Primary amine-metal Lewis acid bifunctional catalysts: the application to asymmetric direct aldol reaction Zhenghu Xu, Philias Daka, Hong Wang* Miami University, Department of Chemistry and biochemistry, Oxford, OH 45056 | General | 2 | |--|-------| | Synthesis of the ligands | 2-6 | | General procedure of the enantioselective aldol reaction | 7-15 | | NMR spectra for the aldol adducts and ligands | 16-55 | | HPLC spectra for the aldol products | 56-85 | | References | 86 | **General**: All NMR spectra were recorded on Bruker-500 or 300 MHz spectrometer. Optical rotation was measured on Rudolph Research Autopol III. Ee values were measured on chiral HPLC analysis using Gold Nouveau Chromatography system and the data was recorded on Shimadzu C-R6A Chromatopac integrator. Chiral AD-H and As-H column were purchased from Daicel Chemical Industries. Routine monitoring of the reaction was performed by TLC using precoated silica gel plates. Cyclohexanone was ACS reagent pure. THF was dried on Innovative Technology solvent purification system. All the other reagents were purchased from Acros or Aldrich and used directly. ## Synthesis of the ligands To a stirred solution of N-Boc-L-valine (2.17g, 10 mmol) in CH₂Cl₂ (100 mL) was added pyridine-2,6-diamine (10 mmol, 1.09g), DCC (2.3g, 10 mmol), HOBt (1.5 g, 10 mmol) and DIPEA (1.25 mL, 10 mmol) at 0 °C. This reaction mixture was stirred at room temperature for 24 h. The solution was filtered and washed with aqueous NaHCO₃. The organic phase was evaporated under reduced pressure and purified by column chromatography (silica gel) to give the pure product **A** (1.43 g, 46%). [α]_D²⁵= -10.0 (c= 0.24, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 0.95 (d, J = 6.9 Hz, 3H), 1.01 (d, J = 6.9 Hz, 3H), 1.47 (s, 9H), 2.22-2.28 (m, 1H), 4.10-4.17 (m, 1H), 4.35 (br, 2H), 5.12 (m, 1H), 6.27 (d, J = 7.8 Hz, 1H), 7.28 (t, J = 7.8 Hz, 1H), 7.57 (d, J = 7.8 Hz, 1H), 8.12 (br, 1H); ¹³C NMR (125Hz, CDCl₃) δ 24.61, 27.59, 30.69, 42.61, 57.08, 73.96, 121.97, 122.81, 129.38, 133.17, 143.26, 148.25, 214.79; MS (ESI) 331.2 $(M+Na)^+$; HRMS exact mass calcd for $(C_{15}H_{24}O_4N_3+Na)$ requires m/z 331.1746, found m/z 331.1750. Product **A** (0.92 g, 3 mmol) was dissolved in THF (30 mL). The solution was cooled down to 0 °C and TEA (1 mL, 6.6 mmol) was added. Then to this solution Benzoyl Chloride (0.38 mL, 3.3 mmol) was added dropwise at 0 °C. After the solution was stirred at 0 °C for 30 min, the resulting solution was stirred at room temperature overnight. The solid was filtered off and solvent removed, the residue was purified through column chromatography on silica gel (eluent: Hexane Ethyl Acetate = 3:1) to give the product (1.11g, 90%). The obtained N-Boc compound (1.11g) was dissolved into DCM (5 mL) and TFA (5 mL) and stirred at rt for 4h. The reaction mixtue was evaporated and dissolved in Ethyl Acetate. 1 N NaOH solution was used to tune pH to 9 and The mixture was extated with Ethyl Acetate. Then the solvent was evaporated to dryness to get the pure product **1a** (0.82g, 97%). (S)-N-(6-(2-amino-3-methylbutanamido)pyridin-2-yl)benzamide (1a) $[\alpha]_D^{25}$ = +6.5 (c= 0.15, CHCl₃); ¹H NMR (500 MHz, DMSO) δ 0.87 (d, J = 7.0 Hz, 3H), 0.98 (d, J = 7.0 Hz, 3H), 2.15-2.17 (m, 1H), 3.42 (m, 1H), 7.51-7.61(m, 3H), 7.87-7.89 (m, 3H), 8.00-8.02 (m, 2H), 10.56 (s, 1H). ¹³C NMR (125Hz, DMSO) δ 16.24, 19.11, 30.67, 60.16, 109.51, 109.86, 127.07, 128.49, 132.01, 133.87, 140.40, 149.05, 149.77, 165.68, 172.02. MS (ESI) 313.2 (M+H)⁺; HRMS exact mass calcd for (C₁₇H₂₀N₄O₂+H) requires m/z 313.1664, found m/z 313.1653. (S)-N-(6-acetamidopyridin-2-yl)-2-amino-3-methylbutanamide(1b) $[\alpha]_D^{25} = +37.0$ (c= 0.12, CHCl₃); ¹H NMR (500 MHz, DMSO) δ 0.78 (d, J = 7.0 Hz, 3H), 0.92 (d, J = 7.0 Hz, 3H), 2.05-2.10 (m, 4H), 3.22 (m, 1H), 7.73-7.75(m, 3H), 10.29 (s, 1H). ¹³C NMR (125Hz, DMSO) δ 16.94, 19.90, 24.36, 31.39, 60.49, 108.20, 109.17, 140.77, 149.89, 151.12, 169.69, 174.42. MS (ESI) 248.9 (M-H)⁻; HRMS exact mass calcd for (C₁₂H₁₈N₄O₂+H) requires m/z 251.1508, found m/z 251.1500. (S)-2-amino-3-methyl-N-(6-pivalamidopyridin-2-yl)butanamide (1c) $[\alpha]_D^{25}$ = +3.9 (c= 0.21, CHCl₃); ¹H NMR (500 MHz, CD₃OD) δ 1.04 (d, J = 6.5 Hz, 3H), 1.09 (d, J = 6.5 Hz, 3H), 1.29 (s, 9H), 3.34 (m, 1H), 7.68 (m, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H). ¹³C NMR (125Hz, CD₃OD) δ 15.89, 17.74, 36.15, 36.17, 39.43, 56.07, 109.08, 109.23, 139.96, 149.44, 150.53, 169.23, 178.31. MS (ESI) 293.2 (M+H)⁺; HRMS exact mass calcd for (C₁₅H₂₄N₄O₂+H) requires m/z 293.1977 found m/z 293.1976. (S)-N-(6-acetamidopyridin-2-yl)-2-amino-3-phenylpropanamide (3) $[\alpha]_D^{25} = -8.8$ (c= 0.12, CHCl₃); ¹H NMR (500 MHz, DMSO) δ 2.06 (s, 3H), 2.71 (dd, J = 9.0, 13.5 Hz, 1H), 3.10 (dd, J = 4.5, 9.0 Hz, 1H), 3.64 (m, 1H), 7.25-7.27 (m, 5H), 7.75-7.77 (m, 3H), 10.29 (s, 1H). ¹³C NMR (125Hz, DMSO) δ 24.36, 40.51, 56.86, 108.20, 109.26, 126.75, 128.69, 129.76, 138.84, 140.79, 149.90, 151.12, 169.71, 174.12. MS (ESI) 321.2 (M+Na)⁺; HRMS exact mass calcd for (C₁₆H₁₈N₄O₂+H) requires m/z 299.1508, found m/z 299.1500. To a stirred solution of N-Cbz-L-valine (2.51g, 10 mmol) in CH₂Cl₂ (100 mL) was added pyridine-2,6-diamine (1.09 g, 10 mmol), DCC (2.3g, 10 mmol), HOBt (1.5 g, 10 mmol) and DIPEA (1.25 mL, 10 mmol) at 0°C. This reaction mixture was stirred at room temperature for 24 h. The solution was filtered and washed with aqueous NaHCO₃. The organic phase was evaporated under reduced pressure and purified by column chromatography (silica gel) to give the pure product **B** (1.7 g, 49%). N-Boc-L-Phenylalanine (1.0 g, 2.9 mmol) was dissolved in THF (20 mL). The solution was cooled down to 0 °C. TEA (0.6 mL, 4.4 mmol) was added. Then to this solution ethylchloroformate (0.45 mL, 4.4 mmol) was added dropwise for 15 min. After the solution was stirred at 0 °C for 45 min, amine **B** (1.0 g, 2.9 mmol) was added slowly for 10 minutes in 10 mL THF solution at 0 °C. The resulting solution was stirred at room temperature for 16 h, and then refluxed for 3 h. After cooling down to room temperature, the solid was filtered off and solvent removed. The oily product was then dissolved in DCM. The mixture was washed with aqueous NaHCO₃ and dried with anhydrous Na₂SO₄. After removal of the solvent, the residue was purified through column chromatography on silica gel (eluent: Hexane: Ethyl Acetate = 2:1) to give the product (0.96 g, yield: 56%). The obtained compound (0.96 g), 10% Pd/C (200 mg) and methanol (30 mL) were mixed in a 100 mL flask. After stirring under hydrogen (1 atm) for 4 h, the solution was filtered on Celite to remove the Pd/C, and then evaporated to dryness to give the products 2 (0.74 g, yield: 99 %). [α]_D²⁵= -6.2 (c= 0.08, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 1.15 (d, J = 6.5 Hz, 3H), 1.28 (d, J = 6.5 Hz, 3H), 1.45 (s, 9H), 2.33 (m, 1H), 3.05-3.20 (m, 2H), 3.57-3.69 (m, 1H), 4.52 (m, 1H), 5.11 (m, 1H), 7.24-7.33 (m, 6H), 7.63-7.73 (m, 2H), 7.93 (m, 1H). ¹³C NMR (125Hz, CDCl₃) δ 16.91, 19.45, 26.87, 27.88, 28.25, 28.84, 63.10, 78.70, 109.25, 110.01, 127.00, 128.55, 128.68, 129.20, 129.31, 129.72, 148.28, 149.05x, 170.24, 174.74. MS(ESI) 456.3 (M+H)⁺; HRMS exact mass calcd for (C₂₄H₃₃N₅O₄+H) requires m/z 456.2611, found m/z 456.2604. Procedure as synthesis of compound 1. (2S,2'S)-N,N'-(pyridine-2,6-diyl)bis(2-amino-3-phenylpropanamide) (4) $[\alpha]_D^{25}$ = -13.3 (c= 0.15, CHCl₃); ¹H NMR (500 MHz, CD₃OD) δ 2.89 (dd, J = 7.5, 13.5 Hz, 1H), 3.14 (dd, , J = 5.5, 13.5 Hz, 1H), 3.74 (t, J = 6.5Hz, 1H), 7.22-7.31 (m, 10H), 7.75-7.85 (m, 3H). ¹³C NMR (125Hz, CD₃OD) δ 45.03, 61.73, 112.82, 124.01, 132.78, 134.01, 135.14, 143.62, 155.09, 179.18. MS (ESI) 404.3 (M+H)⁺; HRMS exact mass calcd for $(C_{23}H_{25}N_5O_2+H)$ requires m/z 404.2086, found m/z 404.2079. General procedure of the enantioselective aldol reaction: A mixture of CuCl₂ (5.4 mg, 0.04 mmol, 20 mol%), AgSbF₆ (27.5 mg, 0.08 mmol, 40 mol%), ligand 1c (11.7 mg, 0.04 mmol, 20 mol%), and cyclohexanone (1 mL) was stirred at room temperature for 4 h. And then the aldehyde (0.2 mmol) was added. The resulting mixture was stirred for 12-48 h. After the reaction was completed (monitered by TLC), the reaction mixture was treated with saturated ammonium chloride solution, and extracted with ethyl acetate. After removal of the solvent, mixture ¹H NMR was taken to determine diastereoselectivity. The mixture was purified through column chromatography on silica gel (eluent: mixture of Hexane and ethyl acetate) to give the pure products. All aldol products are known compounds and their spectroscopic data are identical with those reported. The ee values were determined by chiral HPLC analysis. The HPLC conditions and retention time were collected in Table 1. Table 1 HPLC Conditions and retention time | Compound | Eluent i-PrOH/Hexane | Flow rate (mL/min) | Column | Wave length (nm) | T(major) (min) | T(minor) (min) | |----------------------|----------------------|--------------------|--------|------------------|----------------|----------------| | O ₂ N O | 20/80 | 1.0 | AD-H | 254 | 16.8 | 13.1 | | O ₂ N OHO | 20/80 | 1.0 | AD-H | 254 | 17.9 | 22.4 | | NO ₂ OH O | 20/80 | 0.8 | AD-H | 254 | 19.2 | 20.8 | | OH O | 20/80 | 0.9 | AD-H | 254 | 26.4 | 21.2 | | OH O
MeOOC | 20/80 | 1.0 | AS-H | 254 | 15.6 | 22.3 | | CI OH O | 10/90 | 1.0 | AS-H | 220 | 15.6 | 19.3 | | CI OH O | 10/90 | 1.0 | AS-H | 220 | 20.8 | 18.3 | | OH O | 10/90 | 1.0 | AS-H | 220 | 22.6 | 19.7 | | OH O | 5/95 | 0.5 | AS-H | 220 | 34.1 | 36.8 | | OH O | 10/90 | 0.7 | AS-H | 220 | 26.0 | 22.4 | | OH O | 10/90 | 0.7 | AS-H | 220 | 15.0 | 18.4 | | O ₂ N O O | 5/95 | 0.7 | AD-H | 254 | 87.8 | 85.1 | | OH O | 20/80 | 1.0 | AD-H | 254 | 21.3 | 17.8 | |----------------------|-------|-----|------|-----|------|------| | O ₂ N S | 20/80 | 1.0 | AD-H | 254 | 31.7 | 18.8 | | NO ₂ QH O | 20/80 | 0.7 | AD-H | 254 | 24.8 | 20.4 | | NC S | 20/80 | 0.7 | AD-H | 254 | 30.4 | 18.8 | | QH Q | 20/80 | 0.7 | AS-H | 220 | 22.7 | 34.5 | | QH O | 20/80 | 0.7 | AS-H | 220 | 16.9 | 24.1 | | O ₂ N O | 30/70 | 1.0 | AS-H | 254 | 15.0 | 18.8 | (S)-2-((R)-hydroxy(4-nitrophenyl)methyl)cyclohexanone (5a)² yield 90%; dr >30/1; Ee 95%; $[\alpha]_D^{25} = +12.0$ (c= 0.20, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 1.34-1.82 (m, 5H), 2.07 (m, 1H), 2.33-2.35 (m, 1H), 2.45-2.46 (m, 1H), 2.48-2.56 (m, 1H), 4.04 (s, 1H), 4.87 (dd, J = 3 Hz, 8.5 Hz, 1H), 7.48 (d, J = 8.5 Hz, 2H), 8.18 (d, J = 8.5 Hz, 2H). ¹³C NMR (125Hz, CDCl₃) δ 24.70, 27.63, 30.76, 42.68, 57.20, 74.02, 123.57, 127.87, 147.59, 148.37, 214.70. (S)-2-((R)-hydroxy(3-nitrophenyl)methyl)cyclohexanone (5b)³ yield 90%; dr 20/1; Ee 95%; $[\alpha]_D^{25} = +37.2$ (c= 0.50, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 1.35-1.39 (m, 1H), 1.54-1.67 (m, 4H), 2.08-2.09 (m, 1H), 2.35-2.38 (m, 1H), 2.46-2.49 (m, 1H), 2.61(m, 1H), 4.14 (br, 1H), 4.88 (d, J = 8.5 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 8.18 (d, J = 7.5 Hz, 2H), 8.12-8.19 (m, 1H), 8.20 (s, 1H). ¹³C NMR (125Hz, CDCl₃) δ 24.61, 27.59, 30.69, 42.61, 57.08, 73.96, 121.97, 122.81, 129.26, 133.17, 143.26, 148.25, 214.79. (S)-2-((R)-hydroxy(2-nitrophenyl)methyl)cyclohexanone (5c)³ yield 82%; dr >30/1; Ee 94%; $[\alpha]_D^{25}$ = +29.1 (c= 0.31, CHCl₃) ¹H NMR (500 MHz, CDCl₃) δ 1.55-1.84 (m, 5H), 2.05-2.06 (m, 1H), 2.31-2.33 (m, 1H), 2.41-2.44 (m, 1H), 2.72-2.74 (m, 1H), 4.15 (br, 1H), 5.42 (d, J = 7.0 Hz, 1H), 7.40-7.42 (m, 1H), 7.61 (m, 1H), 7.81 (m, 1H). 7.83 (m, 1H) ¹³C NMR (125Hz, CDCl₃) δ 24.96, 27.73, 31.09, 42.80, 57.28, 69.76, 124.06, 128.37, 128.98, 133.04, 136.60, 148.72, 214.91 **4-((R)-hydroxy((S)-2-oxocyclohexyl)methyl)benzonitrile (5d)**³ yield 93%; dr 12/1; Ee 92%; $[\alpha]_D^{25} = +26.2$ (c= 0.41, CHCl₃) ¹H NMR (500 MHz, CDCl₃) δ 1.34-1.85 (m, 5H), 2.10-2.14 (m, 1H), 2.36-2.39 (m, 1H), 2.49 (m, 1H), 2.51-2.58 (m, 1H), 4.07 (s, 1H), 4.85 (dd, J = 3 Hz, 8.5 Hz, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H). ¹³C NMR (125Hz, CDCl₃) δ 24.68, 27.64, 30.73, 42.66, 57.14, 74.20, 111.69, 119.80, 127.78, 132.17, 146.41, 214.76. methyl 4-((R)-hydroxy((S)-2-oxocyclohexyl)methyl)benzoate (5e)³ yield 89%; dr 9/1; Ee 94%; $[\alpha]_D^{25}$ = +14.6 (c= 0.27, CHCl₃) ¹H NMR (500 MHz, CDCl₃) δ 1.29-1.33 (m, 1H), 1.51-1.79 (m, 4H), 2.06-2.09 (m, 1H), 2.33-2.37 (m, 1H), 2.45-2.46 (m, 1H), 2.48-2.58 (m, 1H), 3.90 (s, 3H), 4.04 (s, 1H), 4.83 (d, J = 8.5 Hz, 1H), 7.38 (d, J = 8.5 Hz, 2H), 8.00 (d, J = 8.5 Hz, 2H). ¹³C NMR (125Hz, CDCl₃) δ 24.64, 27.66, 30.71, 42.62, 52.04, 57.24, 74.32, 126.97, 129.62, 129.66, 146.05, 166.81, 215.04. (S)-2-((R)-(2,6-dichlorophenyl)(hydroxy)methyl)cyclohexanone (5f)⁵ yield 98%; dr 12/1; Ee 92%; $[\alpha]_D^{25}$ = -41.5 (c= 0.31, CHCl₃) ¹H NMR (500 MHz, CDCl₃) δ 1.36-1.40 (m, 1H), 1.52-1.85 (m, 4H), 2.08-2.10 (m, 1H), 2.41-2.54 (m, 2H), 3.49-3.52 (m, 1H), 3.70 (br, 1H), 5.85 (d, J = 10.0 Hz, 1H), 7.17 (d, J = 8.0 Hz, 1H), 7.32-7.33 (m, 2H). ¹³C NMR (125Hz, CDCl₃) δ 24.69, 27.63, 29.86, 42.44, 53.65, 70.57, 129.34, 129.75, 134.73, 135.69, 214.39. (S)-2-((R)-(4-chlorophenyl)(hydroxy)methyl)cyclohexanone (5g)³ yield 73%; dr 6/1; Ee 88%; $[\alpha]_D^{25} = +22.2$ (c= 0.20, CHCl₃) ¹H NMR (500 MHz, CDCl₃) δ 1.29-1.33 (m, 1H), 1.55-1.81 (m, 4H), 2.09-2.58 (m, 3H), 4.04 (s, 1H), 4.78 (d, J = 8.0 Hz, 1H), 7.28 (d, J = 8.5 Hz, 2H), 7.34 (d, J = 8.5 Hz, 2H). ¹³C NMR (125Hz, CDCl₃) δ 24.72, 27.72, 30.76, 42.68, 57.38, 74.14, 128.39, 128.54, 138.59, 139.50, 215.29. (S)-2-((R)-(4-bromophenyl)(hydroxy)methyl)cyclohexanone (5h)³ yield 60%; dr 6/1; Ee 94%; $[\alpha]_D^{25} = +20.2$ (c= 0.30, CHCl₃) ¹H NMR (500 MHz, CDCl₃) δ 1.27-1.30 (m, 1H), 1.52-1.78 (m, 4H), 2.33-2.35 (m, 1H), 2.07-2.08 (m, 1H), 2.33-2.35 (m, 1H), 2.45-2.54 (m, 2H), 3.98 (s, 1H), 4.74 (d, J = 9.0 Hz, 1H), 7.18 (dd, J = 1.5, 6.5 Hz, 2H), 7.46 (dd, J = 2.0, 6.5 Hz, 2H). ¹³C NMR (125Hz, CDCl₃) δ 24.68, 27.69, 30.72, 42.63, 57.30, 74.15, 121.68, 128.71, 131.45, 140.00, 215.21. (S)-2-((R)-hydroxy(phenyl)methyl)cyclohexanone (5i)³ yield 76%; dr 10/1; Ee 86%; $[\alpha]_D^{25} = +20.9$ (c= 0.31, CHCl₃) ¹H NMR (500 MHz, CDCl₃) δ 1.28-1.31 (m, 1H), 1.52-1.77 (m, 4H), 2.35-2.36 (m, 1H), 2.06 (m, 1H), 2.35-2.36 (m, 1H), 2.46-2.47 (m, 1H), 2.49-2.62 (m, 1H), 3.94 (s, 1H), 4.78 (d, J = 8.5 Hz, 1H), 7.2-7.34 (m, 5H). ¹³C NMR (125Hz, CDCl₃) δ 24.68, 27.77, 30.81, 42.63, 57.40, 74.71, 126.99, 127.85, 128.33, 140.92, 215.48. (S)-2-((R)-hydroxy(naphthalen-2-yl)methyl)cyclohexanone (5j)⁵ yield 71%; dr 12/1; Ee 90%; $[\alpha]_D^{25} = +7.3$ (c= 0.30, CHCl₃) ¹H NMR (500 MHz, CDCl₃) δ 1.32-1.35 (m, 1H), 1.50-1.76 (m, 4H), 2.06 (m, 1H), 2.36-2.38 (m, 1H), 2.48 (m, 1H), 2.72 (m, 1H), 2.49-2.62 (m, 1H), 4.08 (br, 1H), 4.96 (d, J = 9.0 Hz, 1H), 7.46-7.49 (m, 3H), 7.76 (s, 1H), 7.82-7.85 (m, 3H). ¹³C NMR (125Hz, CDCl₃) δ 24.71, 27.80, 30.92, 42.71, 57.41, 74.92, 124.68, 125.95, 126.15, 126.26, 127.70, 127.99, 128.28, 133.17, 133.21, 138.38, 215.49 (S)-2-((R)-hydroxy(p-tolyl)methyl)cyclohexanone (5k)⁶ yield 75%; dr 8/1; Ee 83%; $[\alpha]_D^{25}$ = +9.3 (c= 0.40, CHCl₃) ¹H NMR (500 MHz, CDCl₃) δ 1.26-1.29 (m, 1H), 1.52-1.78 (m, 4H), 2.05-2.07 (m, 1H), 2.33-2.45 (m, 4H), 2.46-2.48 (m, 1H), 2.60 (m, 1H), 3.91 (br, 1H), 4.74 (d, J = 8.5 Hz, 1H), 7.14 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 7.0 Hz, 2H). ¹³C NMR (125Hz, CDCl₃) δ 21.11, 24.69, 27.79, 30.84, 42.64, 57.42, 74.50, 125.66, 126.89, 129.01, 137.50, 215.56. (S)-2-((R)-hydroxy(4-nitrophenyl)methyl)cyclopentanone (6a)² yield 66%; dr 3/1; Ee 86%; $[\alpha]_D^{25}$ = -60.0 (c= 0.40, CHCl₃) ¹H NMR (500 MHz, CDCl₃) δ 1.60-1.79 (m, 3H), 1.97-2.49 (m, 5H), 2.99 (br, 0.18 H, -OH, syn), 4.77 (br, 1H, -OH, anti), 4.86 (d, J = 8.5 Hz, 0.81H, -CHOH, anti), 5.41 (s, 0.21H, -CHOH, syn), 7.54 (d, J = 8.5 Hz, 2H), 8.20 (d, J = 8.5 Hz, 2H). (S)-3-((R)-hydroxy(4-nitrophenyl)methyl)-tetrahydropyran-4-one (6b)⁴ yield 97%; dr 10/1; Ee 87%; $[\alpha]_D^{25}=1.7$ (c= 0.20, CHCl₃) ¹H NMR (500 MHz, CDCl₃) δ 2.50-2.54 (m, 1H), 2.64-2.66 (m, 1H), 2.87-2.90 (m, 1H), 3.42-3.47 (m, 1H), 3.69-3.75 (m, 2H), 4.16-4.19 (m, 1H), 4.98 (d, J=8.0 Hz, 1H), 7.50 (d, J=9.0 Hz, 2H), 8.20 (d, J=9.0 Hz, 2H). ¹³C NMR (125Hz, CDCl₃) δ 42.81, 57.64, 68.33, 69.75, 71.30, 123.81, 127.46, 147.46, 147.76, 209.13. (S)-3-((R)-hydroxy(4-nitrophenyl)methyl)-tetrahydrothiopyran-4-one (6c)⁴ yield 82%; dr 22/1; Ee 94%; $[\alpha]_D^{25}=15.0$ (c= 0.50, CHCl₃) $^{-1}$ H NMR (500 MHz, CDCl₃) (S)-3-((R)-hydroxy(2-nitrophenyl)methyl)-tetrahydrothiopyran-4-one (6d)⁴ yield 76%; dr 25/1; Ee 94%; $[\alpha]_D^{25} = -30.0$ (c= 0.37, CHCl₃) ¹H NMR (500 MHz, CDCl₃) δ 2.60-2.64 (m, 1H), 2.75-2.83 (m, 2H), 2.94-3.15 (m, 3H), 3.16-3.18 (m, 1H), 3.90 (br, 1H), 5.55 (d, J = 7.0 Hz, 1H), 7.46 (d, J = 7.5 Hz, 1H), 7.66 ((d, J = 7.5 Hz, 1H), 7.77 (d, J = 7.0 Hz, 1H), 7.89 (d, J = 7.0 Hz, 1H). ¹³C NMR (125Hz, CDCl₃) δ 30.78, 33.36, 45.16, 59.55, 69.37, 124.39, 128.85, 129.03, 133.48, 136.00, 148.59, 211.46. **4-((R)-hydroxy((S)-4-oxo-tetrahydro-2H-thiopyran-3-yl)methyl)benzonitrile(6e)**⁴ yield 86%; dr 46/1; Ee 91%; $[\alpha]_D^{25}$ = +7.73 (c= 0.42, CHCl₃) ¹H NMR (500 MHz, CDCl₃) δ 2.47-2.52 (m, 1H), 2.62-2.66 (m, 1H), 2.76-2.85 (m, 2H), 2.95-3.00 (m, 3H), 3.65 (br, 1H), 4.99 (d, J = 8.5 Hz, 1H), 7.47 (d, J = 8.0 Hz, 2H), 7.66 (d, J = 8.5 Hz, 2H). ¹³C NMR (125Hz, CDCl₃) δ 30.82, 32.82, 44.75, 59.44, 73.42, 112.17, 118.51, 127.68, 132.44, 145.68, 211.29. (S)-3-((R)-hydroxy(naphthalen-2-yl)methyl)-tetrahydrothiopyran-4-one(6f)⁷ yield 57%; dr 34/1; Ee 87%; $[\alpha]_D^{25} = +23.4$ (c= 0.12, CHCl₃) ¹H NMR (500 MHz, CDCl₃) δ 2.53-2.56 (m, 2H), 2.82-2.99 (m, 4H), 3.11-3.16 (m, 1H), 5.18 (d, J = 8.5 Hz, 1H), 7.51-7.53 (m, 3H), 7.81 (s, 1H), 7.86-7.89 (m, 4H). ¹³C NMR (125Hz, CDCl₃) δ 30.89, 32.99, 44.54, 59.63, 74.03, 124.26, 126.24, 126.36, 127.72, 127.99, 128.72, 133.11, 133.32, 137.58, 211.83. (S)-3-((R)-hydroxy(phenyl)methyl)-tetrahydrothiopyran-4-one(5r)⁴ yield 68%; dr 25/1; Ee 94%; $[\alpha]_D^{25} = +21.0$ (c= 0.30, CHCl₃) ¹H NMR (500 MHz, CDCl₃) δ 2.54-2.62 (m, 2H), 2.79-2.82 (m, 3H), 2.98-3.03 (m, 3H), 4.99 (d, J = 8.5 Hz, 1H), 7.34-7.38 (m, 5H). ¹³C NMR (125Hz, CDCl₃) δ 30.88, 32.91, 44.46, 59.67, 73.82, 126.91, 128.32, 128.65, 140.24, 211.82, 211.82. (R)-4-hydroxy-4-(4-nitrophenyl)butan-2-one (5s)² yield 84%; Ee 72 %; $[\alpha]_D^{25}$ = 35.2 (c= 0.2, CHCl₃) ¹H NMR (500 MHz, CDCl₃) δ 2.18 (s, 3H), 2.82 (m, 2H), 3.65 (s, 1H), 5.23 (t, J = 6 Hz, 1H), 7.50 (d, J = 8.5 Hz, 2H), 8.15 (d, J = 8.5 Hz, 2H). ¹³C NMR (125Hz, CDCl₃) δ 30.70, 51.52, 68.91, 123.75, 126.43, 147.10, 150.06, 208.44. ## NMR Copy of the aldol products and ligands ppm Chemical Formula: C₁₅H₂₄N₄O₃ Exact Mass: 308.18 Molecular Weight: 308.38 m/z: 308.18 (100.0%), 309.19 (16.6%), 310.19 (2.2%), 309.18 (1.5%) Elemental Analysis: C, 58.42; H, 7.84; N, 18.17; O, 15.56 ## ESI: M+Na | | | Displ | lay Report | | | | |--|---|--|--|--|----------------------------------|----| | Analysis Info
Analysis Name
Method
Sample Name
Comment | XZH-1100.d
NOVAKS.M
XZH2-110
Diluted 1/100 in MEOH | | Acquisition Date
Operator
Instrument | 10/27/08 14:04:20
Administrator
Esquire-LC_00137 | | | | Acquisition Para
on Source Type
Mass Range Mode
Capillary Exit
Accumulation Time | | lon Polarity
Scan Begin
Skim 1
Averages | Positive
50.00 m/z
32.7 Volt
20 Spectra | Alternating lon Polarity
Scan End
Trap Drive
Auto MS/MS | n/a
500.00 m/z
35.4
Off | | | ntens.
x10 ⁷ | | | 331.2 | 2 | | | | 3- | | | | | | | | 2- | | | | | | | | 1- | | 231.1 | | | | | | 0 | 110.0 | 209.1 | 253.1 | , <u></u> | | -, | | 50 | 100 150 | 200 2 | 250 300 | 350 400 | 450 | n | Chemical Formula: C₁₇H₂₀N₄O₂ Exact Mass: 312.16 Molecular Weight: 312.37 m/z: 312.16 (100.0%), 313.16 (20.2%), 314.17 (1.6%) Elemental Analysis: C, 65.37; H, 6.45; N, 17.94; O, 10.24 ESI: [M+1] 313.2 | | | Dis | olay Report | | | |--|--|--|---|--|----------------------------------| | Analysis Info
Analysis Name
Method
Sample Name
Comment | xzh3-530.d
NOVAKS.M
xzh3-53
Diluted 1/100 in MEOH | | Acquisition Da
Operator
Instrument | te 01/21/09 13:36:51
Administrator
Esquire-LC_00137 | | | Acquisition Para
on Source Type
Mass Range Mode
Capillary Exit
Accumulation Time | ESI
Std/Normal
79.2 Volt | lon Polarity
Scan Begin
Skim 1
Averages | Positive
150.00 m/z
12.7 Volt
20 Spectra | Alternating Ion Polarity
Scan End
Trap Drive
Auto MS/MS | n/a
500.00 m/z
29.6
Off | | ntens. | | | 111 | | | | 2.5 | | | 313.2 | | | | | | | | | | | 2.0- | | | | | | | 2.07 | | | | | | | 1 | | | | | | | 1.5 | | | | | | | - | | | | | | | - | | | | | | | 1.0- | | | | | | | - | | | | | | | 0.5- | | | 335.2 | | | | - | | | | | | | 1 | 214.1 | | 353.2 | | | | 0.0 | 200 25 | | 300 350 | 400 | 450 | # Calculated mass H+ 313.1664 Measured mass 313.1653 3.5 ppm Chemical Formula: C₁₂H₁₈N₄O₂ Exact Mass: 250.14 Molecular Weight: 250.3 m/z: 250.14 (100.0%), 251.15 (13.3%), 251.14 (1.5%), 252.15 (1.2%) Elemental Analysis: C, 57.58; H, 7.25; N, 22.38; O, 12.78 ESI: [M-H] 248.9 | nalysis Info
nalysis Name
lethod
ample Name
omment | XZH3-973.d
XQ Default.ms
XZH3-97
Diluted 1/100 in MEOH | | Acquisition
Operator
Instrument | Date 03/10/09 12:23:30
Administrator
Esquire-LC_00137 | | |---|---|--|---|--|----------------------------------| | cquisition Para
n Source Type
ass Range Mode
apillary Exit
ccumulation Time | ESI
Std/Normal
-88.0 Volt
27191 µs | lon Polarity
Scan Begin
Skim 1
Averages | Negative
50.00 m/z
-19.9 Volt
20 Spectra | Alternating Ion Polarity
Scan End
Trap Drive
Auto MS/MS | n/a
500.00 m/z
41.9
Off | | tens.
x10 ⁵ - | | | | | | | 1.2- | | | 289.1 | | | | 1.0- | | | | | | | 0.8- | | | | | | | 0.6- | | | | | | | 0.4- | | [M- | | | | | 0.2- | 112.8 | 2 | 48.9 | | | | 0.0 | | 207.0 | 275.0 | 345.0 388.1 | | ## Calculated mass H+ 251.1508 #### Measured mass 251.1500 # 3.18 ppm Chemical Formula: C₁₅H₂₄N₄O₂ Exact Mass: 292.19 Molecular Weight: 292.38 m/z: 292.19 (100.0%), 293.19 (17.8%), 294.20 (1.3%) Elemental Analysis: C, 61.62; H, 8.27; N, 19.16; O, 10.94 #### ESI [M+H] 293.2 Analysis Info Analysis Name XZh3-980.d 240.0 250 200 -+MS Acquisition Date 03/10/09 13:16:00 350 450 m/z 400 | Method
Sample Name
Comment | XQ Default.ms
XZH3-98
Diluted 1/100 in MEOH. | | Operator
Instrument | Administrator
Esquire-LC_00137 | | |---|--|--|---|--|----------------------------------| | Acquisition Para
Ion Source Type
Mass Range Mode
Capillary Exit
Accumulation Time | ESI
Std/Normal
82.2 Volt | lon Polarity
Scan Begin
Skim 1
Averages | Positive
150.00 m/z
15.2 Volt
20 Spectra | Alternating Ion Polarity
Scan End
Trap Drive
Auto MS/MS | n/a
500.00 m/z
30.7
Off | | 3.0-
2.5- | | [M++ | | | | | 2.0- | | | | | | | 1.5- | | | | | | | 1.0 | | | | | | | 0.5 | | 1 | [M+N&] 333.3 | | | 300 Calculated mass H+ 293.1977 Measured mass 293.1976 0.3 ppm Chemical Formula: C₁₆H₁₈N₄O₂ Exact Mass: 298.14 Molecular Weight: 298.34 m/z: 298.14 (100.0%), 299.15 (17.6%), 300.15 (1.9%), 299.14 (1.5%) Elemental Analysis: C, 64.41; H, 6.08; N, 18.78; O, 10.73 #### ESI [M+H] 299.2 [M+Na] 321.2 Analysis Info Analysis Name XX Method XX Sample Name XX XZH-1190.d XQ Default.ms XZH3-119 Comment Diluted 1/100 in MEOH. Acquisition Date 04/01/09 11:28:35 Operator Administrator Instrument Esquire-LC_00137 **Acquisition Parameter** lon Source Type Mass Range Mode Capillary Exit Accumulation Time ESI Std/Normal 82.2 Volt 768 µs lon Polarity Scan Begin Skim 1 Averages Positive 50.00 m/z 15.2 Volt 20 Spectra Alternating Ion Polarity Scan End Trap Drive Auto MS/MS n/a 700.00 m/z 30.7 Off # Calculated mass H+ 299.1508 Measured mass 299.1500 2.7 ppm Copy (2) of O041409D_090414115914 #1-10 RT: 0.00-0.22 AV: 10 NL: 3.15E8 T: FTMS + p ESI Full ms [100.00-1000.00] Chemical Formula: C₂₄H₃₃N₅O₄ Exact Mass: 455.25 Molecular Weight: 455.55 m/z: 455.25 (100.0%), 456.26 (26.5%), 457.26 (4.2%), 456.25 (1.8%) Elemental Analysis: C, 63.28; H, 7.30; N, 15.37; O, 14.05 ESI: [M+H] 456.3 | | | Disp | lay Report | | | |--|---|--|---|--|----------------------------------| | Analysis Info
Analysis Name
Method
Sample Name
Comment | XZ3-1070.d
XQ Default.ms
XZH3-107
Diluted 1/100 in MEOH. | | Acquisition
Operator
Instrument | Date 03/10/09 14:47:03
Administrator
Esquire-LC_00137 | | | Acquisition Para
on Source Type
Mass Range Mode
Capillary Exit
Accumulation Time | meter ESI Std/Normal 83.6 Volt 851 µs | Ion Polarity
Scan Begin
Skim 1
Averages | Positive
150.00 m/z
16.3 Volt
20 Spectra | Alternating lon Polarity
Scan End
Trap Drive
Auto MS/MS | n/a
600.00 m/z
35.4
Off | | ntens.
x10 ⁶ - | | | Ĺ | M+ N] + 456.3 | | | 1.25- | | | | [M+Na] | - | | 1.00- | | | | | | | 0.75- | | | | 51: | 3.3 | | 0.50 | | | | 496.3 | | | 0.25- | 247.1
225.2 | 34
302.1 331.2 | 3.2
363.2 | | | | 0.00 | 200 250 | 300 | 1, *, 1, , , , 1, , , , , , , , , , , , | 450 500 | 550 | Calculated mass H+ 456.2611 Measured mass 456.2604 1.5 ppm Chemical Formula: C₂₃H₂₅N₅O₂ Exact Mass: 403.2 Molecular Weight: 403.48 m/z: 403.20 (100.0%), 404.20 (26.7%), 405.21 (3.5%) Elemental Analysis: C, 68.47; H, 6.25; N, 17.36; O, 7.93 ESI: $[M+H]^+ 404.3$ Calculated mass H+ 404.2086 Measured mass 404.2079 1.7 ppm #### **HPLC** spectra for the aldol products 199 TOTAL 1031309 | CHROMA'
SAMPLE
REPORT | TOPAC C-1
NO 0
NO 670 | R6A | | | FILE
METHOD | 9 | 41 | |-----------------------------|-----------------------------|---------------------------|----|------|---------------------------|---|------| | PKNO | TIME | nren | MK | IDNO | CONC | | NAME | | 1
2
3 | 6.9
19.108
20.777 | 24014
326167
326462 | \v | | 3.549
48.203
48.247 | 9 | | | | TOTAL | 676613 | | _ | 100 | - | | | CHROMA
SAMPLE
REPORT | NO 9 | R6A | | | FILE
METHOD | 9 | 11 | |----------------------------|------------------------------------|------------------------------------|----|------|--|---|------| | PKNO | TIME | AREA | MK | IDNO | CONC | | NAME | | 1
2
3 | 1.502
1.802
19.875
22.807 | 43149
40823
493750
498704 | ņ | | 4.0005
3.7925
45.0694
46.3296 | | | | | TOTAL | 1976426 | | | 188 | - | | | CHROMO
SOMPLE
REPORT | TOPAC C-
NO 9
NO 794 | R6A | | | FILE
METHOD | 9 | 11 | |----------------------------|----------------------------|--------------------------|----|------|---------------------------|---|------| | PKNO | TIME | AREA | MK | IDNO | CONC | | NAME | | 1
2
3 | 4.515
19.683
22.6 | 71376
14683
491324 | | | 12.361
2.542
95.095 | 9 | | | | TOTAL | 577383 | | | 100 | - | | | CHROMAT
SAMPLE
REPORT | TOPAC C-
NO 9
NO 730 | REN | | FILE
METHOD | 9 41 | |-----------------------------|------------------------------------|-----------------------------------|----|----------------|--------------------------| | PKNO | TIME | nren | MK | IBNO CONC | NAME | | 1
2
3
4 | 5.862
12.428
26.163
30.68 | 80346
281038
49050
51829 | | 12.6
2.3 | 093
247
034
283 | | 5 | 34.093 | 888474 | Ÿ | 39.5 | | | 6 | | 883354 | Ų | 39.6 | -818 | | | TOTAL | 2226091 | | 199 | | | CHROMATOPAS
SAMPLE NO
REPORT NO | C-R6A
0
729 | | | FILE
METHOD | 9 | 11 | |---------------------------------------|-------------------|----|------|------------------------------|---|------| | PKNO T | IME AREA | MK | IDNO | CONC | | NAME | | 1 5.
2 34.
3 36.
TOT | 969 52367
 | Ų | | 6.736
86.974
6.289
 | 4 | | | CHROMA | TOPAC CH | Ren | | | FILE | 9 | | |--------|----------|--------|----|------|--------|------|--| | SAMPLE | NO 9 | | | ! | 1ETHOD | 4.1 | | | REPORT | NO 729 | | | | | | | | PKNO | TIME | AREA | MK | IDNO | CONC | MAME | | | 1 | 4.257 | 23115 | | | 4.968 | 8 | | | 2 | 22.417 | 419224 | | | 98.115 | 8 | | | 3 | 26.013 | 22867 | | | 4.915 | 4 | | | | - | | | | | | | | | TOTAL | 465206 | | | 100 | | | 5 €. 13.947 15.083 19.555 TOTAL 16019 524967 527569 1251859 1.2796 41.935 100 42.1428 | CHROMA
SAMPLE
REPORT | 9 08 | Ren | | | FILE
METHOD | 8 | 11 | |----------------------------|--|--|--------|------|---|---|------| | PKNO | TIME | nREn | MK | IDMO | CONC | | NAME | | 1
2
3
4
5 | 4.295
12.823
13.982
15.818
18.41 | 28546
57381
45167
773995
71735 | ų
ų | | 2.9225
5.9665
4.6242
79.2424
7.3443 | | | | | TOTAL | 976743 | | | 188 | | | $$O_2N \qquad \qquad \begin{array}{c} OH & O \\ \vdots \\ \\ \text{rac} \end{array}$$ STOP 31.553 | CHROMA
SAMPLE
REPORT | TOPAC 6-9
NO 0
NO 753 | Ren | | | FILE
METHOD | 9 | 11 | |----------------------------|---|---|--------|------|--|---|------| | PKNO | TIME | AREA | MK | IDNO | COMC | | NAME | | ** 01 (5) 4:- (1) | 5.749
15.927
19.667
26.872
31.553 | 17655
26467
312731
17706
316847 | Ų
Ų | | 2.5534
3.8279
45.2313
2.5608
45.8266 | | | | | TOTAL | £91495 | | | 100 | | | | CHROMA
SAMPLE
REPORT | TOPAC C-R
NO 0
NO 754 | 6N | | | FILE
METHOD | 9 | 41 | |----------------------------|---|--|--------|------|--|-------------|------| | PKNO | TIME | nREA | MK | IDMO | CONC | | NAME | | 1
2
3
4
5 | 15.742
17.319
18.858
25.883
31.71 | 38208
77402
28947
24076
775186 | ų
ų | | 4.056
8.218
2.861
2.556
82.307 | 3
1
4 | | | | TOTAL | 941816 | | | 100 | _ | | T: 18.8 min / 31.7 min anti products (15.7, 17.3 syn products) | CHROMAT
SAMPLE
REPORT | TOPAC C-
NO 9
NO 862 | -R6A | | | FILE
METHOD | 9 | 41 | |-----------------------------|--|--|-------------|------|---|-----------|------| | PKNO | TIME | AREA | MK | IDNO | COME | | NAME | | ** 01 (0) 4- 18) 4) P.O) | 6.13
8.965
9.435
13.2
20.282
22.862
24.822
38.313 | 29005
30695
35008
14558
306737
10687
307535
10413 | o
o
o | | 3.895
4.122
4.701
1.955
41.193
1.435
41.299 | 2 4 9 2 9 | | | | TOTAL | 744638 | | | 188 | | | | SHROMAT
SAMPLE
REPORT | TOPAC
NO
NO | 0-
9
967 | Ren | | | FILE
METHOD | 9 | 11 | |-----------------------------|----------------------|----------------|------------------------------------|----|------|---------------------------------------|---|------| | PKNO | ŗ | IME | AREA | MK | IDNO | CONC | | NAME | | 3 4 | 19.3
29.4
24.5 | 15.7 | 29156
20709
35662
1189548 | ų | | 2.2099
1.6254
2.7991
93.3656 | | | | | T 0 T | | | | | | | | | | TOTA | 1. | 1274076 | | | 100 | | | | CHROMAT
SAMPLE
REPORT | TOPAC !
NO 0
NO 86: | C-R6n
8 | | | FILE
METHOD | 9 | 11 | |-----------------------------|---|--|----|------|---|---|------| | PKNO | TIME | OREA | ĦК | IDMO | CONC | | NAME | | 1234567.09 | 5.84
7.225
10.828
12.842
13.262
15.995
18.87
25.725
30.57 | 13791
12990
13895
12535
14420
17112
580208
15772
58066 | ņ | _ | 1.0939
1.0233
1.1014
0.9943
1.1438
1.3573
46.0231
1.251
45.0118 | | | | CHROMA
SAMPLE
REPORT | NO 9 | REN | | | FILE
METHOD | 9 | 41 | |----------------------------|-------------------------------------|-----------------------------------|--------|------|-------------------------------------|---|------| | PKNO | TIME | AREA | MK | IDNO | CONC | | NOME | | 1000 | 12.747
15.91
18.848
38.427 | 69792
26104
41224
942749 | y
Y | | 7,1225
2.664
4.207
86.0063 | | | | | · TOTAL | 979869 | | | 100 | | | | 5111117 === | OPAC C-!
NO 9
NO 19 | R6A | | | FILE
METHOD | 9 | 41 | |-------------|---|--|------------------|------|---|---------|------| | PKNO | TIME | AREA | MK | OMGI | CONC | | MAME | | 10000000000 | 4.952
6.888
9.252
12.933
14
16.133
17.783
23.152
34.885 | 136651
20071
22008
96028
60170
19759
10401
636253
640204 | γ
γ
γ
γ | - | 9.291;
1.236
1.335;
5.237
4.136
1.198
0.631
39.604
39.329 | 0 0 0 0 | | | 0 T A D T | , 0 , 11 6 | | | | | | | | CHROMO
SAMPLE
REPORT | TOPAC 0
NO 0
NO 11 | -R6N | | | FILE
METHOD | 9 | 11 | |----------------------------|--------------------------|--------------------------|--------|------|-----------------------------|---|------| | PKNO | TIME | AREA | MK | IDNO | CONC | | NAME | | 1
2
3 | 5.12
6.222
7.232 | 179724
22517
19232 | y
y | | 23.7826
3.1367
2.6791 | | | | 4 | 8.6 | 16397 | Ÿ | | 2.2717 | | | | 5 | 9.317 | 24006 | Y | | 3.3442 | | | | ٤ | 19.027 | 17973 | | | 2.3784 | | | | 7 | 22.788 | 418612 | | | 58.3146 | | | | <u>.</u> | 34.592 | 29388 | | | 4.0928 | | | | | | | | - | | | | | | TOTAL | 717951 | | | 199 | | | | CHROMA
SAMPLE
REPORT | | -Rén | | | FILE
METHOD | 9 | 41 | |----------------------------|--|---|---------------|------|--|---|------| | PKNO | TIME | AREA | MK | IDNO | CONC | | NAME | | * 01 0 4 10 W P. 00 9x | 4.75
6.582
7.357
8.969
9.835
11.942
12.317
17.945
24.239 | 27791
25094
44726
36160
37447
57559
13902
413618
406978 | V V V V V V V | | 2.6137
2.36
4.2065
3.4008
3.5219
5.4134
1.3074
38.9004
38.2759 | | | | | | *ಅತ್ವರ್ಭನ | | | 100 | | | | CHROMA'
SAMPLE
REPORT | TOPAC C-
NO 0
NO 14 | R6A | | | FILE
METHOD | 9 | 41 | |-----------------------------|-------------------------------------|------------------------------------|----|------|------------------------------------|---|------| | PKNO | TIME | AREA | MK | IDNO | CONC | | NAME | | 1
2
3
4 | 4.612
16.917
21.813
24.198 | 35650
540491
105291
15623 | ٧ | _ | 5.251
77.427
15.093
2.238 | | | | | TOTAL | 698866 | | | 100 | | | ## T: 16.9 min and 24.1 min - (1) X. Xu, Z. Tang, Y. Wang, S. Luo, L. Cun, and L. Gong, *J. Org. Chem.* 2007, **72**, 9905. - (2) Z. Tang, Z. Yang, X. Chen, L. Cun, A. Mi and L. Gong, J. Am. Chem. Soc. 2005, 127, 9285. - (3) N. Mase, Y. Nakai, N. Ohara, H. Yoda, K. Takabe, F. Tanaka and C. F. Barbas III, *J. Am. Chem. Soc.* 2006, **128**, 734. - (4) J. Chen, X. Li, X. Xing, W. Xiao, J. Org. Chem. 2006, 71, 8198. - (5) H. Yang and R. G. Carter, Org. Lett. 2008, 10, 4649. - (6) Y. Wu, Y. Zhang, M. Yu, G. Zhao and S. Wang, Org. Lett. 2006, 8, 4417. - (7) D. E. Ward and V. Jheengut, Tetrahedron Lett., 2004, 45, 8347.