Solid-phase synthesis of protected α -amino phosphonic acid oligomers

Yoshitaka Ishibashi and Masato Kitamura*

Contribution from the Research Center for Materials Science and the Department of

Chemistry, Nagoya University

- (1) General
- (2) Synthesis of Fmoc-GlyP(OBn)-OH (1)
- (3) Condensation of Fmoc-GlyP(OBn)-OH (1) with H-GlyP(OBn)-OBn (2)
- (4) Fmoc removal from Fmoc-(GlyP(OBn))₂-OBn (3)
- (5) Detachment of Fmoc-(GlyP(OBn))₂-OH/DIEA (7c) from
- $Fmoc-(GlyP(OBn))_2$ -OCH(CH=CH₂)(CH₂)₇CONH(CH₂)₂C₆H₅ (7a)
- (6) Solid-phase synthesis of Fmoc-(GlyP(OBn))₆-OH/DIEA

Note: All of Figures S1–S11 for the supporting information were attached at the end.

(1) General

Instruments. Nuclear magnetic resonance (NMR) spectra were recorded on JNM-ECA-500 and JNM-ECA-600 spectrometers (500 MHz for ¹H, 126 MHz for ¹³C, and 202 MHz for ³¹P; 600 MHz for ¹H, 151 MHz for ¹³C, and 243 MHz for ³¹P) unless otherwise specified. The chemical shifts are expressed in parts per million (ppm) downfield from tetramethylsilane or in ppm relative to CHCl₃ (δ 7.26 in ¹H NMR and δ 77.0 in ${}^{13}C$ NMR), CH₃OD (δ 3.31 in ${}^{1}H$ NMR and δ 49.0 in ${}^{13}C$ NMR), DMSO (δ 2.50 in ¹H NMR and δ 39.52 in ¹³C NMR), CH₃CN (δ 1.94 in ¹H NMR), and H₃PO₄ (δ 0.00 in ³¹P NMR). Signal patterns of ¹H NMR are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad signal. All of spectra were measured at 25 °C with samples of 5–50 mM. High performance liquid chromatography analyses were performed on a JASCO PU-980 instrument equipped with an SCL-10A system controller, a DG-980-50 degasser, and a JASCO UV-970 UV detector. HRMS was measured by ESI-TOF-MS QSTAR (PE Biosystems). MALDI-TOF-MS spectra were taken on a PerSeptive Biosystems Voyger system. A BURRELL SCIENTIFIC wrist-action laboratory shaker was used for solid-phase synthesis.

Materials.

<u>Gas</u>: Argon (Ar) gas was purified by being passed through a column of the BASF R3-11 catalyst at 80 °C and then through a column of granular calcium sulfate.

<u>Solvents</u>: Solvents for the synthesis of monomer, the condensation, and the detachment were dried at the reflux temperature in the presence of appropriate drying agents (2.5 g/L) under Ar stream for 6 h and distilled into Schlenk flasks: methanol (CH₃OH) from Mg; N,N-dimethylformamide (DMF), acetonitrile (CH₃CN),

S1

dichloromethane (CH₂Cl₂), and chloroform (CHCl₃) from CaH₂; acetone from Molecular Sieves 4A (MS 4A); ether from benzophenone ketyl. CD₃CN, CD₃OD, DMSO- d_6 , and CDCl₃ were purchased from Cambridge Isotope Laboratory Inc., and, for NMR experiments, CD₃CN and CDCl₃ were purified by distillation over CaH₂, and CD₃OD over Mg. CDCl₃ for the general NMR measurement was dried over MS 4A. Distilled water purchased from nakarai tesque (NT) was used without further purification. First grade solvents purchased from NT were used for extraction and partition.

Silica gel: Analytical thin-layer chromatography (TLC) was performed using Merck 5715 indicating plates precoated with silica gel 60F254 (layer thickness, 0.25 mm). The product spots were visualized with a solution of PMA or *o*-anisaldehyde. Flash column chromatography was performed using Daiko AP 300 or NT Silica Gel 60 (spherical, neutral).

<u>Reagents and chemicals</u>: The reagents were purchased from companies and used without further purification unless otherwise specified. These are listed next in an alphabetical order neglecting number suffix. Kishida: trifluoroacetic acid (TFA). NT: triethylamine (TEA), 1-hydroxybenzotriazole (HOBt),

N,N-diisopropylethylamine (DIEA), hydrochloric acid (aq 12 M), piperidine, pyridine (Py), sodium iodide (NaI), sodium sulfate (Na₂SO₄), sodium thiosulfate (Na₂S₂O₃), and thionyl chloride (SOCl₂). Tokyo Kasei Institute (TCI): benzyl alcohol,

1-hydroxy-7-azabenzotriazole (HOAt), and diisopropylcarbodiimide (DIC). Wako: sodium bicarbonate (NaHCO₃). Novabiochem: TentaGel (0.26 mmol/g). SOCl₂ was distilled before use. *N*-Fmoc-1-aminomethylphosphonic acid (Fmoc-GlyP(OH)-OH)^{1,2} and [RuCp(CH₃CN)₃]PF₆³ were synthesized according to the literatures.

General synthetic operation: Condensation, Fmoc removal, and detachment reactions were carried out under Ar atmosphere by use of a general Schlenk technique unless otherwise specified. Solvents for the catalytic detachment were degassed before use. A Schlenk with Teflon J. Young valve and an NMR tube with the valve were specified by "Young-type Schlenk" and "Young-type NMR tube," respectively. Schlenks and general round bottom flasks were dried at ca. 250 °C by use of heat gun under a reduced pressure just before use, and silicon grease was used for connecting to a reflux condenser and a glass stopper. A Teflon-coated magnetic bar was used for stirring the reaction mixture. Liquid reagents were introduced by use of syringe via septum rubber. After introduction, the septum was replaced with a Young valve or a glass stopper. Cannulation was performed by use of Teflon tube or stainless tube through a septum rubber under a slightly positive pressure of Ar. Reactions at 0 °C was carried out by use of ice bath. Room temperature (rt) ranges from 25 °C to 28 °C. Solvents after general workup process were removed by means of a rotary evaporator. Concentration of a reaction mixture in a Schlenk tube or a flask was performed by connecting to a vacuum-Ar line via a cold trap. Organic extraction from aqueous layer by a general partition-based workup was dried over Na₂SO₄ (ca. 5% for the total extractions) for ca. 15 min, filtered, and concentrated under a reduced pressure (dryness/filtration/concentration process). Purification of a crude product by silica gel flush column chromatography was expressed simply by "chromatography." "Aqueous" and "saturated" were abbreviated "aq" and "sat," respectively.

(2) Synthesis of Fmoc-GlyP(OBn)-OH (1)

S3

Fmoc-GlyP(OH)-OH¹ was converted to dichloridate and allowed to react with benzyl alcohol. Debenzylation of the resulting diester using NaI in acetone afforded N-9-fluorenylmethoxycarbonyl-O-benzyl-aminomethylphosphonate (Fmoc-GlyP(OBn)-OH, **1**) in 58% overall yield.

 $\begin{array}{l} A 20 \text{-mL Young-type Schlenk was charged with} \\ \hline \text{Fmoch} & A 20 \text{-mL Young-type Schlenk was charged with} \\ \hline \text{Fmoc-GlyP(OH)-OH (1.50 g, 4.50 mmol), and then SOCl_2 (5.0 mL)} \\ \hline \text{was introduced at 0 °C.} & \text{The resulting colorless solution was stirred at rt for 2 h.} \\ \hline \text{Concentration of the mixture at rt under a reduced pressure gave dichloro} \\ \textit{N-(9-fluorenylmethoxycarbonyl)-1-aminomethylphosphonate (Fmoc-GlyP(Cl)-Cl) as a} \\ \hline \text{white solid (1.7 g, quant), which was used for the next reaction without further} \\ \hline \text{purification.} \quad ^{1}\text{H NMR (600 MHz, CDCl_3) \delta 4.23 (t, J = 6.20 Hz, 1H, CHCH_2OC(O)N),} \\ \textit{4.30 (d, J = 6.20 Hz, 2H, CHCH_2OC(O)N), 4.52 (d, J = 6.89 Hz, 2H, \\ \hline \text{FmocNCH}_2P(O)Cl_2), 5.61 (brt, J = 6.89 Hz, 1H, FmocNH), 7.32 (t, J = 7.57 Hz, 2H, \\ aromatic), 7.41 (t, J = 7.57 Hz, 2H, aromatic), 7.58 (d, J = 7.57 Hz, 2H, aromatic), 7.77 \\ \hline (d, J = 7.57 Hz, 2H, aromatic); ^{13}\text{C NMR (151 MHz, CDCl_3) \delta 47.2, 50.8 (d, J = 115.6 \\ \hline \text{Hz}), 67.5 (d, J = 101.1 \text{ Hz}), 120.2, 125.1, 127.3, 128.0, 141.5, 143.5, 155.7; ^{31}P\{^1\text{H}\} \\ \hline \text{NMR (215 MHz, CDCl_3) \delta 44.0, 44.3 (95:5 ratio).} \\ \end{array}$

The crude Fmoc-GlyP(Cl)-Cl (1.7 g, 4.5 mmol) was dissolved in CH₂Cl₂ (10 mL), and the mixture was cooled to 0 °C. To this solution were slowly added benzyl alcohol (1.03 mL, 10.0 mmol) and TEA (1.40 mL, 10.0 mmol). After 8-h stirring at rt, CH₂Cl₂ (20 mL) was added. The whole mixture was washed with water (10 mL x 2) and brine (10 mL). Dryness/filtration/concentration process gave a colorless oil, which was purified by chromatography (40 g, 1:1 hexane–ethyl acetate then 9:1 CH₂Cl₂–CH₃OH) afforded

N-9-fluorenylmethoxycarbonyl-O-dibenzyl-aminomethylphosphonate

(Fmoc-GlyP(OBn)-OBn) (1.90 g, 82% yield) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 3.66 (d, *J* = 11.0 Hz, 2H, FmocNCH₂P(O)(OBn)₂), 4.16 (t, *J* = 6.85 Hz, 1H, CHCH₂OC(O)N), 4.36 (d, *J* = 7.57 Hz, 2H, CHCH₂OC(O)N), 4.93–5.15, 5.47, 5.80 (m, brs, brs, 4H, P(O)(OCH₂Ph)₂), 7.25–7.44 (m, 14H, aromatic), 7.55 (d, *J* = 7.57, 2H, aromatic), 7.75 (d, *J* = 7.57 Hz, 2H, aromatic), 10.5 (br, 1H, FmocNH); ¹³C NMR (126 MHz, CDCl₃) δ 37.1 (d, *J* = 157.5 Hz), 47.1, 67.4, 68.1 (d, *J* = 5.78 Hz), 120.1, 125.1, 127.1, 127.8, 128.2, 128.6, 128.8, 135.9, 141.4, 143.8, 156.2; ³¹P{¹H} NMR (202 MHz, CDCl₃) δ 23.5, 24.3 (96:4 ratio).

Fmoc-GlyP(OBn)-OBn (1.90 g, 3.70 mmol), acetone (20 mL), and NaI (1.60 g, 10.7 mmol) were placed in a 30-mL round-bottom flask, and a reflux condenser was equipped. The yellow solution was refluxed for 2 days and then cooled to rt. After concentration to ca. 5 mL at rt under a reduced pressure, water (50 mL) was added, and the mixture was washed with ethyl acetate (15 mL). The aq layer was acidified to be pH 2 by addition of 5 *M* aq HCl (5 mL) and extracted with ethyl acetate (20 mL x 5). The combined organic layers were washed with sat aq Na₂S₂O₃ (5 mL). Dryness/filtration/concentration process afforded a yellow solid (1.3 g), which was recrystallized from ether–CHCl₃ to give Fmoc-GlyP(OBn)-OH (1) (1.11 g, 71% yield) as a white solid. ¹H NMR (600 MHz, DMSO-*d*₆) δ 3.49 (dd, *J* = 6, 10 Hz, 2H, FmocNC*H*₂P(O)(OBn)(OH)), 4.22 (t, *J* = 6.89 Hz, 1H, C*H*CH₂OC(O)N), 4.29 (d, *J* = 7.57 Hz, 2H, CHC*H*₂OC(O)N), 5.01 (d, *J* = 6.89 Hz, 2H, P(O)(OCH₂Ph)), 7.25–7.37 (m, 5H, aromatic), 7.41 (t, *J* = 7.57 Hz, 4H, aromatic), 7.74 (d, *J* = 7.57 Hz, 2H, aromatic), 7.79 (t, *J* = 6.20 Hz, 1H, FmocNH), 7.88 (d, *J* = 7.57 Hz, 2H, aromatic); ¹³C NMR (151 MHz, DMSO-*d*₆) δ 37.1 (d, *J* = 154.6 Hz), 46.7, 66.0, 66.2 (d, *J* = 5.78 Hz),

120.2, 125.4, 127.2, 127.5, 127.7, 127.9, 128.4, 137.3, 140.8, 143.9, 156.3; ${}^{31}P{}^{1}H$ NMR (243 MHz, DMSO- d_6) δ 21.0, 21.4 (1:9 ratio); ${}^{31}P{}^{1}H$ NMR (243 MHz, CD₃CN) δ 21.7. HRMS exact mass calcd for C₂₃H₂₂NO₅P + Na⁺ 446.1133, found 446.1102. The NMR spectra were shown in Figure S1.

(3) Condensation of Fmoc-GlyP(OBn)-OH (1) with H-GlyP(OBn)-OBn (2)

The progress of condensation between **1** and **2** was monitored by ${}^{31}P{}^{1}H$ NMR. The spectrum change was shown in Figure S3. A 5-mm Young-type NMR tube was charged with **1** (21.2 mg, 50 µmol) and CD₃CN (0.50 mL), and then DIC (9.4 μ L, 60 μmol) was added. After 10 min at rt, the complete conversion of **1** was determined by ³¹P{¹H}-NMR analysis (Figure S3 (c), δ 16.7). The signal was assigned to the pyrophosphonate anhydride **4**. The chemical shift was close to the value reported for (Fmoc-GlyP(OC₂H₅))O (δ 16.3 and several signals in CDCl₃).¹ To this colorless solution was added HOAt (8.2 mg, 60 μmol) at rt. The NMR analysis after 30 min at rt indicated that the ³¹P signal at δ 16.7 completely disappeared to converge with the signal at δ 30.7 (Figure S3 (d)), which was assigned to the HOAt ester **5**. To the reaction mixture was added a CD₃CN solution (0.25 mL) of **2** (14.6 mg, 50 μmol) and DIEA (9.0 μL, 52 μmol) in another 5-mm Young-type NMR tube. The ³¹P signal at δ 30.7 disappeared after 1 h at rt to give new signals assignable to Fmoc-(GlyP(OBn))₂-OBn (**3**) (Figure S3 (**e**): δ 26.2 (50%), d, *J* = 21.8 Hz,

 $CH_2P(O)(OBn)_2$; δ 27.3 (4%); δ 28.0 (46%), d, J = 21.8 Hz, $CH_2P(O)(OBn)N)$.

Signal at δ 27.3 would be assigned to the rotamer of Fmoc moiety. The ³¹P-NMR analysis indicated near-quantitative formation of **3**. The reaction mixture was concentrated, and the residue was chromatographed on silica gel (3 g; 9:1 ethyl acetate–CH₃OH) to give **3** as a colorless oil (32 mg, 93% isolated yield). ¹H NMR (600 MHz, CDCl₃) δ 3.19–3.36 (m, 2H, P(O)NCH₂P(O)(OBn)₂), 3.54 (ddd, *J* = 5.51, 10.33, 15.84 Hz, 1H, FmocNC*H*HP(O)N), 3.70 (ddd, *J* = 6.89, 9.98, 16.18 Hz, 1H, FmocNCH*H*P(O)N), 4.18 (t, *J* = 7.57 Hz, 1H, C*H*CH₂OC(O)N), 4.33 (dd, *J* = 6.89, 10.33 Hz, 1H, CHC*H*HOC(O)N), 4.37 (dd, *J* = 7.57, 10.33 Hz, 1H, CHCH*H*OC(O)N), 4.91–5.07 (m, 6H, P(O)(OCH₂Ph)₂ and NP(O)(OCH₂Ph)), 6.18 (brt, *J* = 6.20 Hz, 1H, FmocNH), 7.24–7.33 (m, 17H, aromatic), 7.37 (t, *J* = 7.57 Hz, 2H, aromatic), 7.60 (brd, *J* = 6.89 Hz, 2H, aromatic), 7.74 (d, *J* = 7.57, 2H, aromatic); ¹³C NMR (151 MHz, CDCl₃) δ 37.0 (d, *J* = 160.4 Hz), 38.2 (d, *J* = 145.9 Hz), 47.2, 66.3 (d, *J* = 5.78 Hz), 67.3, 68.2 (d, J = 5.78 Hz), 68.3 (d, J = 7.22 Hz) 120.1, 125.2, 127.2, 127.8, 128.0, 128.3, 128.5, 128.7, 128.8, 128.9, 135.9, 136.1, 141.4, 143.9, 156.6; ³¹P{¹H} NMR (243 MHz, CDCl₃) δ 25.8, 27.0, 28.0 (50:4:46 ratio); ³¹P{¹H} NMR (243 MHz, CD₃CN) δ 25.9, 27.0, 28.0 (50:4:46 ratio); HRMS exact mass calcd for C₃₈H₃₈N₂O₇P₂ + Na⁺ 719.2052, found 719.2007. The NMR spectra were shown in Figure S4.

The other routes that have been explored are shown below.

^a Determined by ³¹P-NMR analysis.

(4) Fmoc removal from Fmoc-(GlyP(OBn))₂-OBn (**3**)

 $\begin{array}{c} \underbrace{\mathsf{H}_{2}\mathsf{N}}_{\mathsf{H}_{2}\mathsf{N}} \underbrace{\mathsf{P}}_{\mathsf{H}_{2}\mathsf{N}} \underbrace{\mathsf{P}}$ and CDCl₃ (0.70 mL), and then piperidine (22 µL, 0.22 mmol) was added. After 1 h at rt, the ³¹P signals at 25.8, 27.0, and 28.0 (50:4:46) of **3** completely disappeared and the new signals at δ 25.6 and 32.3 appeared, indicating quantitative Fmoc removal (Figure S5). The mixture was concentrated and the residue was purified by chromatography (4 g, ethyl acetate then 9:1 CH₂Cl₂-CH₃OH, tailing) to give H-(GlyP(OBn))₂-OBn (17 mg, 83% yield) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 1.57 (brs, 2H, NH₂), 2.76 (brm, 1H, P(O)NH), 2.91 (d, J = 8.95, 2H, H₂NCH₂P(O)N), 3.20–3.34 (m, 2H, P(O)NCH₂P(O)(OBn)₂), 4.89 (dd, J = 7.57, 11.71 Hz, 1H, P(O)(OCHHPh)), 4.95–5.09 (m, 3H, P(O)(OCHHPh) and P(O)(OCH₂Ph)₂), 7.28–7.36 (m, 15H, aromatic); ¹³C NMR (151 MHz, CDCl₃) δ 37.1 (d, J = 159.0 Hz), 39.4 (d, J = 138.7 Hz), 65.8 (d, J = 7.22 Hz), 68.2 (d, J = 5.78 Hz), 128.1, 128.4, 128.6, 128.8, 128.9, 135.9, 136.4; ³¹P{¹H} NMR (243 MHz, CDCl₃) & 25.6, 32.3 (49:51 ratio); HRMS exact mass calcd for $C_{23}H_{28}N_2O_5P_2 + Na^+ 497.1371$, found 497.1375. The NMR spectra were shown in Figure S6.

(5) Detachment of Fmoc-(GlyP(OBn))₂-OH/DIEA (**7c**) from Fmoc-(GlyP(OBn))₂-OCH(CH=CH₂)(CH₂)₇CONH(CH₂)₂C₆H₅ (**7a**)

The compound **7a** was prepared in three steps from Fmoc-GlyP(OBn)-OH (**1**) and a model linker **8a**: (1) condensation between **1** and **8a** giving Fmoc-GlyP(OBn)-OCH(CH=CH₂)(CH₂)₇CONH(CH₂)₂C₆H₅, (2) Fmoc removal, and (3) condensation with **1**. The conditions were not optimized. The compound **7a** was then subjected to $RuCp/P(C_6H_5)_3$ -catalyzed deallylation reaction.

Fmoc-GlyP(OBn)-OH (1) (627 mg, 1.48 mmol) and CH_3CN (5.0 mL) were placed in a 20-mL Young-type Schlenk. To this was added DIC (0.31 mL, 2.0 mmol) and HOAt (272 mg, 2.0 mmol). After 30-min stirring at rt, the solution was added at 0 °C to an CH₃CN solution (5.0 mL) containing the N terminal free H-GlyP(OBn)-O CH(CH=CH₂)(CH₂)₇CONH(CH₂)₂C₆H₅ (720 mg, 1.48 mmol) and DIEA (340 μ L, 2.0 mmol). After 8-h stirring at rt, the whole mixture was partitioned between ethyl acetate (20 mL) and water (20 mL). The aq layer was extracted with ethyl acetate (20 mL x 2), and the combined organic layers were washed with water (20 mL) and brine (20 mL). Dryness/filtration/concentration followed by chromatography (80 g, ethyl acetate, then 9:1 ethyl acetate–CH₃OH) afforded

Fmoc-(GlyP(OBn))₂-OCH(CH=CH₂)(CH₂)₇CONH(CH₂)₂C₆H₅ (7a) as a colorless solid (1.26 g, 95% yield). Full assignment of the NMR signals was difficult because of the existence of theoretically four diastereomers. Only the major signals or all of the digital data are listed. ¹H NMR (600 MHz, CDCl₃) δ 1.15–1.34 (m, 11H, (CH₂)₆), $1.47-1.73 \text{ (m, 3H, (CH_2)_6)}, 2.02-2.12 \text{ (m, 2H, CH_2C(O)N)}, 2.79 \text{ (t, } J = 6.90 \text{ Hz}, 2\text{ H},$ CH₂CH₂C₆H₅), 2.79 (overlapped br signal, 1H, P(O)NH), 3.27 (m, 2H, P(O)NCH₂P(O)O₂), 3.48 (dt, *J* = 6.20, 6.90 Hz, 2H, C(O)NHCH₂), 3.57 (m, 1H, FmocNCHHP(O)N), 3.71 (m, 1H, FmocNCHHP(O)N), 4.18 (t, *J* = 6.90, 1H, CHCH₂OC(O)N), 4.29–4.4 (m, 2H, CHCH₂OC(O)N), 4.72–4.85 (m, 1H, CH₂=CHCHO), 4.94–5.31 (m, 6H, CH₂=CHCHO, P(O)(OCH₂Ph)(OLinker) and NP(O)(OCH₂Ph)), 5.60 (brm, 1H, C(O)NH (major)), 5.71–5.83 (m, 1H, CH₂=CHCHO), 6.28 (brm, 1H, FmocNH (major)), 7.14–7.40 (m, 19H, aromatic), 7.59 (d, J = 7.57, 2H, aromatic), 7.74 (d, J = 7.57, 2H, aromatic); ¹³C NMR (151 MHz, CDCl₃) δ 24.5, 25.5, 28.7, 28.8, 28.9, 29.0, 35.97, 35.98, 38.5, 40.4, 46.9, 65.9, 67.0, 67.7, 68.0, 79.1, 119.8, 125.1, 126.2, 127.5, 127.6, 127.9, 128.2, 128.4, 128.6, 135.8, 136.8, 138.9, 141.0, 156.5, 173.0; ³¹P{¹H} NMR (243 MHz, CDCl₃) δ 24.5, 24.6, 25.7, 24.9, 27.0, 27.8; ³¹P{¹H} NMR (243 MHz, CD₃OD) δ 24.9, 25.0, 25.1, 25.2, 28.7, 29.5, 29.6; HRMS exact mass calcd for $C_{50}H_{60}N_3O_8P_2 + Na^+ 914.3675$, found 914.3654. The NMR spectra were

shown in Figure S7.

 $\frac{\text{Fmoc}-(\text{GlyP}(\text{OBn}))_2-\text{OH}/\text{DIEA}(7\mathbf{c}):}{\text{BnO}} \quad \text{Catalytic}}$ $\frac{\text{Fmoc}-(\text{H}_{BnO} - \text{H}_{BnO} - \text{H}_{BnO} - \text{H}_{BnO} - \text{OH}/\text{DIEA}}{\text{deallylation was carried out in an NMR tube, and the}}$ $\frac{\text{deatchment of 7c from Fmoc}-(\text{GlyP}(\text{OBn}))_2-\text{OCH}(\text{CH}=\text{CH}_2)(\text{CH}_2)_7\text{CONH}(\text{CH}_2)_2\text{C}_6\text{H}_5}{(7\mathbf{a})}$ $(7\mathbf{a}) \text{ was monitored by } ^{31}\text{P} \{^1\text{H} \} \text{ NMR}. \quad \text{The spectrum change was shown in Figure S8.}$ $A 5-\text{mm Young-type NMR tube containing 7a} (22.3 \text{ mg}, 25 \mu \text{mol}), \text{DIEA} (4.35 \mu \text{L}, 25 \mu \text{mol}), \text{and CD}_3\text{OD} (0.25 \text{ mL}) \text{ was degassed by three freeze-thaw cycles.} \quad \text{To this was}$ $added a \text{ degassed } 1.0 \text{ mM CD}_3\text{OD} \text{ solution of } [\text{RuCp}(\text{P}(\text{C}_6\text{H}_5)_3)(\text{CH}_3\text{CN})_2]\text{PF}_6 (0.25 \mu \text{m}, 0.25 \mu \text{mol}).$ $After 3 \text{ h at rt, the } ^{31}\text{P} \text{ signals of } 7\mathbf{a} \text{ disappered to converge with a}$ $different set of \text{ signals } (\delta 18.9 (d, J = 26.3 \text{ Hz}, \text{OP}(\text{O})\text{O}), 29.9 (d, J = 26.3 \text{ Hz}, \text{NP}(\text{O})\text{O})$ $(\text{Figure S8 (b)}), \text{ which were assigned to Fmoc-(GlyP(\text{OBn}))_2-OH/\text{DIEA} (7\mathbf{c}). \quad \text{The}}$ spectrum change in the reaction without DIEA was shown in Figure S8 (d-f).

In a similar way, a double-scale detachment reaction was carried out (**7a** (44.6 mg, 50 µmol), DIEA (9 µL, 52 µmol), [CpRu(P(C₆H₅)₃)(CH₃CN)₂]PF₆ (1.0 mM CH₃OH solution, 0.5 mL, 0.5 µmol), CH₃OH (1 mL), rt, 2 h). The mixture was concentrated, and then partitioned between water (2 mL) and ether (2 mL). The aq layer was washed with ether (2 mL x 2), and freeze-dried to give a white solid (36 mg). ¹H NMR (600 MHz, CD₃OD) δ 1.30–1.33 (brd and brt, *J* = 6.89 Hz, 15H, CH₃CH₂N(CH(CH₃)₂)₂), 3.04 (brt, *J* = 5.51 Hz, 1H, P(O)NH), 3.12–3.18 (m, 4H, CH₃CH₂N(CH(CH₃)₂)₂), 3.53–3.70 (m, 4H, FmocNHCH₂P(O)N and P(O)NCH₂P(O)(OBn)(OH)), 4.15 (t, *J* = 6.89 Hz, 1H, CHCH₂OC(O)N), 4.24–4.32 (two dd (higher order), 2H, CHCH₂OC(O)N), 4.95–5.04 (m, 4H, P(O)(OCH₂Ph) x 2), 7.16–7.31 (m, 8H, aromatic), 7.32 (d, *J* = 6.89 Hz, 2H, aromatic), 7.37 (t, *J* = 7.57 Hz, 2H, aromatic), 7.65 (d, *J* = 7.57 Hz, 2H, aromatic),

7.78 (d, J = 7.57 Hz, 2H, aromatic); ¹³C NMR (151 MHz, CD₃OD) δ 13.1, 17.3, 18.7, 23.0, 23.7, 38.5 (d, J = 150.3 Hz), 38.7 (d, J = 145.9 Hz), 43.7, 45.6, 48.3, 55.7, 67.0 (d, J = 5.78 Hz), 67.4 (d, J = 4.33 Hz), 68.3, 120.9, 126.3, 128.6, 128.6, 128.7, 129.2, 129.4, 129.5, 129.8, 137.9, 139.9, 142.5, 145.3, 158.6; ³¹P{¹H} NMR (243 MHz, CD₃OD) δ 18.9 (d, J = 26.3 Hz, OP(O)O), 29.9 (d, J = 26.3 Hz, NP(O)O); HRMS exact mass calcd for C₃₉H₅₀N₃O₇P₂ 736.3202, found 736.3225. The signals at δ 17,3 (br), 18.7 (br), 23.0, 23.7, 43.7, 45.6, and 48.3 in the ¹³C NMR spectrum are ambiguous. The NMR spectra were shown in Figure S9. Concentration of the organic layer afforded a crude oil (16 mg). The ¹H- NMR analysis showed that 11-methoxy-*N*-phenethylundec-9-enamide and 9-

methoxy-*N*-phenethylundec-10-enamide (**8b**) was formed in ca. 1:3 ratio (δ 5.67 (dt, *J* = 7.6 and 15.2 Hz, 1H, CH₂C*H*=CHCH₂) and δ 5.60 (ddd, *J* = 7.6, 7.6, and 16.5 Hz, 1H, CH₂C*H*=CH₂)).

(6) Solid-Phase Synthesis of Fmoc-(GlyP(OBn))₆-OH/DIEA

 $Fmoc-(GlyP(OBn))_6$ -OH/DIEA was prepared on TentaGel-attached Jones branched allyl linker **8c** (HOCH(CH=CH₂)(CH₂)₇CONH-TentaGel) by (1) attachment of Fmoc-GlyP(OBn)-OH (1) on **8c** using DIC/HOAt/DIEA method, (2) Fmoc removal, (3) chain elongation with 1 using DIC/HOAt/DIEA method, (4) four repetition of (2)–(3) process, and finally (5) detachment of Fmoc-(GlyP(OBn))₆-OH/DIEA from Fmoc-(GlyP(OBn))₆-OCH(CH=CH₂)(CH₂)₇CONH-TentaGel.

<u>HOCH(CH=CH₂)(CH₂)₇CONH-TentaGel</u>: TentaGel-NH₂ (500 mg, 0.13 mmol) and DMF (3.0 mL) were placed in a 20-mL Young-type Schlenk, and the mixture was stood for 15 min for swelling. To this was added

9-((4-methoxyphenyl)diphenylmethoxy)-10-undecenoic acid⁴ (160 mg, 0.338 mmol), DIC (120 μ L, 0.776 mmol), and HOBt (110 mg, 0.814 mmol). The mixture was shaken for 10 h at rt. After confirming the conversion is >99% by Kaiser test (both of beads and solution showed yellow color),⁵ the resin was filtered off and washed with DMF (5 mL x 3), CH₃OH (5 mL x 3), and CH₂Cl₂ (5 mL x 3). The resin was dried under a reduced pressure for 1 h, and swelled in CH₂Cl₂ (5 mL), To this was added TFA (50 μ L, 0.67 mmol). After 1-h shaking at rt, the resin was collected by filtration and washed with DMF (5 mL x 3), CH₃OH (5 mL x 3), and CH₂Cl₂ (5 mL x 3). Dryness under a reduced pressure gave HOCH(CH=CH₂)(CH₂)₇CONH-TentaGel, which was used for the next reaction.

<u>Fmoc-GlyP(OBn)-OCH(CH=CH₂)(CH₂)₇CONH-TentaGel</u>: A 20-mL Young-type Schlenk was charged with HOCH(CH=CH₂)(CH₂)₇CONH-TentaGel obtained above, CH₃CN (6.0 mL), and DIEA (62 μL, 0.36 mmol), and the mixture was stood for 15 min for swelling. Another 5-mL Young-type Schlenk was charged with Fmoc-GlyP(OBn)-OH (1) (83 mg, 0.20 mmol) and CH₃CN (3.0 mL). DIC (47 μL, 0.30 mmol) and HOAt (41 mg, 0.30 mmol) were introduced, and the solution was stirred for 30 min at rt. This solution was cannulated to the swelled resin mixture at 0 °C. After 10-h shaking at rt, the resin was collected by filtration and washed with DMF (5 mL x 3), CH₃OH (5 mL x 3), CH₂Cl₂ (5 mL x 3). The resin was dried under reduced pressure for 1 h to give

Fmoc-GlyP(OBn)-OCH(CH=CH₂)(CH₂)₇CONH-TentaGel. ³¹P{¹H} NMR (243 MHz, CDCl₃) δ 22.6, 23.4, 24.6 (4:85:11).

The resin (7.2 mg) was placed in a meth cylinder (20.0 mL), and CH_2Cl_2 containing 10% of piperidine was introduced so that the total volume becomes 20.0 mL.

After shaking for 30 min, the solution part was transferred to a quartz cell (1 cm x 1 cm x 2 cm) and measured the UV absorbance at 273 nm to be 1.19. According to Lambert-Beer rule, the concentration of the released Fmoc moiety (molar extinction coefficient, $\varepsilon = 12300$),⁶ was determined to be 0.91 mM, indicating the formation of Fmoc-GlyP(OBn)-OCH(CH=CH₂)(CH₂)₇CONH-TentaGel as well as MMTr removal is nearly quantitative.

H-GlyP(OBn)-OCH(CH=CH₂)(CH₂)₇CONH-TentaGel: A 20-mL

Young-type Schlenk was charged with

Fmoc-GlyP(OBn)-OCH(CH=CH₂)(CH₂)₇CONH-TentaGel obtained in the previous process, and swelled with CH₂Cl₂ (4.0 mL) for 15 min. To this was added piperidine (1.0 mL), and the mixture was shaken for 1 h at rt. Filtration/washing (DMF (5 mL x 3), CH₃OH (5 mL x 3), CH₂Cl₂ (5 mL x 3)/drying process afforded GlyP(OBn)-OCH(CH=CH₂)(CH₂)₇CONH-TentaGel. ³¹P{¹H} NMR (243 MHz, CDCl₃) δ 28.0, 28.3, 29.4 (44:44:12). The signal at δ 29.4 could not be assigned. N-Allylation or –benzylation may occur.

Chain elongation to

 $\underline{\text{Fmoc-}(\text{GlyP}(\text{OBn}))_6} - \underline{\text{OCH}(\text{CH}=\text{CH}_2)(\text{CH}_2)_7} \underline{\text{CONH-TentaGel}}: \text{ The DIC/HOAt/DIEA}$ condensation/Fmoc removal process was the same as that for the synthesis of H-GlyP(OBn)-OCH(CH=CH_2)(CH_2)_7CONH-TentaGel from

HOCH(CH=CH₂)(CH₂)₇CONH-TentaGel (see above). The conversions in all steps were determined by the ³¹P NMR analysis on the basis of the signal/noise (S/N) ratio. Fmoc UV analysis was not performed unless otherwise specified. Listed below are ³¹P{¹H} NMR (243 MHz, CDCl₃) data, the signal area ratio, S/N ratio, and % convn. The ³¹P NMR spectra change was shown in Fig. 3 in the manuscript.

Fmoc-(GlyP(OBn))₂-OCH(CH=CH₂)(CH₂)₇CONH-TentaGel: δ 25

(OP(O)O), 29 (NP(O)O); ca. 1:1; 45:1; >97% convn. Weak signals which would be assigned to the rotamers were also observed. The conversion was confirmed by the UV analysis of the Fmoc removal reaction mixture obtained 5.5 mg of regin (273 nm; absorbance, 0.940).

H-(GlyP(OBn))₂-OCH(CH=CH₂)(CH₂)₇CONH-TentaGel: δ 25 (OP(O)O), 33 (NP(O)O); ca. 1:1; 78:1; >98% convn.

Fmoc-(GlyP(OBn))₃-OCH(CH=CH₂)(CH₂)₇CONH-TentaGel: δ 25 (OP(O)O), 28.5, 29 (terminal NP(O)O), 30 (internal NP(O)O); ca. 1:1:1; 40:1; >97% convn.

H-(GlyP(OBn))₃-OCH(CH=CH₂)(CH₂)₇CONH-TentaGel: δ 25 (OP(O)O), 30 (internal NP(O)O), 33 (terminal NP(O)O); ca. 1:1:1; 97:1; >98% convn.

Fmoc-(GlyP(OBn))₄-OCH(CH=CH₂)(CH₂)₇CONH-TentaGel: δ 25

(OP(O)O), 28.5, 29.5 (terminal NP(O)O), 30 (internal NP(O)O); ca. 1:1:2; 67:1; >98% convn.

 $H-(GlyP(OBn))_4$ -OCH(CH=CH₂)(CH₂)₇CONH-TentaGel: δ 25 (OP(O)O),

30 (internal NP(O)O), 33 (terminal NP(O)O); ca. 1:2:1; 104:1; >99% convn.

Fmoc-(GlyP(OBn))₅-OCH(CH=CH₂)(CH₂)₇CONH-TentaGel: δ 25.5

(OP(O)O), 28.5, 30 (terminal NP(O)O), 30.5 (internal NP(O)O); ca. 1:1:3; 60:1; >98% convn.

H-(GlyP(OBn))₅-OCH(CH=CH₂)(CH₂)₇CONH-TentaGel: δ 25 (OP(O)O),

30.5 (internal NP(O)O), 32 (terminal NP(O)O); ca. 1:3:1; 44:1; >97% convn.

Fmoc-(GlyP(OBn))₆-OCH(CH=CH₂)(CH₂)₇CONH-TentaGel: δ 25

(OP(O)O), 28, 29 (terminal NP(O)O), 31 (internal NP(O)O); ca. 1:1:4; 51:1; >98%

convn.

<u>Detachment of Fmoc-(GlyP(OBn))₆-OH/DIEA</u>: A 20-mL Young-type Schlenk was charged with

Fmoc-(GlyP(OBn))₆-OCH(CH=CH₂)(CH₂)₇CONH-TentaGel (100 mg, 26 µmol), 1:1 CH₃OH–CH₂Cl₂ (3.0 mL), and DIEA (22 µL, 126 µmol). After 15 min, 100 µL of a yellow solution of $[RuCp(P(C_6H_5)_3)(CH_3CN)_2]PF_6$ (1.7 mg, 2.6 µmol) in CH₃OH (1 mL) was added to the swelled resin-containing Schlenk, and the whole mixture was shaken for 24 h at rt. The resin was removed by filtration and washed with CH₃OH (2 mL x 5) and CH_2Cl_2 (2 mL x 5). The filtrate was concentrated to give an oil (15 mg). ¹H NMR (600 MHz, CDCl₃) δ 1.30 (m, 15H, DIEA), 2.98–3.20 (brm, 2H, CH₂PO₂), 3.24–3.50 (m, 10H, NP(O)CH₂), 4.11 (m, 1H, OCH₂CH), 4.23 (m, 2H, OCH₂CH), 4.93–5.07 (m, 12H, C₆H₅CH₂), 7.17–7.42 (m, 32H, aromatic), 7.56 (m, 2H, aromatic), 7.65 (m, 2H, aromatic), 7.77 (d, J = 6.89 Hz, 2H, aromatic); ³¹P{¹H} NMR (202 MHz, CDCl₃) δ 19 (m, OP(O)O), 29.5 (m, terminal NP(O)O), 31.5 (m, internal NP(O)O) (ca. 1:1:4 ratio); HPLC analysis (column, Develosil ODS-UG; eluent, a 9:1 CH₃OH–H₂O; flow rate, 1 mL/min; detection, 254-nm light; t_R of hexamer, 3.3 min; MALDI-TOF-MS m/z (Fmoc-(GlyP(OBn))₆-O⁻ Na⁺) obsd 1360.5, calcd 1360.3. The NMR spectra were shown in Figure S10 and the HPLC chart and the MS spectrum were shown in Figure The ³¹P NMR spectra change was shown in Fig. 3 in the manuscript. S11.

Notes and references

- R. Hirschmann, K. M. Yager, C. M. Tayor, J. Witherington, P. A. Sprengeler, B. W.
 Phillips, W. Moore and A. B. Smith III, *J. Am. Chem. Soc.*, 1997, **119**, 8177–8190.
- 2 α -Amino phosphonic acid abbreviation follows the IUPAC rule determined for

usual α -amino acids by the addition of "P" in the end of three character: e.g. GlyP for α -aminomethyl phosphonic acid, and H-GlyP(OH)-OH represents H₂NCH₂P(O)(OH)₂.

- 3 M. Kitamura, S. Tanaka and M. Yoshimura, J. Org. Chem., 2002, 67, 4975–4977.
- 4 X. Zhang and R. A. Jones, *Tetrahedron Lett.*, 1996, **37**, 3789–3790.
- 5 E. Kaiser, R. L. Colescott, C. D. Bossinger and P. I. Cook, *Anal. Biochem.*, 1970, **34**, 595–612.
- J. Meienhofer, M. Waki, P. E. Heimer, J. T. Lambros, C. R. Makofske and C.-D.
 Chang, *Int. J. Pept. Protein Res.*, 1979, 13, 35–39.

Figure S1. NMR spectra of Fmoc-GlyP(OBn)-OH (1). **a**: ¹H NMR (DMSO- d_6). **b**: ¹³C NMR (DMSO- d_6). **c**: ³¹P NMR (DMSO- d_6).

Figure S2. NMR spectra of H-GlyP(OBn)-OBn (**2**). **a**: ¹H NMR (CD₃CN). **b**: ¹³C NMR (CD₃CN). **c**: ³¹P NMR (CD₃CN).

Figure S3. ³¹P NMR spectra change in condensation of Fmoc-GlyP(OBn)-OH (1) with H-GlyP(OBn)-OBn (2) using DIC/HOAt/DIEA method in CD₃CN. a: Fmoc-GlyP(OBn)-OH. b: ¹H-GlyP(OBn)-OBn (2). c: 10 min after addition of 1.5 equivalent of DIC at the stage **a**. **d**: 30 min after addition of 1 equivalent of HOAt at the stage c. e: Addition of 1 equivalent of 2 and DIEA at the stage d. f: Addition of 2 at the stage **d**. **g**: 30 min after addition of 1 equivalent of HOAt and DIEA at the stage c.

Figure S4. NMR spectra of Fmoc-(GlyP(OBn))₂-OBn (**3**). **a**: ¹H NMR (CDCl₃). **b**: ¹³C NMR (CDCl₃). **c**: ³¹P NMR (CDCl₃).

Figure S5. ³¹P NMR spectra change in Fmoc removal from Fmoc-(GlyP(OBn))₂-OBn (**3**) using piperidine in CDCl₃. **a**: Fmoc-(GlyP(OBn))₂-OBn (**3**). **b**: 1 h after addition of piperidine.

Figure S6. NMR spectra of H-(GlyP(OBn))₂-OBn. **a**: ¹H NMR (CDCl₃). **b**: ¹³C NMR (CDCl₃). **c**: ³¹P NMR (CDCl₃).

$$\begin{split} & \operatorname{Fmoc-(GlyP(OBn))_2-OCH(CH=CH_2)(CH_2)_7CONHCH_2CH_2C_6H_5~(\textbf{7a}). \quad \textbf{a: $^{1}H NMR$} \\ & (CDCl_3). \ \textbf{b: $^{1}SC NMR (CDCl_3). $ \ \textbf{c: $^{3}P NMR (CDCl_3). $} \end{split}$$

Fmoc-(GlyP(OBn))₂-OCH(CH=CH₂)(CH₂)₇CONHCH₂CH₂C₆H₅ (**7a**) using [RuCp $(P(C_6H_5)_3)(CH_3CN)_2$]PF₆ in CD₃OD. **a**: **7a**. **b**: 3 h after addition of CpRu complex to the stage **a** in the presence of DIEA. **c**: 45 h after the stage **b**. **d**: 3 h after addition of CpRu complex to the stage **a** in the absence of DIEA. **e**: 5 h after the stage **d**. **f**: 45 h after the stage **d**.

Figure S9. NMR spectra of Fmoc-(GlyP(OBn))₂-OH/DIEA (**7c**). **a**: ¹H NMR (CDCl₃). **b**: ¹³C NMR (CDCl₃). **c**: ³¹P NMR (CDCl₃).

Figure S10. NMR spectra of crude $\text{Fmoc-}(\text{GlyP}(\text{OBn}))_6$ -OH/DIEA detached from TentaGel. **a**: ¹H NMR (CDCl₃). **b**: ¹³C NMR (CDCl₃). **c**: ³¹P NMR (CDCl₃).

Figure S11. HPLC analysis (a) and MALDI-TOF-MS spectrum (b) of crude $Fmoc-(GlyP(OBn))_6$ -OH/DIEA detached from TentaGel.