Primary amine-metal Lewis acid bifunctional catalysts: the

 application to asymmetric direct aldol reactionZhenghu Xu, Philias Daka, Hong Wang*
Miami University, Department of Chemistry and biochemistry, Oxford, OH 45056

General 2
Synthesis of the ligands 2-6
General procedure of the enantioselective aldol reaction 7-15
NMR spectra for the aldol adducts and ligands 16-55
HPLC spectra for the aldol products 56-85
References 86

General: All NMR spectra were recorded on Bruker-500 or 300 MHz spectrometer. Optical rotation was measured on Rudolph Research Autopol III. Ee values were measured on chiral HPLC analysis using Gold Nouveau Chromatography system and the data was recorded on Shimadzu C-R6A Chromatopac integrator. Chiral AD-H and As-H column were purchased from Daicel Chemical Industries. Routine monitoring of the reaction was performed by TLC using precoated silica gel plates. Cyclohexanone was ACS reagent pure. THF was dried on Innovative Technology solvent purification system. All the other reagents were purchased from Acros or Aldrich and used directly.

Synthesis of the ligands

To a stirred solution of N -Boc-L-valine $(2.17 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added pyridine-2,6-diamine ($10 \mathrm{mmol}, 1.09 \mathrm{~g}$), DCC ($2.3 \mathrm{~g}, 10 \mathrm{mmol}$), HOBt (1.5 g , $10 \mathrm{mmol})$ and DIPEA ($1.25 \mathrm{~mL}, 10 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. This reaction mixture was stirred at room temperature for 24 h . The solution was filtered and washed with aqueous NaHCO_{3}. The organic phase was evaporated under reduced pressure and purified by column chromatography (silica gel) to give the pure product $\mathbf{A}(1.43 \mathrm{~g}, 46 \%) .[\alpha]_{\mathrm{D}}{ }^{25}=$ $-10.0 \quad\left(\mathrm{c}=0.24, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 2.22-2.28(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{br}$, 2H), $5.12(\mathrm{~m}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.12(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta 24.61,27.59,30.69,42.61,57.08$, 73.96, 121.97, 122.81, 129.38, 133.17, 143.26, 148.25, 214.79; MS (ESI) 331.2
$(\mathrm{M}+\mathrm{Na})^{+}$; HRMS exact mass calcd for $\left(\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}_{3}+\mathrm{Na}\right)$ requires m / z 331.1746, found $\mathrm{m} / \mathrm{z} 331.1750$.

Product A ($0.92 \mathrm{~g}, 3 \mathrm{mmol}$) was dissolved in THF (30 mL). The solution was cooled down to $0{ }^{\circ} \mathrm{C}$ and TEA ($1 \mathrm{~mL}, 6.6 \mathrm{mmol}$) was added. Then to this solution Benzoyl Chloride ($0.38 \mathrm{~mL}, 3.3 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$. After the solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , the resulting solution was stirred at room temperature overnight. The solid was filtered off and solvent removed, the residue was purified through column chromatography on silica gel (eluent: Hexane Ethyl Acetate $=3: 1$) to give the product ($1.11 \mathrm{~g}, 90 \%$).

The obtained N-Boc compound (1.11g) was dissolved into DCM (5 mL) and TFA $(5 \mathrm{~mL})$ and stirred at rt for 4 h . The reaction mixtue was evaporated and dissolved in Ethyl Acetate. 1 N NaOH solution was used to tune pH to 9 and The mixture was extated with Ethyl Acetate. Then the solvent was evaporated to dryness to get the pure product $1 \mathrm{a}(0.82 \mathrm{~g}, 97 \%)$.

(S)-N-(6-(2-amino-3-methylbutanamido)pyridin-2-yl)benzamide (1a) $\quad[\alpha]_{\mathrm{D}}{ }^{25}=$ $+6.5\left(\mathrm{c}=0.15, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 0.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.98(\mathrm{~d}, ~ J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.15-2.17(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.61(\mathrm{~m}, 3 \mathrm{H})$, 7.87-7.89 (m, 3H), 8.00-8.02 (m, 2H), $10.56(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{~Hz}, \mathrm{DMSO}\right) \delta$ 16.24, 19.11, 30.67, 60.16, 109.51, 109.86, 127.07, 128.49, 132.01, 133.87, 140.40, 149.05, 149.77, 165.68, 172.02. MS (ESI) $313.2(\mathrm{M}+\mathrm{H})^{+}$; HRMS exact mass calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}+\mathrm{H}\right)$ requires $\mathrm{m} / \mathrm{z} 313.1664$, found $\mathrm{m} / \mathrm{z} 313.1653$.

1b
(S)-N-(6-acetamidopyridin-2-yl)-2-amino-3-methylbutanamide(1b) $\quad[\alpha]_{\mathrm{D}}{ }^{25}=$ $+37.0\left(\mathrm{c}=0.12, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 0.78(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 0.92 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.05-2.10(\mathrm{~m}, 4 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.75(\mathrm{~m}, 3 \mathrm{H}), 10.29$ (s, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{~Hz}, \mathrm{DMSO}$) $\delta 16.94,19.90,24.36,31.39,60.49,108.20,109.17$, 140.77, 149.89, 151.12, 169.69, 174.42. MS (ESI) 248.9 (M-H) ; HRMS exact mass calcd for $\left(\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}+\mathrm{H}\right)$ requires $\mathrm{m} / \mathrm{z} 251.1508$, found $\mathrm{m} / \mathrm{z} 251.1500$.

(S)-2-amino-3-methyl-N-(6-pivalamidopyridin-2-yl)butanamide (1c) $\quad[\alpha]_{\mathrm{D}}{ }^{25}=$ $+3.9\left(\mathrm{c}=0.21, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.04(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.09(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{~Hz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 15.89,17.74,36.15$, $36.17,39.43,56.07,109.08,109.23,139.96,149.44,150.53,169.23,178.31 . \operatorname{MS}$ (ESI) $293.2(\mathrm{M}+\mathrm{H})^{+}$; HRMS exact mass calcd for $\left(\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}+\mathrm{H}\right)$ requires m / z 293.1977 found $m / z 293.1976$.

(S)-N-(6-acetamidopyridin-2-yl)-2-amino-3-phenylpropanamide (3) $[\alpha]_{\mathrm{D}}{ }^{25}=-8.8$ ($\mathrm{c}=0.12, \mathrm{CHCl}_{3}$); ${ }^{\mathrm{I}} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.71$ (dd, $J=9.0$, $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, \mathrm{J}=4.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.27(\mathrm{~m}, 5 \mathrm{H})$, 7.75-7.77 (m, 3H), $10.29(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{~Hz}, \mathrm{DMSO}$) $\delta 24.36,40.51,56.86$, $108.20,109.26,126.75,128.69,129.76,138.84,140.79,149.90,151.12,169.71$, 174.12. MS (ESI) $321.2(\mathrm{M}+\mathrm{Na})^{+}$; HRMS exact mass calcd for $\left(\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}+\mathrm{H}\right)$ requires $\mathrm{m} / \mathrm{z} 299.1508$, found $\mathrm{m} / \mathrm{z} 299.1500$.

To a stirred solution of N -Cbz-L-valine $(2.51 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added pyridine-2,6-diamine ($1.09 \mathrm{~g}, 10 \mathrm{mmol}$), DCC ($2.3 \mathrm{~g}, 10 \mathrm{mmol}$), $\mathrm{HOBt}(1.5 \mathrm{~g}$, $10 \mathrm{mmol})$ and DIPEA $(1.25 \mathrm{~mL}, 10 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. This reaction mixture was stirred at room temperature for 24 h . The solution was filtered and washed with aqueous NaHCO_{3}. The organic phase was evaporated under reduced pressure and purified by column chromatography (silica gel) to give the pure product B (1.7 g, 49\%).

N-Boc-L-Phenylalanine ($1.0 \mathrm{~g}, 2.9 \mathrm{mmol}$) was dissolved in THF (20 mL). The solution was cooled down to $0{ }^{\circ} \mathrm{C}$. TEA ($0.6 \mathrm{~mL}, 4.4 \mathrm{mmol}$) was added. Then to this solution ethylchloroformate ($0.45 \mathrm{~mL}, 4.4 \mathrm{mmol}$) was added dropwise for 15 min . After the solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 45 min , amine $\mathbf{B}(1.0 \mathrm{~g}, 2.9 \mathrm{mmol})$ was added slowly for 10 minutes in 10 mL THF solution at $0^{\circ} \mathrm{C}$. The resulting solution was stirred at room temperature for 16 h , and then refluxed for 3 h . After cooling down to room temperature, the solid was filtered off and solvent removed. The oily product was then dissolved in DCM . The mixture was washed with aqueous NaHCO_{3} and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified through column chromatography on silica gel (eluent: Hexane: Ethyl Acetate $=2: 1$) to give the product (0.96 g , yield: 56%). ${ }^{1}$

The obtained compound $(0.96 \mathrm{~g}), 10 \% \mathrm{Pd} / \mathrm{C}(200 \mathrm{mg})$ and methanol (30 mL) were mixed in a 100 mL flask. After stirring under hydrogen (1 atm) for 4 h , the solution was filtered on Celite to remove the Pd / C, and then evaporated to dryness to give the products $2(0.74 \mathrm{~g}$, yield: 99%).

$[\alpha]_{\mathrm{D}}{ }^{25}=-6.2\left(\mathrm{c}=0.08, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.15(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.28(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 3.05-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.69(\mathrm{~m}$, $1 \mathrm{H}), 4.52(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~m}, 1 \mathrm{H}), ~ 7.24-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.63-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.93(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(125 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta 16.91,19.45,26.87,27.88,28.25,28.84,63.10,78.70$, $109.25,110.01,127.00,128.55,128.68,129.20,129.31,129.72,148.28,149.05 x$, 170.24, 174.74. MS(ESI) $456.3(\mathrm{M}+\mathrm{H})^{+}$; HRMS exact mass calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{4}+\mathrm{H}\right)$ requires $\mathrm{m} / \mathrm{z} 456.2611$, found $\mathrm{m} / \mathrm{z} 456.2604$.

Procedure as synthesis of compound $\mathbf{1}$.

(2S,2'S)-N,N'-(pyridine-2,6-diyl)bis(2-amino-3-phenylpropanamide) (4) $[\alpha]_{\mathrm{D}}{ }^{25}=$ $-13.3\left(\mathrm{c}=0.15, \mathrm{CHCl}_{3}\right) ; \quad{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 2.89(\mathrm{dd}, J=7.5,13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.14(\mathrm{dd}, \mathrm{J}=5.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.31(\mathrm{~m}, 10 \mathrm{H})$, 7.75-7.85 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{~Hz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 45.03,61.73,112.82,124.01$, 132.78, 134.01, 135.14, 143.62, 155.09, 179.18. MS (ESI) $404.3(\mathrm{M}+\mathrm{H})^{+}$; HRMS
exact mass calcd for $\left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2}+\mathrm{H}\right)$ requires $\mathrm{m} / \mathrm{z} 404.2086$, found $\mathrm{m} / \mathrm{z} 404.2079$.

General procedure of the enantioselective aldol reaction: A mixture of CuCl_{2} ($5.4 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$), $\mathrm{AgSbF}_{6}(27.5 \mathrm{mg}, 0.08 \mathrm{mmol}, 40 \mathrm{~mol} \%$), ligand 1 c ($11.7 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and cyclohexanone (1 mL) was stirred at room temperature for 4 h . And then the aldehyde (0.2 mmol) was added. The resulting mixture was stirred for 12-48 h. After the reaction was completed (monitered by TLC), the reaction mixture was treated with saturated ammonium chloride solution, and extracted with ethyl acetate. After removal of the solvent, mixture ${ }^{1} \mathrm{H}$ NMR was taken to determine diastereoselectivity. The mixture was purified through column chromatography on silica gel (eluent: mixture of Hexane and ethyl acetate) to give the pure products. All aldol products are known compounds and their spectroscopic data are identical with those reported. The ee values were determined by chiral HPLC analysis. The HPLC conditions and retention time were collected in Table 1.

Table 1 HPLC Conditions and retention time

Compound	$\begin{gathered} \text { Eluent } \\ \text { i-PrOH/Hexane } \end{gathered}$	Flow rate (mL/min)	Column	Wave length (nm)	$\begin{gathered} \text { T(major) } \\ (\text { min) } \end{gathered}$	$\begin{gathered} \mathrm{T}(\text { minor }) \\ (\text { min }) \end{gathered}$
	20/80	1.0	AD-H	254	16.8	13.1
	20/80	1.0	AD-H	254	17.9	22.4
	20/80	0.8	AD-H	254	19.2	20.8
	20/80	0.9	AD-H	254	26.4	21.2
	20/80	1.0	AS-H	254	15.6	22.3
	10/90	1.0	AS-H	220	15.6	19.3
	10/90	1.0	AS-H	220	20.8	18.3
	10/90	1.0	AS-H	220	22.6	19.7
	5/95	0.5	AS-H	220	34.1	36.8
	10/90	0.7	AS-H	220	26.0	22.4
	10/90	0.7	AS-H	220	15.0	18.4
	5/95	0.7	AD-H	254	87.8	85.1

(20/80

(S)-2-((R)-hydroxy(4-nitrophenyl)methyl)cyclohexanone (5a) ${ }^{2}$ yield 90%; dr $>30 / 1$; Ee $95 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=+12.0\left(\mathrm{c}=0.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 1.34-1.82 (m, 5H), 2.07 (m, 1H), 2.33-2.35 (m, 1H), 2.45-2.46(m, 1H), 2.48-2.56 (m, $1 \mathrm{H}), 4.04(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{dd}, J=3 \mathrm{~Hz}, 8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.18(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta 24.70,27.63,30.76,42.68,57.20,74.02$, 123.57, 127.87, 147.59, 148.37, 214.70.

(S)-2-((R)-hydroxy(3-nitrophenyl)methyl)cyclohexanone (5b) ${ }^{3}$ yield 90\%; dr 20/1;

Ee $95 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=+37.2\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right) . \quad{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$1.35-1.39(\mathrm{~m}, ~ 1 \mathrm{H}), 1.54-1.67(\mathrm{~m}, 4 \mathrm{H}), 2.08-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.38(\mathrm{~m}, 1 \mathrm{H})$, 2.46-2.49 (m, 1H), 2.61(m, 1H), $4.14(\mathrm{br}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.12-8.19(\mathrm{~m}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta 24.61,27.59,30.69,42.61,57.08,73.96,121.97,122.81,129.26$, 133.17, 143.26, 148.25, 214.79.

(S)-2-((R)-hydroxy(2-nitrophenyl)methyl)cyclohexanone (5c) ${ }^{3}$ yield 82\% ; dr $>30 / 1$; Ee $94 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=+29.1\left(\mathrm{c}=0.31, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.55-1.84(\mathrm{~m}, 5 \mathrm{H}), 2.05-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.44(\mathrm{~m}, 1 \mathrm{H})$, 2.72-2.74 (m, 1H), $4.15(\mathrm{br}, 1 \mathrm{H}), 5.42(\mathrm{~d}, ~ J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{~m}$, $1 \mathrm{H}), 7.81(\mathrm{~m}, 1 \mathrm{H}) .7 .83(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta 24.96,27.73,31.09$, $42.80,57.28,69.76,124.06,128.37,128.98,133.04,136.60,148.72,214.91$

5d
4-((R)-hydroxy((S)-2-oxocyclohexyl)methyl)benzonitrile (5d) ${ }^{3}$ yield 93\%; dr 12/1; Ee $92 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=+26.2\left(\mathrm{c}=0.41, \quad \mathrm{CHCl}_{3}\right) \quad{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.34-1.85$ (m, 5H), 2.10-2.14 (m, 1H), 2.36-2.39 (m, 1H), 2.49 (m, 1H), 2.51-2.58 (m, 1H), 4.07 (s, 1H), $4.85(\mathrm{dd}, J=3 \mathrm{~Hz}, 8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta 24.68,27.64,30.73,42.66,57.14,74.20,111.69$, 119.80, 127.78, 132.17, 146.41, 214.76.

methyl 4-((R)-hydroxy((S)-2-oxocyclohexyl)methyl)benzoate (5e) ${ }^{\mathbf{3}}$ yield 89\%; dr $9 / 1 ;$ Ee $94 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=+14.6\left(\mathrm{c}=0.27, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.29-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.79(\mathrm{~m}, 4 \mathrm{H}), \quad 2.06-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.37(\mathrm{~m}, 1 \mathrm{H})$, 2.45-2.46 (m, 1H), 2.48-2.58 (m, 1H), $3.90(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta$ 24.64, 27.66, 30.71, 42.62, 52.04, 57.24, 74.32, 126.97, 129.62, 129.66, 146.05, 166.81, 215.04.

(S)-2-((R)-(2,6-dichlorophenyl)(hydroxy)methyl)cyclohexanone (5f) ${ }^{\mathbf{5}}$ yield 98\%; dr $12 / 1$; Ee $92 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=-41.5\left(\mathrm{c}=0.31, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 1.36-1.40 $(\mathrm{m}, 1 \mathrm{H}), 1.52-1.85(\mathrm{~m}, 4 \mathrm{H}), 2.08-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.54(\mathrm{~m}, 2 \mathrm{H})$, 3.49-3.52 (m, 1H), $3.70(\mathrm{br}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.32-7.33 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta 24.69,27.63,29.86,42.44,53.65$, 70.57, 129.34, 129.75, 134.73, 135.69, 214.39.

(S)-2-((R)-(4-chlorophenyl)(hydroxy)methyl)cyclohexanone (5g) ${ }^{\mathbf{3}}$ yield 73%; dr 6/1; Ee $88 \% ;[\alpha]_{D}{ }^{25}=+22.2\left(\mathrm{c}=0.20, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.29-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.81(\mathrm{~m}, 4 \mathrm{H}), 2.09-2.58(\mathrm{~m}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{~Hz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 24.72,27.72,30.76,42.68,57.38,74.14,128.39,128.54,138.59,139.50$, 215.29.

(S)-2-((R)-(4-bromophenyl)(hydroxy)methyl)cyclohexanone (5h) ${ }^{\mathbf{3}}$ yield 60\%; dr $6 / 1 ; \operatorname{Ee} 94 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=+20.2\left(\mathrm{c}=0.30, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.27-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.78(\mathrm{~m}, 4 \mathrm{H}), 2.33-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.08(\mathrm{~m}, 1 \mathrm{H})$, 2.33-2.35 (m, 1H), 2.45-2.54 (m, 2H), $3.98(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}$, $J=1.5,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=2.0,6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta$ 24.68, 27.69, 30.72, 42.63, 57.30, 74.15, 121.68, 128.71, 131.45, 140.00, 215.21.

$5 i$
(S)-2-((R)-hydroxy(phenyl)methyl)cyclohexanone (5i) ${ }^{\mathbf{3}}$ yield 76\%; dr 10/1; Ee $86 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=+20.9\left(\mathrm{c}=0.31, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.28-1.31(\mathrm{~m}$, $1 \mathrm{H}), 1.52-1.77(\mathrm{~m}, 4 \mathrm{H}), 2.35-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.36(\mathrm{~m}, 1 \mathrm{H})$, 2.46-2.47 (m, 1H), 2.49-2.62 (m, 1H), $3.94(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.2-7.34$ $(\mathrm{m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta 24.68,27.77,30.81,42.63,57.40,74.71,126.99$, 127.85, 128.33, 140.92, 215.48.

(S)-2-((R)-hydroxy(naphthalen-2-yl)methyl)cyclohexanone (5j) ${ }^{\mathbf{5}}$ yield 71%; dr $12 / 1 ; \mathrm{Ee} 90 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=+7.3\left(\mathrm{c}=0.30, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.32-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.76(\mathrm{~m}, 4 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~m}, 1 \mathrm{H})$, $2.72(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.62(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{br}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.49(\mathrm{~m}$, $3 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.85(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta 24.71,27.80$, $30.92,42.71,57.41,74.92,124.68,125.95,126.15,126.26,127.70,127.99,128.28$,

(S)-2-((R)-hydroxy(p-tolyl)methyl)cyclohexanone (5k) ${ }^{6}$ yield 75%; dr $8 / 1$; Ee $83 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=+9.3\left(\mathrm{c}=0.40, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26-1.29(\mathrm{~m}$, $1 \mathrm{H}), 1.52-1.78(\mathrm{~m}, 4 \mathrm{H}), 2.05-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.45(\mathrm{~m}, 4 \mathrm{H}), 2.46-2.48(\mathrm{~m}, 1 \mathrm{H})$, $2.60(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{br}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta 21.11,24.69,27.79,30.84,42.64$, 57.42, 74.50, 125.66, 126.89, 129.01, 137.50, 215.56.

(S)-2-((R)-hydroxy(4-nitrophenyl)methyl)cyclopentanone (6a) ${ }^{2}$ yield 66\%; dr 3/1; Ee $86 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=-60.0\left(\mathrm{c}=0.40, \mathrm{CHCl}_{3}\right) \quad{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.60-1.79$ $(\mathrm{m}, 3 \mathrm{H}), 1.97-2.49(\mathrm{~m}, 5 \mathrm{H}), 2.99(\mathrm{br}, 0.18 \mathrm{H},-\mathrm{OH}, \mathrm{syn}), 4.77$ (br, 1H, -OH, anti), 4.86 (d, $J=8.5 \mathrm{~Hz}, 0.81 \mathrm{H},-\mathrm{CHOH}$, anti), 5.41 (s, $0.21 \mathrm{H},-\mathrm{CHOH}, \mathrm{syn}), 7.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 8.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$.

(S)-3-((R)-hydroxy(4-nitrophenyl)methyl)-tetrahydropyran-4-one (6b) ${ }^{4}$ yield 97%; dr 10/1; Ee $87 \% ;[\alpha]_{D}^{25}=1.7\left(\mathrm{c}=0.20, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 2.50-2.54 (m, 1H), 2.64-2.66 (m, 1H), 2.87-2.90(m, 1H), 3.42-3.47 (m, 1H), 3.69-3.75 (m, 2H), 4.16-4.19 (m, 1H), $4.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 8.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta 42.81,57.64,68.33$, 69.75, 71.30, 123.81, 127.46, 147.46, 147.76, 209.13.

(S)-3-((R)-hydroxy(4-nitrophenyl)methyl)-tetrahydrothiopyran-4-one (6c) ${ }^{4}$ yield 82%; dr 22/1; Ee 94\%; [$\alpha]_{\mathrm{D}}{ }^{25}=15.0\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right) \quad{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.54-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.95-3.00(\mathrm{~m}, 3 \mathrm{H}), 3.69$ (br, 1H), $5.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.22-8.24(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta 30.80,32.80,44.70,59.46,73.15,123.79,126.72,127.81$, 147.74, 211.14.

(S)-3-((R)-hydroxy(2-nitrophenyl)methyl)-tetrahydrothiopyran-4-one (6d) ${ }^{4}$ yield 76%; dr 25/1 ; Ee 94\% ; [$\alpha]_{\mathrm{D}}{ }^{25}=-30.0$ (c= 0.37, CHCl_{3}) ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.60-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.94-3.15(\mathrm{~m}, 3 \mathrm{H}), 3.16-3.18(\mathrm{~m}, 1 \mathrm{H})$, 3.90 (br, 1H), 5.55 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66((\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta$ $30.78,33.36,45.16,59.55,69.37,124.39,128.85,129.03,133.48,136.00,148.59$, 211.46.

4-((R)-hydroxy((S)-4-oxo-tetrahydro-2H-thiopyran-3-yl)methyl)benzonitrile(6e) ${ }^{4}$ yield 86%; dr 46/1; Ee 91\%; [$\alpha]_{\mathrm{D}}{ }^{25}=+7.73\left(\mathrm{c}=0.42, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 2.47-2.52 (m, 1H), 2.62-2.66 (m, 1H), 2.76-2.85 (m, 2H), 2.95-3.00 (m, 3H), 3.65 (br, 1H), 4.99 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.66$ (d, $J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta 30.82,32.82,44.75,59.44,73.42,112.17,118.51$, 127.68, 132.44, 145.68, 211.29.

(S)-3-((R)-hydroxy(naphthalen-2-yl)methyl)-tetrahydrothiopyran-4-one(6f ${ }^{7}$ yield 57%; dr $34 / 1$; Ee $87 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=+23.4\left(\mathrm{c}=0.12, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 2.53-2.56 (m, 2H), 2.82-2.99 (m, 4H), 3.11-3.16 (m, 1H), $5.18(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.51-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.86-7.89(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 Hz , $\left.\mathrm{CDCl}_{3}\right) \delta 30.89,32.99,44.54,59.63,74.03,124.26,126.24,126.36,127.72,127.99$, 128.72, 133.11, 133.32, 137.58, 211.83.

(S)-3-((R)-hydroxy(phenyl)methyl)-tetrahydrothiopyran-4-one(5r) ${ }^{4}$ yield 68\%; dr 25/1; Ee 94\%; $[\alpha]_{\mathrm{D}}{ }^{25}=+21.0\left(\mathrm{c}=0.30, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 2.54-2.62 (m, 2H), 2.79-2.82 (m, 3H), 2.98-3.03 (m, 3H), $4.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.34-7.38 (m, 5H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta 30.88,32.91,44.46,59.67,73.82$, 126.91, 128.32, 128.65, 140.24, 211.82, 211.82 .

(R)-4-hydroxy-4-(4-nitrophenyl)butan-2-one (5s) ${ }^{2}$ yield 84%; Ee 72%; $[\alpha]_{\mathrm{D}}{ }^{25}=$ $35.2\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right) \quad{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{~m}, 2 \mathrm{H}), 3.65$ $(\mathrm{s}, 1 \mathrm{H}), 5.23(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta 30.70,51.52,68.91,123.75,126.43,147.10,150.06,208.44$.

NMR Copy of the aldol products and ligands

xzh2-123-B-C13

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material（ESI）for Chemical Communications This journal is（c）The Royal Society of Chemistry 2009

1 N
K

思䬄国
$\frac{0.93}{}$

0.96
$\frac{1.85}{1.45}$

－

NAME
EXPNO
PROCNO PROCNO Date＿ Time
INSTRUM PROBHD PROBHD
PULPROG PULPROG
TD
SOLVENT
NS
DS
SWH
FIDRES
AQ
RG

4
2 Hz
2 Hz
0.458222 Hz

1024
1024
16.650 usec 29.50 usec
2.00000000 sec
0.03000000 sec

CHANNEL f 1
$11==$
12.20 usec
-3.00 dB
190.45114136 W
125.7703643 MHz

$=====$	CHANNEL $\mathrm{f} 2======$
CPDPRG2	waltz16
NUC2	1 H
PCPD2	100.00 usec
PL2	0.00 dB
PL12	23.48 dB
PL13	25.00 dB
PL2W	15.07131863 W
PL12W	0.06763186 W
PL13W	0.04765970 W
SFO2	500.1320005 MHz
SI	32768
SF	125.7577945 MHz
WDW	no
SSB	0
LB	0.00 Hz
GB	0
PC	1.40

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$
Exact Mass: 308.18
Molecular Weight: 308.38
m/z: 308.18 (100.0\%), 309.19 (16.6\%), 310.19 (2.2\%), 309.18 (1.5\%)
Elemental Analysis: C, 58.42; H, 7.84; N, 18.17; O, 15.56

ESI: M+Na

Display Report

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

HRMS

1a

1a
Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$
Exact Mass: 312.16
Molecular Weight: 312.37
m/z: 312.16 (100.0\%), 313.16 (20.2\%), 314.17 (1.6\%)
Elemental Analysis: C, 65.37; H, 6.45; N, 17.94; O, 10.24
ESI: $[\mathrm{M}+1] 313.2$

Display Report

Analysis Info

HRMS

Calculated mass H+313.1664
 Measured mass 313.1653
 3.5 ppm

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

1b
Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$

Exact Mass: 250.14

Molecular Weight: 250.3
m/z: 250.14 (100.0\%), 251.15 (13.3\%), 251.14 (1.5\%), 252.15 (1.2\%)
Elemental Analysis: C, 57.58; H, 7.25; N, 22.38; O, 12.78

ESI: [M-H] 248.9

Display Report

HRMS

Calculated mass $\mathrm{H}+251.1508$

Measured mass 251.1500

3.18 ppm

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}$

Exact Mass: 292.19
Molecular Weight: 292.38
m/z: 292.19 (100.0\%), 293.19 (17.8\%), 294.20 (1.3\%)
Elemental Analysis: C, 61.62; H, 8.27; N, 19.16; O, 10.94

ESI [M+H] 293.2

HRMS

Calculated mass H+293.1977
Measured mass 293.1976
0.3 ppm

Copy (2) of O041409G_090414115914\#1-10 RT: 0.01-0.22 AV: 10 NL: 1.61E7
T: FTMS + p ESI Full ms [100.00-1000.00]

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$
Exact Mass: 298.14
Molecular Weight: 298.34
m/z: 298.14 (100.0\%), 299.15 (17.6\%), 300.15
(1.9\%), 299.14 (1.5\%)

Elemental Analysis: C, 64.41; H, 6.08; N, 18.78;
O, 10.73

ESI [M+H] 299.2 $\quad[\mathrm{M}+\mathrm{Na}] \mathbf{3 2 1 . 2}$

Analysis Info						
Analysis Name	XZH-1190.d		Acquisition Date Operator Instrument	04/01/09 11:28:35 Administrator Esquire-LC_00137		
Method	XQ Default.m					
Sample Name	XZH3-119					
Comment	Diluted 1/100					
Acquisition Parameter Alternatinglon Polarity n/a						
Ion Source Type	ESI	Ion Polarity	Positive	Alternating Ion Polarity	n/a	
Mass Range Mode	Std/Normal	Scan Begin	$50.00 \mathrm{~m} / \mathrm{z}$	Scan End	$700.00 \mathrm{~m} / \mathrm{z}$	
Capillary Exit	82.2 Volt	Skim 1	15.2 Volt	Trap Drive	30.7	
Accumulation Time	$768 \mu \mathrm{~s}$	Averages	20 Spectra	Auto MS/MS	Off	
Intens.$\times 10^{6}$						
321.2						
4.						
3.						
		299.2				
$2-$						
1.						
118.0						
10		300	400	500	600	m/z
-+MS						

HRMS
Calculated mass H+299.1508
Measured mass 299.1500
2.7 ppm

Copy (2) of O041409D_090414115914 \#1-10 RT: 0.00-0.22 AV: 10 NL: 3.15E8
T: FTMS + p ESI Full ms [100.00-1000.00]

xzh3-107--C13-2

200	180	160	140	120	100	80	60	40	20	0	ppm

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{4}$
Exact Mass: 455.25
Molecular Weight: 455.55
m/z: 455.25 (100.0\%), 456.26 (26.5\%), 457.26 (4.2\%), 456.25 (1.8\%)
Elemental Analysis: C, 63.28; H, 7.30; N, 15.37; O, 14.05

ESI : $\quad[\mathrm{M}+\mathrm{H}] 456.3$

HRMS

Calculated mass $\mathrm{H}+456.2611$
Measured mass 456.2604
1.5 ppm

Copy (2) of O041409E_090414115914 \#1-10 RT: 0.00-0.22 AV: 10 NL: 4.01E7
T: FTMS + p ESI Full ms [100.00-1000.00]

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2}$
Exact Mass: 403.2
Molecular Weight: 403.48
m/z: 403.20 (100.0\%), 404.20 (26.7\%), 405.21 (3.5\%)
Elemental Analysis: C, 68.47; H, 6.25; N, 17.36; O, 7.93
ESI : $\quad[\mathrm{M}+\mathrm{H}]^{+} 404.3$

Display Report

HRMS

Calculated mass H+404.2086
Measured mass 404.2079
1.7 ppm

Copy (2) of O041409C \#1 RT: 0.01 AV: 1 NL: 3.23E8
T: FTMS +p ESI Full ms [100.00-1000.00]

HPLC spectra for the aldol products

START
bpespere－2

1	18.392	211989	19.945
2	17．227	こ1237c	59.95%
	TgTAL	424806	60

GTART
\＆PEEF（9）－9

STeP

CHEOMATgPAC		$0-\mathrm{S}$			$\begin{aligned} & \text { FILE } \\ & \text { METHOT } \end{aligned}$	9 A	
G日MPL	N0 9						
EGPOPT	$\mathrm{NO} \leq 5 \leq$						
PKNO	TIME	AREA	mc	Inde	cone	MAME	
1	2．232	19909					
z	2．$\leqslant 2$ こ	11965	\because		1.		
2	2． 76%	29010	\because		E．		
4	4.069	42e92	ψ				
5	1．329	5252%	\because		5.		
\leqslant	1．S55	1959	ψ		1.		
$\stackrel{7}{6}$	1．8．	4980	U		1.		
20		52788	U		5.		
？	5．428	$5 \leq 3.5$	ϑ		5.		
16	5.795	49924	ᄃ		1.		
11	$1 \mathrm{S.117}$	$1 \leq 132$					
12	$1 \leq .930$	cegegs			≤ 1.		
	T9TAL				189		

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Rac

START

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

START
gPEED(9)-9
!

219.147
529.952

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

รํํ:

Supplementary Material（ESI）for Chemical Communications This journal is（c）The Royal Society of Chemistry 2009

rac

－ 7 －0mAtopnc		$5-8 \leq n$			$\begin{aligned} & \text { FIUE } \\ & \text { METHOD } \end{aligned}$	011
SAmPLE	N0 0					
REPORT	N0 $\leqslant 79$					
PYNO	TTME	AREO	$M K$	ITHE	conc	NAMS
1	3.253	$2: 1.75$			2.9397	
2	9．542	9595c	Y		9.2432	
2	1． 52%	192．70			9．9849	
4	15．992	Aくここのs			14．1392	
5	22.293	16：95：			14．3917	
	TOTAL	1942ア39			190	

ETART
bpectese－2
$\left\{\begin{array}{l}5.69 \\ 5.5 ?^{3} \\ 11.192\end{array}\right.$
22．358

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009

$$
13: 992
$$

$$
\longrightarrow
$$

rac

START
spectue)-2

$\sum_{5 T 0 P} 19.277$

CHROMATOPAC		$\mathrm{C}-\mathrm{R} \leq \mathrm{S}$			$\begin{aligned} & \text { FILE } \\ & \text { METHOE } \end{aligned}$	e
SAMP!	no e					
只SPOPT	NO 712					
EMMO	TIME	ARES	n	ITNO	conc	NAME
1	4.502	1194?			4.9297	
2	4. $\subseteq \subseteq \subseteq$	52105	su		5.912 .7	
3	5. 333	25578	Y		2.929	
4	15.64	719553			92.9311	
5	19.377	39552			$3.29 \leq 1$	
	TOTML	86E41s			198	

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

ETART
kpェㅍ(0)-2

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

rac

. 092

CuRomot	Opnc 0	c-Ect			$\begin{aligned} & \text { FILE } \\ & \text { METHOT } \end{aligned}$	041
G日MP:	${ }^{0} 9$					
ESPOPT	N0 729					
Fund	TIME	AREA	$M \times$	InNO	cone	HAME
1	5.852	9984s			2.	
2	12.429	291099			12.	
3	2s.1se	40050			3.	
4	20.6s	51920			2.	
5	24.992	9e9474	Y		39.	
\leq	2c.953	989 54	Y		29.	
	TOTAL	22cept			190	

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

rac

GTA只
kperges-e

STnPT
sprypereg $\lg \operatorname{leg}(0)-2$ $\left\{\begin{array}{c}5.189,1.455 \\ 10.628 \\ 1.8 .89\end{array}\right.$

82

1	4.455	1189.7		9.1985
2	5.192	12919	U	1.0550
3	6.963	24991		2.786
4	12.099	$1529 ?$		1.3019
5	18.947	16919	4	1.2796
\leqslant	15.992	521967	4	11.905
$?$	19.555	52756		12.1429
	TOTAL	251850		00

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

BTART
becences-8

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

anti/syn = 3/1


```
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 45.685 & c19529 & & 15.9214 \\
\hline 2 & 55.309 & 19959 & & 9.2915 \\
\hline 3 & \(\leq 1.152\) & 125504 & & 3.4994 \\
\hline 4 & 63.772 & 977921 & U & 25.1479 \\
\hline 5 & ¢0.e99 & 11798 & U & 0.8981 \\
\hline \(\leqslant\) & 95.192 & 179594 & & A. 2945 \\
\hline \(?\) & 97.922 & \(19 \leq 2300\) & \(\vartheta\) & 56.1522 \\
\hline & TOTAL & 2999724 & & 69 \\
\hline
\end{tabular}
```

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

ETART
bectices-e

ETART
kpestege－z

558

FILE
0
M드내․
1.1

PKN0	TIME	AREA	M上	ITNO	conc	Mhme
i	5.748	17555	\because		2.5534	
2	15．92？	$2 \leq 1 \leq 7$			2.9279	
3	¢，\％\％	312721	y		45.2312	
5	2．1．55	2tced			2．5c99	
					ค．9こと	
	TGTAL	59105			169	

GThPT
GDET(0)-9

T: $18.8 \mathrm{~min} / 31.7 \mathrm{~min}$ anti products (15.7, 17.3 syn products)

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

START
bperves-e

15.91
19.949
22. 395
25.ce5

2ecse

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

rac

EACT

$$
\text { gpcep } 0 \text { - }-9
$$

$$
\operatorname{kgctr}(9)-2
$$

952

$11+4282$ 14.98
+6.786

PUNO
TIME
onch mik Impo

FIL5 METHOT gonc
e. 29i2

1. $23 t$
1.2353
5.2379
1.1252
2. 1909
3. 521
29.6042
4. 3292

199

Supplementary Material（ESI）for Chemical Communications This journal is（c）The Royal Society of Chemistry 2009

EThet
SPc5t（0）－9
$\operatorname{spcs}(9)-2$

2.798

gnmple	N0
gspget	NO

Frno	TIME	AR5A	ME	ITNO	cone
1	5.12	179731			23.7925
2	c． 222	ここら1？	Y		$3.12 \leqslant 7$
2	7.222	19222	U		2．579：
4	Q， 6	1 çe？	4		2.2717
5	7.217	2409	Y		2.2442
c	19.927	17972			2.3794
7	2こ．798	119512			59.3145
Q	34．592	29290			4.0920

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

rac

ETART
beser (e)-2

ChROMATGPAS r-ben						
gnmede	\%0	- P			FILE	9
EPPORT	Ma 1s				METHOT	41
PKNO	TINE	ADEA	M6	ITMO		HAME
1	A 75					
2	¢.592	29794			2.5127	
2	7.357	25094 14726	U		2.85	
4	Q. 98	!	U'		4.2955	
5	9.925	274	\%		\%. 4 geg	
6	12.643	575	\%		3.5219	
7	12.317		\%		5.4124	
8	17.015	41	\because		1.20?4	
9	24.239	1989 4089			29.9004	
		10.3.			39.2750	
	Totnt	$16 \leq 32$			---	

T: $\quad 16.9 \mathrm{~min}$ and $\quad 24.1 \mathrm{~min}$

```
START
    8F55g<0%-9
    kpgct(0)-2
```


17.02718 .007
stor.

GODT ivin 1sigesg
spEET(9)-0
bpestep)-2
11.558
11.558
49
$\square_{\text {sT0 }} 19.792$

(1) X. Xu, Z. Tang, Y. Wang, S. Luo, L. Cun, and L. Gong, J. Org. Chem. 2007, 72, 9905.
(2) Z. Tang, Z. Yang, X. Chen, L. Cun, A. Mi and L. Gong, J. Am. Chem. Soc. 2005, 127, 9285.
(3) N. Mase, Y. Nakai, N. Ohara, H. Yoda, K. Takabe, F. Tanaka and C. F. Barbas III, J. Am. Chem. Soc. 2006, 128, 734.
(4) J. Chen, X. Li, X. Xing, W. Xiao, J. Org. Chem. 2006, 71, 8198.
(5) H. Yang and R. G. Carter, Org. Lett. 2008, 10, 4649.
(6) Y. Wu, Y. Zhang, M. Yu, G. Zhao and S. Wang, Org. Lett. 2006, 8, 4417.
(7) D. E. Ward and V. Jheengut, Tetrahedron Lett., 2004, 45, 8347.

