A Time-Course Transcriptome Analysis of *Escherichia coli* with Direct Electrocatalytic Behavior in Microbial Fuel Cells

Yan Qiao, ^{*a,b*} Chang Ming Li,^{*a,b*} Zhisong Lu,^{*a,b*} Hua Ling,^{*a*} Aram Kang,^{*a*} and Matthew Wook Chang^{*a*}

Methods

MFC set up and electrochemical measurement

A dual chamber MFC was used in this work. The capacity of each chamber is 120 mL and a nafion 117 membrane with diameter of 15 mm was clamped between the two chambers. Both of the anode and cathode are carbon cloth $(2\text{cm}\times2\text{cm})$. The catholyte is $K_3[Fe(CN)_6]$ and anolyte is the cell culture containing glucose. For the current generation measurement, an external load of 2 k Ω was connected into the MFC and the Current and potential measurements on the MFC were carried out by using a benchtop digital multimeter (ESCORT 3146A) during discharge. For the cyclic voltammetry measurement, the reference electrode (saturated calomel electrode, SCE) was inserted into anodic chamber and the cyclic voltammograms were measured by Autolab PGSTAT30 electrochemical working station. The electrochemical impedance spectra were measured at open circuit potential in a frequency range of 100 kHz to 1 mHz with an ac signal of 10 mV amplitude.

Bacterial strains and growth conditions

E. coli K12 overnight cultures were grown from freezer stocks in 100 ml aliquots (500 ml shaker flasks) of Luria–Bertani (LB) broth (10 g of tryptone, 5 g of yeast extract, and 10 g of sodium chloride per liter) at 37°C, with shaking at 250 rpm for 16 h. The overnight cultures were diluted 1:100 in 100 ml prewarmed LB broth and incubated at 37°C, with shaking at 200 rpm until the optical density at 600 nm (OD600) reached early logarithmic

phase (OD600~0.5). Then the cell suspension were transferred into the anodic chamber of the MFC and purged

nitrogen for 30 min. Before current generation test , glucose was added into anodic chamber to final concentration of 55 mM. the cell growth was monitored by measuring OD600 with a Lambda 25 spectrophotometer (Perkin Elmer).

RNA isolation

E. coli cells were harvested by centrifugation (>8,000×g) at different time points, and then incubated in TE buffer with 1 mg/ml of lysozyme (Sigmaaldrich). RNA was isolated immediately using RNeasy Mini Kit (Qiagen) according to the manufacturer's protocol. Finally, samples were eluted with 50 μ l of nuclease-free water (Ambion). RNA quality, purity, and integrity were determined using both a NanoDropTM 1000 Spectrophotometer (Thermo Scientific) and an RNA 6000 Nano LabChips with an Agilent 2100 Bioanalyzer (Agilent Technologies).

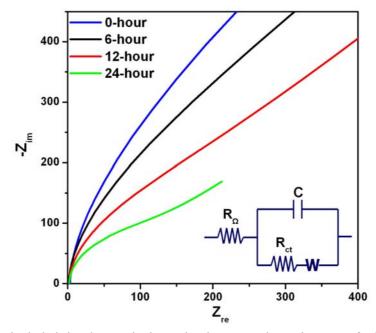
cDNA synthesis and labeling

cDNA was synthesized, purified and labeled from 10 µg of RNA with FairPlay® III Microarray Labeling Kit (Stratagene) according to the protocol provided by the manufacturer. The fluorescent dye-labeled cDNA is purified using the DNA-binding solution and microspin cups provided in the kit.

Hybridization and scanning

Microarray hybridizations were carried out on Agilent *E. coli* oligo microarrays using 300ng Cy_3 -labeled 'reference' sample and 300ng Cy_5 -labeled 'experimental' sample. Hybridizations were carried out using the Agilent hybridization kit and a hybridization oven (Agilent) and then the microarray slides were washed with Gene

Expression Wash Buffer 1 & 2 (Agilent) containing 0.005% Triton X-102. The slides were scanned by Agilent G2565BA Microarray Scanner.

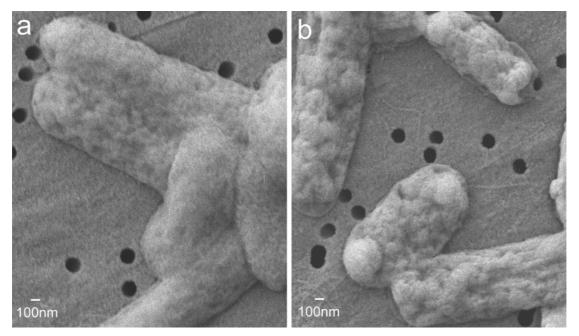

Data analysis

Data analysis was performed with the Feature Expression Software (Agilent Technologies) v. 10.5 and GeneSpring GX v. 10 (Agilent Technologies). Genes that received "present" and "marginal" calls from 50% or more of the replicates in all conditions were used for the analysis. Finally, gene expression changes with statistical significance were identified by an upper one-tailed t test (p cutoff value, 0.05). "Fold change" was calculated as the ratio between the signal averages of four untreated and four treated cultures. That is, results are from biological quadruplicate experiments. Genes with a twofold or more induction or repression in at least one condition were used in this analysis.

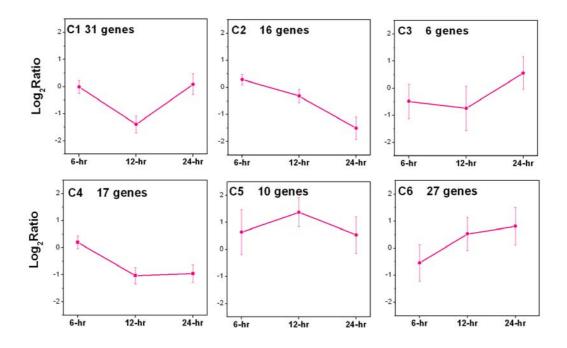
	0-hour	6-hour	12-hour	24-1	nour
E _{pa} (mV)	-	-	257	-2	-268
Epa/2 (mV)	-	-	194	-36	-297
$E_{pc} (mV)$	-	123	118	-65	-317
$\Delta E_{p} (mV)$	-	-	139	63	49
$i_{pa}\left(\mu A\right)$	-	-	-90.15	-153.9	-120
i _{pc} (μA)	-	68.6	201	91.91	354

Supplementary Table S1

Supplementary Figure S1 Simulated Nyquist Plots and equivalent circuit used for calculation



The parameters included in the equivalent circuit are omic resistance of electrolyte (R_{Ω}) , capacitance of the electrode (C), charge transfer resistance (R_{ct}) and Warburg impedance (W).


Supplementary Table S2 Calculated impedance values from the equivalent circuit

	0-hour	6-hour	12-hour	24-hour
R _{ct}	285 Ω	207 Ω	150.5 Ω	107.5 Ω

Supplementary Figure S2 SEM micrographs of *E. coli* cells surface morphology. a: Control cells at 24-hr; b: MFC cells at 24-hr.

Supplementary Figure S3 Cluster profiles shown as average log₂Ratio with standard deviation.

Supplementary Table S3 E. coli K12 genes that showed statistically significant mRNA level changes upon one
of the three time points during discharge in MFC

b	Gene	Description	Functional class	Fold Change		
number	Name		Functional class	6-hr	12-hr	24-hr
Clus	ster 1					
b0660	ybeZ	putative ATP-binding protein in pho regulon	Cellular processes	-1.30	-2.01	-1.13
b2669	stpA	DNA-binding protein; H-NS-like protein;	DNA metabolism	1.16	-2.30	-1.02
		chaperone activity; RNA splicing?				
b3635	mutM	formamidopyrimidine DNA glycosylase	DNA metabolism	1.27	-2.98	1.59
b0629	ybeF	putative transcriptional regulator LYSR-type	Energy metabolism	1.04	-2.27	-1.20
b0492	ybbN	putative thioredoxin-like protein	Hypothetical proteins	1.04	-2.59	1.43
b0631	ybeD	orf, hypothetical protein	Hypothetical proteins	1.05	-3.52	1.19
b0659	ybeY	orf, hypothetical protein	Hypothetical proteins	-1.11	-2.03	-1.03
b1321	ycjX	putative EC 2.1 enzymes	Hypothetical proteins	-1.14	-2.49	1.23
b1322	ycjF	orf, hypothetical protein	Hypothetical proteins	1.06	-2.38	1.34
b1521	uxaB	altronate oxidoreductase	Hypothetical proteins	-1.01	-3.72	-2.17
b2726	hypA	pleiotrophic effects on 3 hydrogenase isozymes	Hypothetical proteins	1.24	-2.74	-1.08
b2731	fhlA	formate hydrogen-lyase transcriptional activator	Hypothetical proteins	1.09	-2.01	-1.49
		for fdhF, hyc and hyp operons				
b3400	hslR	orf, hypothetical protein	Hypothetical proteins	-1.11	-3.98	1.35
b3401	hslO	orf, hypothetical protein	Hypothetical proteins	1.05	-3.79	1.41
b4173	hflX	GTP - binding subunit of protease specific for	Hypothetical proteins	1.22	-2.26	-1.24
		phage lambda cII repressor			-2.26	
b0015	dnaJ	chaperone with DnaK; heat shock protein	Protein fate	-1.11	-3.00	-1.07
b0439	lon	DNA-binding, ATP-dependent protease La; heat	Protein fate	-1.13	-2.63	1.20
		shock K-protein				
b0473	htpG	chaperone Hsp90, heat shock protein C 62.5	Protein fate	-1.30	-3.47	1.39
b0630	lipB	protein of lipoate biosynthesis	Protein fate	-1.01	-2.86	1.17
b2592	clpB	heat shock protein	Protein fate	-1.16	-2.96	1.20
b2614	grpE	phage lambda replication; host DNA synthesis;	Protein fate	-1.24	-3.67	1.42
		heat shock protein; protein repair				
b3931	hslU	heat shock protein hslVU, ATPase subunit,	Protein fate	-1.05	-2.23	1.21
		homologous to chaperones				
b3932	hslV	heat shock protein hslVU, proteasome-related	Protein fate	-1.02	-2.72	-1.05
		peptidase subunit				
b4143	groL	GroEL, chaperone Hsp60, peptide-dependent	Protein fate	-1.24	-2.24	1.57
		ATPase, heat shock protein				
b4174	hflK	protease specific for phage lambda cII repressor	Protein fate	1.08	-2.56	-1.14
b4175	hflC	protease specific for phage lambda cII repressor	Protein fate	1.17	-2.11	-1.20
b4142	groS	GroES, 10 Kd chaperone binds to Hsp60 in pres.	Protein fate	-1.61	-2.49	1.17
		Mg-ATP, suppressing its ATPase activity				
b4171	miaA	delta	Protein synthesis	1.11	-2.17	1.11

b4237	nrdG	anaerobic ribonucleotide reductase activating	Purines, pyrimidines,	1.11	-2.47	-1.45
		protein	nucleosides, and nucleotides			
b3292	zntR	putative transcriptional regulator	Regulatory functions	-1.02	-2.01	1.19
b3071	yqjI	orf, hypothetical protein	Transcription	1.03	-2.59	-1.7
Clus	ter 2					
b0273	argF	ornithine carbamoyltransferase 2, chain F	Amino acid biosynthesis	1.39	-1.55	-4.4
b2019	hisG	ATP phosphoribosyltransferase	Amino acid biosynthesis	1.22	-1.53	-2.7
b2020	hisD	L-histidinal:NAD+ oxidoreductase; L-histidinol:NAD+ oxidoreductase	Amino acid biosynthesis	1.14	-1.53	-3.30
b2818	argA	N-acetylglutamate synthase; amino acid acetyltransferase	Amino acid biosynthesis	1.14	-1.15	-2.43
b3172	argG	argininosuccinate synthetase	Amino acid biosynthesis	1.45	-1.13	-2.7
b3359	argD	acetylornithine delta-aminotransferase	Amino acid biosynthesis	1.35	-1.13	-2.00
b3958	argC	N-acetyl-gamma-glutamylphosphate reductase	Amino acid biosynthesis	1.26	-1.34	-3.3
b3959	argB	acetylglutamate kinase	Amino acid biosynthesis	1.30	-1.39	-3.7
b3960	argH	argininosuccinate lyase	Amino acid biosynthesis	1.50	1.03	-2.3
b4254	argI	ornithine carbamoyltransferase 1	Amino acid biosynthesis; Energy metabolism	1.23	-1.23	-2.9
b0272	yagI	putative regulator	Regulatory functions	1.38	-1.18	-5.3
b3405	ompR	response regulator	Regulatory functions	1.01	-1.54	-2.1
b0860	artJ	arginine 3rd transport system periplasmic binding	Transport and binding	1.23	-1.35	-3.2
		protein	proteins			
b0862	artQ	arginine 3rd transport system permease protein	Transport and binding proteins	1.08	1.10	-2.0
b2309	hisJ	histidine-binding periplasmic protein of high-affinity histidine transport system	Transport and binding proteins	-1.07	-1.32	-2.1
b3957	argE	acetylornithine deacetylase	Unclassified	1.09	1.01	-2.2
Clus	ter 3					
b0606	ahpF	alkyl hydroperoxide reductase, F52a subunit; detoxification of hydroperoxides	Cellular processes	-2.06	-1.76	1.13
b2582	trxC	putative thioredoxin-like protein	Energy metabolism	-2.35	-2.97	-1.1
b0802	ybiJ	orf, hypothetical protein	Hypothetical proteins	-1.09	-1.19	2.51
b4104	phnE	membrane channel protein component of Pn transporter	Unclassified	1.59	1.12	2.04
b4367	fhuF	orf, hypothetical protein	Unknown function	-2.13	-1.88	1.04
	•					

Clus	ter 4					
b3767	ilvG	acetolactate synthase II, large subunit, cryptic, interrupted	Amino acid biosynthesis	1.15	-1.50	-2.0
b2727	hypB	guanine-nucleotide binding protein, functions as	Central intermediary	1.08	-2.07	-2.4
		nickel donor for large subunit of hydrogenase 3	metabolism;Energy metabolism			
b2724	hycB	probable small subunit of hydrogenase-3, iron-sulfur protein	Energy metabolism	1.15	-2.17	-1.5
b2719	hycG	hydrogenase activity	Energy metabolism	1.15	-1.77	-2.1
b2729	hypD	pleiotrophic effects on 3 hydrogenase isozymes	Energy metabolism	1.09	-2.15	-2.2
b4079	fdhF	selenopolypeptide subunit of formate dehydrogenase H	Energy metabolism	1.09	-2.23	-2.2
b2997	hybO	putative hydrogenase subunit	Energy metabolism	1.04	-2.06	-1.7
b3673	emrD	2-module integral membrane pump; multidrug resistance	Hypothetical proteins	2.02	-1.23	-1.1
b4218	ytfL	putative transport protein	Hypothetical proteins	1.22	-2.10	-1.5
b4212	ytfH	orf, hypothetical protein	Hypothetical proteins	1.14	-2.19	-1.9
b2728	hypC	pleiotrophic effects on 3 hydrogenase isozymes	Hypothetical proteins	1.02	-2.45	-2.4
b3010	yqhC	putative ARAC-type regulatory protein	Regulatory functions	1.12	-1.68	-2.1
64063	soxR	redox-sensing activator of soxS	Unclassified	1.22	-2.33	-1.6
b0674	asnB	asparagine synthetase B	Unclassified	1.09	-2.08	-1.6
b2730	hypE	plays structural role in maturation of all 3 hydrogenases	Unclassified	-1.08	-1.96	-2.0
b3154	yhbP	orf, hypothetical protein	Unknown function	1.17	-3.20	-2.9
b3596	yibG	orf, hypothetical protein	Unknown function	1.14	-2.24	-1.8
Clus	ter 5					
60003	thrB	homoserine kinase	Amino acid biosynthesis	1.06	2.40	-1.3
b0002	thrA	aspartokinase I, homoserine dehydrogenase I	Amino acid biosynthesis	1.12	2.32	-1.2
60775	bioB	biotin synthesis, sulfur insertion?	Biosynthesis of cofactors, prosthetic groups, and carriers	2.37	2.70	1.58
b2867	xdhB	putative dehydrogenase	Energy metabolism	1.04	2.00	1.36
b0734	cydB	cytochrome d terminal oxidase polypeptide subunit II	Energy metabolism	2.47	2.99	2.08
b2870	ygeW	putative carbamoyl transferase	Energy metabolism	-1.71	2.73	1.76
b0733	cydA	cytochrome d terminal oxidase, polypeptide subunit I	Energy metabolism	2.80	2.19	1.47
b2579	yfiD	putative formate acetyltransferase	Hypothetical proteins	3.35	5.09	2.81
b0953	rmf	ribosome modulation factor	Unknown function	1.06	3.83	2.47
b1823	cspC	cold shock protein	Unknown function	2.04	1.29	-1.1

Cluster 6

b2871	ygeX	putative dehydratase	Amino acid biosynthesis;	-1.20	2.59	1.00
			Energy metabolism			
b1925	fliS	flagellar biosynthesis; repressor of class 3a and 3b	Cellular processes	-2.25	-1.04	1.30
		operons				
b1924 <i>fliD</i>	fliD	flagellar biosynthesis; filament capping protein;	Cellular processes	-2.20	-1.05	-1.2
		enables filament assembly				
b1887	cheW	positive regulator of CheA protein activity	Cellular processes	-2.39	-1.07	1.18
b1070	flgN	protein of flagellar biosynthesis	Cellular processes	-2.25	-1.08	-1.3
b1082	flgK	flagellar biosynthesis, hook-filament junction	Cellular processes	-2.33	-1.11	-1.1
		protein 1				
b1923	fliC	flagellar biosynthesis; flagellin, filament structural protein	Cellular processes	-2.53	-1.11	-1.0
b1882	cheY	chemotaxis regulator transmits chemoreceptor	Cellular processes	-2.01	-1.23	-1.0
		signals to flagelllar motor components	F			
b1922	fliA	flagellar biosynthesis; alternative sigma factor 28;	Cellular processes;	-3.11	-1.05	-1.0
	<i></i>	regulation of flagellar operons	Transcription			
		regulation of hugenan operous	Trailoonipiion			
b1397	paaJ	putative acyltransferase	Central intermediary	-1.19	1.39	2.2
			metabolism			
b1676	pykF	pyruvate kinase I	Energy metabolism	-1.37	1.38	2.30
b0849	grxA	glutaredoxin1 redox coenzyme for	Energy metabolism	-3.09	-1.64	1.0
		glutathione-dependent ribonucleotide reductase				
b1789	yeaL	orf, hypothetical protein	Hypothetical proteins	1.07	1.74	2.07
b2151	galS	mgl repressor, galactose operon inducer	Regulatory functions	-1.12	1.83	2.22
b1818	manY	PTS enzyme IIC, mannose-specific	Transport and binding	-1.14	2.53	2.5
			proteins			
b1819	manZ	PTS enzyme IID, mannose-specific	Transport and binding	-1.20	2.19	2.88
			proteins			
b1817	manX	PTS enzyme IIAB, mannose-specific	Transport and binding	-1.28	2.18	2.23
			proteins			
b3528	dctA	uptake of C4-dicarboxylic acids	Transport and binding	1.04	1.87	2.18
			proteins			
b3751	rbsB	D-ribose periplasmic binding protein	Transport and binding	-1.06	1.83	2.47
			proteins			
b2215	ompC	outer membrane protein 1b	Transport and binding	1.30	1.81	2.62
			proteins			
b3748	rbsD	D-ribose high-affinity transport system;	Transport and binding	-1.69	1.47	2.6
		membrane-associated protein	proteins			
b2150	mglB	galactose-binding transport protein; receptor for	Transport and binding	-1.36	1.43	3.75
	0-	galactose taxis	proteins			
b2149	mglA	ATP-binding component of methyl-galactoside	Unclassified	-1.18	1.71	2.23
		transport and galactose taxis	Chelusonited			
b3914		orf, hypothetical protein	Unclassified	1.44	1.69	2.2
00714		on, nypomenear protein	Unclassified	1.44	1.09	4.4

b2872	ygeY	putative deacetylase	Unclassified	-1.86	2.83	2.65
b0735	ybgE	orf, hypothetical protein	Unknown function	2.04	2.83	3.05