Supplementary Data for Manuscript:

"Discovery of dual fluorescent 1,8-NI dyes based on balanced Seesaw photophysical

model"

P. Nandhikonda, M.P. Begaye, Zhi Cao, Michael D. Heagy*

Department of Chemistry, New Mexico Institute of Mining & Technology

Socorro, NM 87801

(1) General experimental procedures along with characterization data	S 1
(2) Appendix I: Photophysical properties of 4-substituted- <i>N</i> -(4'-phenyl)-1,8-	
naphthalimides	S6
(3) Appendix II: Copies of 1H and 13 NMR data for compounds 1-9	S 13

General Experimental: In a typical reaction, 1 mmol of the 4-substituted naphthalic anhyride was combined with 1.1 mmol of the 4-substituted aminoarene. The reactants were refluxed in approximately 3-4 mL pyridine for a period of 12 hr. Pyridine was removed in the fume hood via stream of air and the residue was filtered using a plug of silica gel with the appropriate solvent as found through TLC analysis. Recrystallization was further carried out using ethanol.

General procedure for preparation of 4-cyano-1,8-naphthalic anhydride:

4-bromo-1,8-naphthalic anhydride (3.1mmole) and tetraethyl ammonium cyanide (7.0mmole), CuCN (11.0 mmole), Pd₂(dba)₃ (0.12mmole) (tris (dibenzylidene acetone) dipalladium), DPPF (0.48mmole) (1-Diphenylphosphino-1-(di-tert-butyl phosphino)ferrocene were dissolved in 15 ml of anhydrous1,4-dioxane. The resulting mixture was refluxed in presence of argon gas for 3 hr. The reaction mixture was filtered over Celite-521 and the product was purified in 50:50 of ethyl acetate and hexane solution.

4-Cyano-N-(4'-methoxyphenyl)-1,8-naphthalimide (**1**) m.p. 180 °C; ¹H NMR DMSOd6 δ, 8.61 (dd, *J* = 7.7 Hz, 2H), 8.37 (d, *J* = 8.1 Hz, 1H), 8.35 (d, 8.0 Hz, 1H) 8.15 (dd, *J*_{app} = 7.5 Hz, 1H), 7.29 (d, *J* = 8.8 Hz, 2H), 7.07 (d, *J* = 8.5 Hz, 2H) 3.83 (s, 3H) ¹³C DMSO-d6, δ 164.3, 159.5, 133.3, 132.3, 131.9, 131.7, 130.9, 130.6, 130.5, 129.8, 129.4, 128.7, 123.9, 114.8, 55.7.

IR cm⁻¹ ν = 2361, 1707, 1513, 1364, 1238, 1187, 829, 789.

Anal. Calcd. for C₂₀H₁₂N₂O₃: C, 73.2; H, 3.66; N, 8.54. Found: C, 72.8; H, 3.74; N, 8.66

4-Sulfo- *N*-(**4**'-methoxyphenyl-1,8-naphthalimide (2) m.p. 288 °C dec; ¹H NMR DMSO-d6, δ , 9.30 (d, *J* = 8.9 Hz, 1H), 8.47 (dd, *J* = 8.0 Hz, 2H), 8.26 (d, *J* = 6.9 Hz, 1H), 7.90 (dd, $J_{app} = 7.4$ Hz, 1H), 7.34 (d, *J* = 14 Hz, 2H), 7.09 (d, *J* = 14 Hz, 2H). 3.83 (s, 3H)

¹³C NMR DMSO-d6 δ, 164.3, 164.1, 159.5, 134.9, 134.7, 131.1, 130.8, 130.7, 130.5, 129.1, 128.9, 127.2, 123.9, 123.2, 115.2, 114.8, 56.0. IR cm⁻¹ ν = 1658, 1514, 1243, 1262, 1196, 1070, 1032, 785, 754,

Anal. Calcd. for C₁₉H₁₃NSO₆ K •2H₂O: C, 50.0; H, 2.8; N, 3.06 Found: C, 49.7; H, 2.9; N, 3.10

4-Chloro-*N***-(4'-methoxyphenyl)-1,8-naphthalimide** (**3**) m.p. 215 °C; ¹H DMSO-d6, δ 8.68 (d, *J* = 8.6 Hz, 1H), 8.42 (d, *J* = 7.1 Hz, 1H) 8.19 (d, *J* = 8.3 Hz, 1H), 7.69 (dd, *J*_{app} = 8.3 Hz, 1H), 7.21 (d, *J* = 8.5 Hz, 2H), 7.03, (d, *J* = 8.5 Hz, 2H), 6.89 (d, *J* = 7.7 Hz, 1H), 3.83 (s, 3H)

¹³C DMSO-d6, δ 164.9, 163.9, 159.2, 153.3, 134.5, 131.6, 130.7, 129.7, 129.6, 124.5, 122.9, 121.2, 120.0, 114.5, 108.7, 108.5, 55.9.

IR cm⁻¹ ν = 1650, 1513, 1240, 1022, 818, 790

Anal. Calcd. for C₁₉H₁₂NO₃: C, 75.4; H, 3.9; N, 4.64 Found: C, 75.3; H, 3.6; N, 4.78

4-Cyano-*N***-(4'-aminophenyl)-1,8-naphthalimide** (**4**) m.p. 220 °C; ¹H NMR DMSO-d6 δ, 8.54 (d, *J* = 8.0 Hz, 2H), 8.31 (d, *J* = 7.7 Hz, 1H), 8.20 (d, 7.7 Hz, 1H) 7.99 (dd, *J*_{app} = 8.0 Hz, 1H), 6.96 (d, *J* = 8.2 Hz, 2H), 6.65 (d, *J* = 8.5 Hz, 2H)

¹³CDMSO-d6, d, 163.9, 149.1, 132.2, 131.9, 131.5, 130.5, 130.1, 129.8, 129.8, 129.7,

129.5, 129.4, 129.3, 129.3, 124.2, 124.1, 123.3.

IR cm⁻¹ v = 2359, 1709, 1654, 1514, 1374, 1237, 1168, 834, 783.

Anal. Calcd. for C₁₉H₁₁N₃O₂: C, 76.3; H, 3.68; N,13.4: Found: C, 76.7; H, 3.74, N, 13.2.

4-Sulfo-*N***-(4'-aminophenyl-1,8-naphthalimide** (**5**) m.p. 270 °C; ¹H DMSO-d6 δ 9.38 (d, *J* = 8.6 Hz, 1H) 8.51-8.45 (m, 2H), 8.27 (d, *J* = 7.4 Hz, 1H), 7.90 (t, *J* = 7.4, 1H), 7.44 (d, *J*_{app} = 8.8 Hz, 2H), 7.34 (d, *J* = 8.6 Hz, 2H)

¹³C DMSO d-6 δ 164.3, 163.9, 151.2, 135.9, 135.2, 134.9, 133.8, 131.0, 130.9, 129.2, 128.4, 127.3, 125.5, 123.6, 123.0, 122.1

120.1, 127.5, 125.5, 125.6, 125.6, 122.1

IR cm⁻¹ ν = 1161, 1514, 1242, 1167, 1032, 751, 657.

Anal. Calcd. for C₁₈H₁₂N₂SO₅: C, 58.7; H, 3.26; N, 7.60. Found: C, 58.3; H, 3.03, N, 7.59

4-Chloro-N-(4'-aminophenyl)-1,8-naphthalimide (6) m.p. 235 °C dec; ¹H DMSO -d6, δ 8.62 (d, *J* = 8.6 Hz, 1H), 8.57 (d, *J* = 8.0 Hz, 1H), 8.42 (d, *J* = 8.0 Hz, 1H), 8.10-8.00 (m, 2H), 6.99 (d, *J* = 8.5 Hz, 2H), 6.66 (d, *J* = 8.6 Hz, 2H), 5.25 (s, 2H)

¹³C DMSO-d6 δ 164.1, 163.8, 149.2, 137.8, 132.1, 131.4, 130.5, 129.7, 129.2, 129.1, 129.0, 128.2, 124.1, 123.9, 122.7, 114.3.

IR cm⁻¹ ν =1712, 1662, 1303, 1009, 771, 751.

Anal. Calcd. for C₁₈H₁₁N₂O₂Cl: C, 67.1; H, 3.42; N, 8.69 Found: C, 66.8; H, 3.38, N, 8.70

4-Cyano-*N***-(4'-thiophenyl)-1,8-naphthalimide** (**7**) m.p. 200 °C; ¹H NMR DMSO-d6 δ, 8.64 –8.56 (m, 4H), 8.13 (t, *J* = 7.5 Hz, 1H), 7.76 (d, 7.7 Hz, 2H) 7.48 (d, *J* = 8.0 Hz, 2H) ¹³C DMSO-d6, δ 163.6, 163.2, 146.3, 136.5, 134.4, 132.4, 131.3, 131.1, 130.7, 130.6, 129.8, 128.0, 127.9, 116.7, 114.7.

IR cm⁻¹ ν = 2360, 1677, 1648, 1561, 1345, 1228, 790, 738.

Anal. Calcd. for C₁₉H₁₀N₂SO₂: C, 69.1; H, 3.03; N, 8.48. Found: C, 68.9; H, 3.74; N, 8.42

4-Sulfo-*N*-(4'-thiophenyl)-1,8-naphthalimide (8) m.p. 230 °C dec; ¹H DMSO-d6 δ 9.31 (d, J = 8.5 Hz, 1H), 8.49 (pseudo t, J = 7.8 Hz, 2H), 8.25 (d, J = 7.4 Hz, 1H) 7.91 (dd, J_{app} = 7.4 Hz, 1H), 7.75 (d, J = 8.5 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H)
¹³C DMSO-d6, δ 164.4, 164.1, 150.6, 134.9, 134.7, 131.1, 130.8, 129.1, 128.9, 128.3, 127.4, 125.8, 125.5, 123.9, 123.2, 115.2.
IR cm⁻¹, v = 1661, 1371, 1240, 1192, 1068, 1042, 783, 753.

Anal. Calcd. for C₁₈H₁₁NS₂O₅ K•3H₂O: C, 45.2; H, 2.32; N, 4.84. Found: C, 45.2; H, 2.24; N, 4.76.

4-Chloro-N-(4'-thiophenyl)-1,8-naphthalimide (**9**) m.p. 226 °C dec; ¹H DMSO-d6 δ 8.64 (d, *J*= 8.2 Hz, 1H), 8.42 (d, *J* = 7.4 Hz, 1H), 8.18 (d, *J*=7.9 Hz, 1H), 7.67 (dd, *J*_{app} = 8.5 Hz, 1H), 7.46 (s, 2H), 7.18 (d, *J*= 7.5Hz, 2H), 7.03 (d, *J* = 9.1 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 1H).

¹³C NMR DMSO-d6 δ, 164.0, 163.9, 137.4, 132.9, 131.6, 131.3, 131.1, 130.9, 130.5, 130.3, 129.6, 128.3, 128.2, 124.4, 124.1, 115.7

IR cm⁻¹, v = 1656, 1583, 1512, 1365, 1238, 1173, 818, 789.

Anal. Calcd. for C₁₈H₁₀NSO₂Cl: C, 63.7; H, 3.11; N, 4.13 Found: C, 63.4; H, 3.03; N, 4.10.

(1) 4-Cyano-N-(4'-methoxy phenyl)-1.8-NI	Absorbance $\lambda \max, (\epsilon)$	λex (nm)	λem (nm)	F.Intensity (a.u.)	Quantum Yield*
	342(0.193)		521	1.8×10^7	$4.6 \text{ x} 10^{-2}$
DCM		410			
$M = 1.0 \times 10^{-5}$	410(0.126)		603	1.8×10^7	4.6 x10 ⁻²
	340(0.191)				
ACN	. ,	410	571	1.8 x 10 ⁷	4.6 x10 ⁻²
$M = 1.0 \times 10^{-5}$	410(0.126)				
	338(0.200)		527	1.8×10^7	$4.5 \text{ x} 10^{-2}$
EtOAc		410			
$M = 1.0 \times 10^{-5}$	410(0.128)		601	1.8×10^7	$4.5 \text{ x} 10^{-2}$
	340(0.153)				
МеОН		410	588	1.6×10^7	$4.3 \text{ x} 10^{-2}$
$M = 1.0 \times 10^{-5}$	410(0.120)				
	339(0.195)		541	1.8×10^7	$4.6 \text{ x} 10^{-2}$
Acetone		410			
$M = 1.0 \times 10^{-5}$	410(0.125)		600	$1.8 \ge 10^7$	$4.6 \text{ x} 10^{-2}$

Appendix I Photophysical prop	perties of 4-sul	bstituted	-N-(4'-р	henyl)-1,8-
naphthalimides				

Г

*Quantum yields relative to Quinine sulfate standard

٦

	λmax (Abs)	λex	λem	F.Intensity	Quantum
*K'0-S		(nm)	(nm)	A.U.	yield
(2) 4-Sulfo - <i>N</i> (4-methoxy					
phenyl) NI					
Dichloromethane	338 (0.233)	340	369	2.62×10^5	3.6 x10 ⁻⁴
$M = 1.0 \times 10^{-5}$			512	2.09×10^5	2.8 x10 ⁻⁴
Ethyl Acetate	338 (0.246)	340	360	$2.10 \text{ x} 10^5$	2.7 x10 ⁻⁴
$M = 1.0 \times 10^{-5}$			530	$2.16 \text{ x} 10^5$	2.8 x10 ⁻⁴
Acetonitrile	341 (0.242)	340	364	$2.92 \text{ x} 10^5$	3.8 x10 ⁻⁴
$M = 1.0 \times 10^{-5}$			562	1.02×10^5	1.3 x10 ⁻⁴
МеОН	339 (0.256)	340	368	1.53 x10 ⁵	1.9 x10 ⁻⁴
$M = 1.0 \times 10^{-5}$					

_	λmax (Abs)	λex	λem	F.Intensity	Quantum
(3) 4-Chloro-N-(4'-methoxy) phenyl NI		(nm)	(nm)	A.U.	yield
Dichloromethane	340 (0.305)	410	505	$7.35 \text{ x}10^6$	7.7 x10 ⁻³
$M = 1.0 \times 10^{-5}$					
Ethyl Acetate	342 (0.300)	410	494	7.21x10 ⁶	7.6 x10 ⁻³
$M = 1.0 \times 10^{-5}$					
Acetonitrile	338 (0.312)	410	516	6.21 x10 ⁶	6.4 x10 ⁻³
$M = 1.0 \times 10^{-5}$					
$Methanol M = 1.0 x 10^{-5}$	341 (0.324)	410	536	2.87 x10 ⁶	2.8 x10 ⁻³

Supplementary Figure 1. Absorption and fluorescence spectra of (3) 4-Chloro-*N*-(4'-methoxyphenyl)-1,8-NI.

(4) 4-Cyano- N -(4'-amino phenyl)-1,8-NI	Absorbance	λex (nm)	λem (nm)	F.Intensity (a.u.)	Quantum yield
	339(0.562)		520	$5.4 \text{ x} 10^6$	$1.3 \text{ x} 10^{-2}$
DCM		420			
$M = 1.0 \times 10^{-5}$	420(0.134)		576	6.0 x 10 ⁶	$1.4 \text{ x} 10^{-2}$
	336(0.374)		515	2.0×10^6	5.1 x10 ⁻³
ACN		420			
$M = 1.0 \times 10^{-5}$	420(0.126)		581	1.0×10^7	2.5 x 10 ⁻²
	334(0.573)		511	1.9×10^6	$4.3 \text{ x} 10^{-3}$
EtOAc		420			
$M = 1.0 \times 10^{-5}$	420(0.141)		575	6.5 x 10 ⁶	$1.5 \text{ x} 10^{-2}$
	337(0.562)		522	1.7 x 10 ⁶	3.8 x10 ⁻³
MeOH		420			
$M = 1.0 \times 10^{-5}$	420(0.142)		579	4.0×10^6	9.0 x 10 ⁻³

	λmax (Abs)	λex (nm)	λem (nm)	F.Intensity (a.u.)	Quantum yield
(5) 4-Sulfo- <i>N</i> -(4-amino					
phenyl)-1,8-NI					
Dichloromethane M = 1.0×10^{-5}	350 (0.230)	340	426	9.18 x10 ⁵	1.3 x10 ⁻³
Acetonitrile M = 1.0×10^{-5}	338 (0.287)	340	430	1.7 x10 ⁶	1.9 x10 ⁻³
Ethyl Acetate M = 1.0×10^{-5}	351 (0.243)	340	426	1.6 x10 ⁶	2.1 x10 ⁻³
Methanol M = 1.0×10^{-5}	336 (0.297)	340	434	3.1 x10 ⁶	3.3 x10 ⁻³

Supplementary Figure 2. Absorbance and fluorescence spectra of (5) 4-Sulfo-*N*-(4'-aminophenyl)-1,8-NI.

	λmax (Abs)	λex	λem	F.Intensity	Quantum
		(nm)	(nm)	A.U.	yield
0					
(6)-4-Chloro-N-(4-amino					
phenyl)-1,8-NI					
Dichloromethane	340 (0.346)	340	437	2.75 x10 ⁵	2.5 x10 ⁻⁴
$M = 1.0 \times 10^{-5}$			569	4.11×10^{6}	3.8 x10 ⁻³
Acetonitrile	342 (0.240)	342	437	2.07 x10 ⁵	2.8 x10 ⁻⁴
$M = 1.0 \times 10^{-5}$			575	2.46 x10 ⁵	3.3 x10 ⁻⁴
Ethyl Acetate	342 (0.217)	342	426	$1.24 \text{ x} 10^5$	1.8 x10 ⁻⁴
$M = 1.0 \times 10^{-5}$			564	1.99 x10 ⁵	2.9 x10 ⁻⁴
Methanol M = 1.0×10^{-5}	342 (0.227)	342	434	$2.34 \text{ x} 10^5$	3.3 x10 ⁻⁴
				9.55 x10 ⁴	1.3 x10 ⁻⁴

(7) 4-Cyano- <i>N</i> -(4'-thiophenyl)- 1,8- NI	Absorbance	λex (nm)	λem (nm)	F.Intensity (a.u.)	Quantum yield
DCM M = 1.0×10^{-5}	342(0.235) 410(0.140)	410	553	17.3 x10 ⁶	1.7 x10 ⁻²
ACN M = 1.0×10^{-5}	340(0.274) 410(0.135)	410	567	9.2x10 ⁶	2.2 x10 ⁻²
EtOAc $M = 1.0 \times 10^{-5}$	338(0.226) 410(0.136)	410	553	7.4 x10 ⁶	1.7 x10 ⁻²
MeOH M = 1.0×10^{-5}	341(0.230) 410(0.138)	410	582	4.3 x10 ⁶	1.0 x10 ⁻²

Supplementary Figure 3. Absorbance and fluorescence spectra of (7) 4-Cyano-*N*-(4'-thiophenyl)-1,8-NI.

*KO3S	λmax (Abs)	λex (nm)	λem (nm)	F. Intensity A.U.	Quantum yield
(8) 4-Sulfo- <i>N</i> -4-thiophenyl- 1,8-NI					
Dichloromethane $M = 1.0 \times 10^{-5}$	344 (0.221)	340	388	1.1 x10 ⁶	1.6 x10 ⁻³
Acetonitrile M = 1.0×10^{-5}	340 (0.262)	340	386	1.8 x10 ⁶	2.2 x10 ⁻³
MeOH M = 1.0×10^{-5}	342 (0.245)	340	386	1.8 x10 ⁶	2.2 x10 ⁻³

Supplementary Figure 4. Absorbance and fluorescence spectra of (8) 4-Sulfo-*N*-(4'-thiophenyl)-1,8-NI.

	λmax (Abs)	λex	λem	F. Intensity	Quantum
(9) 4-Chloro- <i>N</i> -(4'- thiophenyl)-1,8-NI		(nm)	(nm)	A.U.	yield
$Methanol M = 1.0 \text{ x } 10^{-5}$	343 (0.251)	343	538	2.07 x10 ⁶	2.6 x10 ⁻³
Acetonitrile M = 1.0×10^{-5}	342 (0.247)	343	515	7.01 x10 ⁶	9.1 x10 ⁻³
Dichloromethane M = 1.0×10^{-5}	343 (0.251)	343	500	7.54 x10 ⁶	9.6 x10 ⁻³

Supplementary Figure 5. Absorbance and fluorescence spectra of (9) 4-Chloro-*N*-(4'-thiophenyl)-1,8-NI.