₆H₃). Anal. calcd. for C₂₅H₃₈BrNO₃+0.25(H₂O): C, 61.91; H, 8.00; N,2.89; Br, 16.48. Found: C, 61.82; H, 8.11; N, 2.93; Br, 16.56. FABMS: *m*/*z* = 400 [M-Br]⁺.

Xerogel of 1b and \alpha-CD: A H₂O solution (5 mL) of **1b** (220 mg, 0.5 mmol) and α -CD (1.0 g, 1.0 mmol) was stirred at 70 °C for 20 min. The solution was cooled to 4 °C for 32 h gave hydrogel. Addition of acetone (5 mL) to the hydrogel formed white precipitate. The precipitate was collected by filtration and washed with acetone (30 ml) to yield xerogel as a white solid. The xerogel was also obtained by slow evaporation of the hydrogel.

The reaction of urea with hydrogel containing 1b and α -CD: Heating of an aqueous solution of 1b (14 mg, 0.04 mmol) and α -CD (68 mg, 0.07 mmol) at 60 °C and subsequent cooling to room temperature gave hydrogel. Addition of urea (64 mg, 1.1 mmol) to the hydrogel and heating at 60 °C. The solution was cooled to room temperature to gave transparent solution.

1. ¹³C CP/MAS NMR spectra of Xerogel of 1b and α -CD

Figure S1. ¹³C CP/MAS NMR spectra (100 MHz, RT) of (a) α -CD, (b) xerogel of **1b** and α -CD, and (c) **1b**. Peaks with an asterisk are assigned to C-1 and C-4 with a conformationally strained glycoside linkage.

2. 2D ROESY ¹H NMR Spectrum of 1b and α -CD

Figure S2. 2D ROESY ¹H NMR spectrum (500 MHz, 30 °C) of **1b** (100 mM) and α -CD (50 mM) in D₂O (mixing time = 400 ms).

Reference

[1] Y. Suzaki, T. Taira and K. Osakada, Dalton Trans., 2006, 5345.