Discrimination of Cryptochirality in Chiral Isotactic Polystyrene by Asymmetric Autocatalysis

Tsuneomi Kawasaki, ${ }^{\text {a,b }}$ Christiane Hohberger, ${ }^{c}$ Yuko Araki, ${ }^{\text {a }}$ Kunihiko Hatase, ${ }^{\text {a }}$ Klaus Beckerle, ${ }^{\text {c }}$ Jun Okuda ${ }^{\text {c* }}$ and Kenso Soai ${ }^{\text {a,b* }}$

${ }^{a}$ Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan), E-mail: soai@rs.kagu.tus.ac.jp
${ }^{b}$ Research Institute of Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)
${ }^{c}$ Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen (Germany), E-mail: jun.okuda@ac.rwth-aachen.de

Table S1: Stereochemical relationship between bis(phenol) 5 and 5-pyrimidyl alkanol 4 obtained from the asymmetric autocatalysis.

$(S, S)-5$

Asymmetric Autocatalysis

$\rangle \mathrm{Zn}-$

entry $^{[\text {a] }}$	config. of bis(phenol) $\mathbf{5}$	5-pyrimidyl alkanol 4		
	(S, S)	isolated yield	ee $(\%)^{[b]}$	config.
1	(S, S)	94	92	S
2	(S, S)	94	95	S
3	(R, R)	88	94	S
4	(R, R)	90	91	R
5	(R, R)	87	91	R
6	(R, R)	90	86	R
7	88	86	R	

[a] The molar ratio of bis(phenol) $5 /$ pyrimidine-5-carbaldehyde $3 / i \operatorname{Pr}_{2} \mathrm{Zn}=$ $0.015 / 0.525 / 1.18$ (mmol). General procedure for asymmetric autocatalysis (Entry 1): To a toluene (0.45 mL) solution of (S,S)-5 ($5.0 \mathrm{mg}, 0.015 \mathrm{mmol}$) was added $i \mathrm{Pr}_{2} \mathrm{Zn}$ ($0.08 \mathrm{mmol}, 0.8 \mathrm{~mL}, 1.0 \mathrm{M}$ toluene solution) at $0{ }^{\circ} \mathrm{C}$. To this solution was added a toluene (0.25 mL) solution of aldehyde $3(4.7 \mathrm{mg}, 0.025$ mmol) over a period of 2 h at $0^{\circ} \mathrm{C}$. After the mixture was stirred for 12 h , toluene (1.0 mL) and $i \operatorname{Pr}_{2} \mathrm{Zn}(0.3 \mathrm{mmol}, 0.3 \mathrm{~mL}, 1.0 \mathrm{M}$ toluene solution) was then slowly added at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 15 min . A toluene (0.75 $\mathrm{mL})$ solution of $3(18.8 \mathrm{mg}, 0.1 \mathrm{mmol})$ was slowly added, and the reaction
mixture stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h . Then, toluene (5.0 mL), $i-\mathrm{Pr}_{2} \mathrm{Zn}(0.8 \mathrm{mmol}, 0.8 \mathrm{~mL}$, 1.0 M toluene solution) and a toluene $(2.0 \mathrm{~mL})$ solution of $3(75.3 \mathrm{mg}, 0.4 \mathrm{mmol})$ were added successively at $0{ }^{\circ} \mathrm{C}$. After the mixture was stirred for 2 h , the reaction was quenched with $\mathrm{HCl}(1 \mathrm{M}, 3 \mathrm{~mL})$ and neutralized with a saturated NaHCO_{3} solution (10 mL). The mixture was then filtered through celite and the filtrate extracted with AcOEt (3 times). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by silica gel column chromatography on silica gel (hexane/AcOEt, 3:1, v/v) gave the (S)-pyrimidyl alkanol 4 ($115 \mathrm{mg}, 0.495 \mathrm{mmol}, 92 \% \mathrm{ee}$) in 94% yield. [b] The ee value was determined by HPLC using a chiral stationary phase (Daicel Chiralpak IB $4.6 \Phi \times 250 \mathrm{~mm}, 254 \mathrm{~nm}$ UV detector, roomt., eluent: 5% 2-propanol in hexane $(v / v), 1.0 \mathrm{~mL} / \mathrm{min}$., retention time: 11 min for $S-4$ and 15 \min for $R-4)$.

