Nondestructive luminescence intensity readout of a photochromic lanthanide(III) complex

Tetsuya Nakagawa, Yasuchika Hasegawa* and Tsuyoshi Kawai*

Graduate School of Materials Science, Nara Institute of Science and Technology, Takayama, Ikoma,

Nara 630-0192, Japan.

E-mail: hasegawa@ms.naist.jp, tkawai@ms.naist.jp

Electronic Supplementary Information

Apparatus. ¹H NMR spectrum was recorded on a JEOL AL-300 spectrometer (300 MHz). ¹H NMR chemical shifts were determined using tetramethylsilane (TMS) as an internal standard. IR spectrum was recorded on a JASCO FT/IR-420 spectrometer. ESI-Mass spectrum was recorded on a JEOL JMS-700 MStation.

Synthesis of Tris(hexafluoroacetylacetonato)[1,2-bis(2-methyl-1-benzothiophene-1,1-dioxide-3-yl) perfluorocyclopentene]europium(III), Eu-BTFO4 Eu(hfa)₃(H₂O)₂⁻¹ (60 mg, 0.11 mmol) and 1,2-bis(2-methyl-1-benzothiophene-1,1-dioxide-3-yl) perfluorocyclopentene : BTFO4² (90 mg, 0.11 mmol) were dissolved in methanol (10 ml) / chloroform (5 ml) solution. The solution was then refluxed and stirred. After 1 day of stirring, the reaction mixture was evaporated. The reaction mixture was washed with chloroform and hot hexane several times to afford Eu-BTFO4 (80 mg, yield: 56 %). ¹H NMR (300 MHz, CDCl₃) δ = 2.13 (s, 3H), 2.30 (s, 3H), 7.22 (d, 2H), 7.48 (m, 2H), 7.62 (m, 2H), 7.80 (m, 2H). IR (ATR)= 3300 w, 2929 m, 2852 m, 1648 s, 1535 s, 1461 s, 1251 s, 1203 s, 1139 s cm-1. ESI-Mass (m/z) [M]⁺ Calcd. for C₃₃H₁₆EuF₁₈O₈S₂ 1098.92; Found, 1098.92.

Optical Measurements. Absorption spectra of Eu-BTFO4 in ethyl acetate $(1.6 \times 10^{-5} \text{ M})$ were measured on a JASCO V-550. Emission spectra of Eu-BTFO4 in ethyl acetate (1.6 x 10⁻⁵ M) were measured on a JASCO FP-6500 spectrophotometer. Photoirradiation was carried out using an exciting light source. UV light (313 nm) was obtained by passing the light through a monochromater (Shimazu, SPG120-S). Visible light ($\lambda > 420$ nm) was obtained by passing the light through a colored glass filter (SIGMA KOKI, SCF-50S-42L). The solution of Eu-BTFO4-C in ethyl acetate was obtained by reacting Eu(hfa)₃(H₂O)₂ with one equivalent of BTFO4-C which was separated from the colored solution by HPLC. The intrinsic emission quantum efficiencies of Eu-BTFO4-O and Eu-BTFO4-C in ethyl acetate were evaluated by utilizing Eu(hfa)₃(BIHEPO) as the standard of $\Phi_{Ln} = 0.60$.³ The emission lifetimes of Eu-BTFO4-O and Eu-BTFO4-C in ethyl acetate were determined using a Q-switched Nd: YAG laser (Spectra Physics, fwhm = 5 ns, λ = 1064 nm) and a photomultiplier (Hamamatsu Photonics R7400U-03). Samples were excited by the third harmonic (355 nm) of the fundamental nanosecond pulse. Emission decays of Eu(III) ion were monitored with a digital oscilloscope (Tektronix, TDS3052) synchronized to single-pulse excitation. The emission bands of Eu(III) ion are assigned to the electronic transitions, ${}^{5}D_{0}$ $-{}^{7}F_{J}$ (J = 0, 1, 2, 3 and 4). These transition processes are based on the single emitting level, ${}^{5}D_{0}$ There is no wavelength dependence on the emission life time, because these transitions are occurred from single $^{5}D_{0}$ state.

Fig. S1. ¹H NMR spectrum of **Eu-BTFO4-O**.

Fig. S2. IR spectra of Eu-BTFO4-O.

Fig. S3. ESI-Mass spectra of Eu-BTFO4-O. (a) measured. (b) calcd.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Fig. S4. Absorption spectrum of Eu-BTFO4-O in ethyl acetate.

Fig. S5. (a) Absorption spectra of **Eu-BTFO4-C** in ethyl acetate upon visible light irradiation ($\lambda = 526$ nm). Each trace was measured for 0 s, 5 s, 10 s, 15 s, 20 s, 25 s and 30 s. (b) Absorbance at 398 nm of **Eu-BTFO4-C** plotted versus irradiation time.

References

- 1 Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai and S. Yanagida, J. Phys. Chem. A, 2003, 107, 1697.
- 2 Y. C. Jeong, J. P. Han, Y. Kim, E. Kim, S. L. Yang and K. H. Ahn, *Tetrahedron*, 2007, 63, 3173-3182.
- 3 K. Nakamura , Y. Hasegawa , H. Kawai , N. Yasuda , Y. Tsukahara and Y. Wada, *Thin. Solid. Films*, 2008, **516**, 2376-2381.