Electronic Supplementary Material

Unusual Regiodivergence in Metal-Catalysed Intramolecular Cyclisation of γ-Allenols

Jannine L. Arbour, Henry S. Rzepa, Andrew J. P. White and King Kuok (Mimi) Hii
Department of Chemistry, Imperial College London, Exhibition Road, South Kensington SW7 2AZ, United Kingdom.

Contents

General experimental \& materials S2
Preparation of precursors, catalytic reactions, and product characterization S2-S8
X-ray crystallographic data S9-S10
References S11
Reproduced NMR spectra S12-S22

General Experimental. Preparative chemistry was performed under a dry nitrogen atmosphere, unless noted otherwise. Catalytic reactions were generally performed in air, using a Radley's 12-place reaction carousel. NMR spectra were recorded on a Bruker AVANCE 400 MHz machine operating at 400 MHz for ${ }^{1} \mathrm{H}$ NMR and 100 MHz for ${ }^{13} \mathrm{C}$ NMR in CDCl_{3} at room temperature, unless otherwise stated. Melting points were recorded using an Electrothermal Gallenhamp apparatus, and were uncorrected. Infrared spectra were recorded using a Perkin Elmer 100 series FT-IR spectrometer, equipped with a beam-condensing accessory (samples were sandwiched between diamond compressor cells). MS were recorded on a Micromass Autospec Premier Spectrometer or a VG Platform II spectrometer using EI, CI or ESI techniques. Chiral HPLC were performed on a Gilson HPLC chromatograph equipped with a Daicel Chiralcel OJ-H column, where UV detection was attained at 254 nm .

Materials. Solvents were dried by passing through columns of molecular sieves in a solvent purification system. All precursors and reagents were used as received from commercial suppliers, unless otherwise stated. Lithium diisopropyl amide (LDA) was generated in situ from reaction of n-BuLi and diisopropylamine in THF at $-78^{\circ} \mathrm{C}$.

Synthesis of terminal allenic alcohols:

2,2-Diphenylhexa-4,5-dien-1-ol, 1a. Synthesised in three steps using a modified procedure: ${ }^{1}$
(i) Propargylation: A solution of methyl 2,2-diphenylacetate ${ }^{2}(5.0 \mathrm{~g}, 22.1 \mathrm{mmol})$ in dry THF (20 mL) was added dropwise (90 min) to a solution of LDA (2 M in $\mathrm{THF}, 16.6 \mathrm{~mL}, 33.2 \mathrm{mmol}$), keeping the temperature below $-65^{\circ} \mathrm{C}$. Stirring was continued for 5 hours, before the addition of propargyl bromide (80% in toluene, 2.9 $\mathrm{mL}, 26.5 \mathrm{mmol}$). The reaction mixture was left to warm slowly to room temperature and stirred overnight. The resulting mixture was treated with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and concentrated under vacuum. The residue was subjected to column chromatography to afford methyl 2,2-diphenylpent-4-ynoate, $\mathbf{S} 1$ as a pale yellow oil ($3.0 \mathrm{~g}, 85 \%$). $\mathrm{R}_{\mathrm{f}}=0.38$ (hexanes: acetone, $30: 1$); $v_{\max }$ (thin film) $/ \mathrm{cm}^{-1}: 3317,3028,2992,1736,1466,1379,1229,1056,698 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.42-7.25(10 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.32(2 \mathrm{H}, \mathrm{d}, J=2.6), 1.95(1 \mathrm{H}, \mathrm{t}, J=2.6)$; $\delta_{\mathrm{C}}(100 \mathrm{MHz}$, CDCl_{3}): 173.8, 141.3, 128.8, 127.9, 127.3, 80.9, 71.8, 52.7, 29.3; m/z (EI): 264 ($\mathrm{M}^{+}, 5 \%$), 225 (83 \%), 205 (100 \%).
(ii) Crabbé reaction: $\mathbf{S 1}(5.3 \mathrm{~g}, 20.0 \mathrm{mmol})$ was added to a suspension of paraformaldehyde ($1.2 \mathrm{~g}, 40.0 \mathrm{mmol}$), copper bromide ($1.4 \mathrm{~g}, 10.0 \mathrm{mmol}$) and diisopropylamine ($2.8 \mathrm{~mL}, 40.0 \mathrm{mmol}$) in dioxane (120 mL). The reaction mixture was refluxed for 24 hours, before cooling to room temperature and concentrated under vacuum. The residue was purified by column chromatography to furnish methyl 2,2 -diphenylhexa-4,5dienoate, $\mathbf{S 2}$ as a yellow oil ($2.4 \mathrm{~g}, 43 \%$). $\mathrm{R}_{\mathrm{f}}=0.40$ (hexanes/ acetone, $40: 1$); $v_{\max }$ (thin film) $/ \mathrm{cm}^{-1}: 3089,3058$, $2950,1956,1731,1494,1445,1223,1202,1057,845,699 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.37-7.22(10 \mathrm{H}, \mathrm{m}), 4.95-$ $4.83(1 \mathrm{H}, \mathrm{m}) 4.48(1 \mathrm{H}, \mathrm{t}, J=2.5), 4.46(1 \mathrm{H}, \mathrm{t}, J=2.5), 3.73(3 \mathrm{H}, \mathrm{s}), 3.14(2 \mathrm{H}, \mathrm{dt}, J=2.5,7.7) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 210.1,174.4,142.2,129.0,127.9,126.9,85.8,73.8,60.6,52.4,38.1 ; \mathrm{m} / \mathrm{z}(\mathrm{CI}): 296\left(\left[\mathrm{MNH}_{4}\right]^{+}\right.$, 100\%), 279 ([MH] ${ }^{+}, 26 \%$), 219 (22%).
(iii) Reduction: A solution of $\mathbf{S 2}(5.4 \mathrm{~g}, 19.4 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(70 \mathrm{~mL})$ was added dropwise to a cooled $\left(0^{\circ} \mathrm{C}\right)$ suspension of $\mathrm{LiAlH}_{4}(1.2 \mathrm{~g}, 38.8 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(140 \mathrm{~mL})$. The reaction mixture was allowed to warm to room temperature and stirred for 2 h . The mixture was treated with water $(1.2 \mathrm{~mL}), 1 \mathrm{M} \mathrm{NaOH}(1.2 \mathrm{~mL})$ then water $(3.6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting residue was filtered, treated with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x}$ 25 mL). The combined organic extracts were dried over MgSO_{4}, concentrated under vacuum, and purified by column chromatography to afford pure $\mathbf{1 a}(4.1 \mathrm{~g}, 75 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.55$ (hexanes/EtOAc, $3: 1$); $v_{\max }$ (thin film) $/ \mathrm{cm}^{-1}: 3424,3057,2932,2882,1954,1495,1438,1021,844,699 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.41-7.17$ $(10 \mathrm{H}, \mathrm{m}), 4.79-4.68(1 \mathrm{H}, \mathrm{m}), 4.55(1 \mathrm{H}, \mathrm{t}, J=2.4), 4.53(1 \mathrm{H}, \mathrm{t}, J=2.4), 4.23(2 \mathrm{H} \mathrm{d}, J 5.0), 2.96(2 \mathrm{H}, \mathrm{dt}, J=2.5$, 7.7), $1.47(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 209.6,144.9,128.3,126.5,85.6,73.9,68.1,51.9,36.3 ; \mathrm{m} / \mathrm{z}(\mathrm{CI}):$ 268 ([MNH $\left.]^{+}, 100 \%\right), 251$ ([MH] $\left.{ }^{+}, 3 \%\right)$.

Allenic alcohol 1c was similarly prepared from methyl cyclohexanecarboxylate:

Methyl 1-(prop-2-ynyl)cyclohexanecarboxylate, S3: Yellow oil ($5.19 \mathrm{~g}, 73 \%$). $\mathrm{R}_{\mathrm{f}}=0.07$ (hexanes: acetone, 20:1); $v_{\max }$ (thin film) $/ \mathrm{cm}^{-1}: 3419,2923,2851,1718,1599,1495,1444,1026,979,754,696 . \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 3.73(3 \mathrm{H}, \mathrm{s}), 2.43(2 \mathrm{H}, \mathrm{d}, J 2.6), 2.09(2 \mathrm{H}, \mathrm{m}), 2.03(1 \mathrm{H}, \mathrm{t}, J 2.7), 1.64-1.51(3 \mathrm{H}, \mathrm{m}), 1.50-1.36(4$ $\mathrm{H}, \mathrm{m}), 1.28-1.25(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 176.0,80.3,70.8,51.8,46.7,33.1,29.0,25.5,22.9 ; \mathrm{m} / \mathrm{z}(\mathrm{CI}):$ $198\left(\left[\mathrm{MNH}_{4}\right]^{+}, 100 \%\right), 181\left([\mathrm{MH}]^{+}, 18 \%\right), 52 \%(11 \%)$; HRMS (ESI) $181.1228\left(\mathrm{MH}^{+}, \mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{2}\right.$ requires 181.1229).

Methyl 1-(buta-2,3-dienyl)cyclohexanecarboxylate, S4: Yellow oil ($2.3 \mathrm{~g}, 40 \%$). $\mathrm{R}_{\mathrm{f}}=0.33$ (hexanes/ethyl acetate, 20:1); $v_{\max }$ (thin film) $/ \mathrm{cm}^{-1}: 2932,22854,1956,1727,1453,1194,1131,1079,841 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.98(1 \mathrm{H}, \mathrm{tt}, J 6.7,8.1), 4.65(1 \mathrm{H}, \mathrm{t}, J 2.5), 4.63(1 \mathrm{H}, \mathrm{t}, J 2.5) 3.70(3 \mathrm{H}, \mathrm{s})$, $2.23(2 \mathrm{H}, \mathrm{dt}, J 2.4,8.0), 2.14-2.01(2 \mathrm{H}, \mathrm{m}), 1.65-1.50(3 \mathrm{H}, \mathrm{m}), 1.43-1.23(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ 209.6, 176.7, 85.1, 73.9, 51.5, 47.5, 39.2, 33.6, 25.8, 23.1; m/z (CI): 212 ([$\left.\left.\mathrm{MNH}_{4}\right]^{+}, 100 \%\right), 195\left([\mathrm{MH}]^{+}, 49 \%\right)$, $135(8 \%), 52(11 \%) ;$ HRMS (CI) $195.1388\left(\mathrm{MH}^{+}, \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{2}\right.$ requires 195.1385).
(1-(Buta-2,3-dienyl)cyclohexyl)methanol, 1c. The product was obtained as a colourless oil ($3.5 \mathrm{~g}, 76 \%$). $\mathrm{R}_{\mathrm{f}}=$ 0.54 (hexanes/ EtOAc, 7.5:2.5); $v_{\max }$ (thin film) $/ \mathrm{cm}^{-1}: 3339,2922,2851,1953,1452,1042,1028,836 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.11(1 \mathrm{H}, \mathrm{tt}, J=6.7,8.3), 4.69(1 \mathrm{H}, \mathrm{t}, J=2.4), 4.67(1 \mathrm{H}, \mathrm{t}, J=2.4), 3.48(2 \mathrm{H}$, close AB$), 2.11$ $(2 \mathrm{H}, \mathrm{dt}, J=2.4,8.3) 1.47(6 \mathrm{H}, \mathrm{m}), 1.36(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 209.4,85.72,73.7,68.6,38.0,34.5$, 32.2, 26.3, 21.5; m/z (CI): $184\left(\left[\mathrm{MNH}_{4}\right]^{+}, 100 \%\right), 167\left([\mathrm{MH}]^{+}, 9 \%\right), 95(19 \%), 52(20 \%) ; \operatorname{HRMS}(\mathrm{CI}) 184.1704$ $\left([\mathrm{MH}]^{+}\right.$requires 184.1701$)$.

Synthesis of internal allenic alcohols:

Preparation of benzoic acid 3-cyclohexylidene-allyl ester, S8. Compounds $\mathbf{S 5}$ - $\mathbf{S 7}$ were synthesised in 4 steps by modified procedures: $:^{3,4}$
(i) THP protection: $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(30 \mathrm{mg}, 0.02 \mathrm{mmol})$ was added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 1-ethylnyl-1cyclohexanol ($8.85 \mathrm{~g}, 71.3 \mathrm{mmol}$) and 3,4-dihydro-2H-pyran ($9.0 \mathrm{~g}, 107 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(60 \mathrm{~mL})$, and the mixture was stirred for 2 hours. The resulting solution was washed with sat. $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$, dried over MgSO_{4} and concentrated. The residue was purified by distillation to afford compound $\mathbf{S 5}$ as a colourless oil ($9.52 \mathrm{~g}, 64 \%$). bp: ($120-121{ }^{\circ} \mathrm{C}, 8$ torr) (lit. ${ }^{5} 101-103,3.6$ torr); $v_{\max }$ (thin film) $/ \mathrm{cm}^{-1}: 3307,2937,2860,1450$, $1124,1070,909,869,850,625 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.15(1 \mathrm{H}, \mathrm{dd}, J 3.5,5.0), 4.01-3.94(1 \mathrm{H}, \mathrm{m}), 3.56-3.49$ $(1 \mathrm{H}, \mathrm{m}), 2.50(1 \mathrm{H}, \mathrm{s}), 2.13-2.00(1 \mathrm{H}, \mathrm{m}), 1.97-1.81(2 \mathrm{H}, \mathrm{m}), 1.78-1.62(6 \mathrm{H}, \mathrm{m}) 1.61-1.45(6 \mathrm{H} \mathrm{m}), 1.33-1.18$ $(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 95.7,85.4,73.9,72.0,63.5,38.6,38.4,32.1,25.4,25.3,23.1,22.9,20.4 ; \mathrm{MS}$ (CI): 226 ([$\left.\left.\mathrm{MNH}_{4}\right]^{+}, 15 \%\right), 209\left([\mathrm{MH}]^{+}, 5 \%\right), 102$ (100\%), 85 (36\%).
(ii) Formylation: To a stirring solution of $\mathbf{S 5}(9.5 \mathrm{~g}, 43.2 \mathrm{mmol})$ in dry THF $(65 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}, n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $35.1 \mathrm{~mL}, 56.2 \mathrm{mmol}$) was added slowly, keeping the internal temperature below $-65^{\circ} \mathrm{C}$. After stirring
for 2 hours at $-78^{\circ} \mathrm{C}$, the solution was warmed to $0^{\circ} \mathrm{C}$ and DMPU (10 mL) was added. This was stirred for a further 30 minutes before paraformaldehyde ($2.6 \mathrm{~g}, 86.4 \mathrm{mmol}$) was added in one portion. The reaction mixture was allowed to warm to room temperature and stirred overnight, before quenching with sat. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic extracts washed with brine, dried over MgSO_{4} and the solvent evaporated. The crude material was purified by column chromatography to afford compound S6 as a colourless oil ($6.4 \mathrm{~g}, 63 \%$). $\mathrm{R}_{\mathrm{f}}=0.37$ (hexanes/EtOAc 7.5:2.5); $v_{\max }$ (thin film) $/ \mathrm{cm}^{-1}: 3350,3310,2974$, 2928, 2890, 1455, 1381, 1330, 1090, 1050, 881 ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.14(1 \mathrm{H}, \mathrm{t}, J=4.2), 4.34(2 \mathrm{H}, \mathrm{d}, J=$ $5.6), 4.02-3.93(1 \mathrm{H}, \mathrm{m}), 3.56-3.49(1 \mathrm{H}, \mathrm{m}), 2.0-1.97(2 \mathrm{H}, \mathrm{m}), 1.87-1.85(2 \mathrm{H}, \mathrm{m}), 1.75-1.65(5 \mathrm{H}, \mathrm{m}), 1.60-1.47$ $(7 \mathrm{H}, \mathrm{m}), 1.32-1.21(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 95.4,87.2,84.3,74.7,63.3,51.2,38.8,32.1,25.4,23.3$, 20.2; $m / z(\mathrm{CI}): 256$ ($\left[\mathrm{MNH}_{4}\right]^{+}, 100 \%$), 239 ($[\mathrm{MH}]^{+}, 5 \%$), 221 (78%), 203 (60%), 102 (93%).
(iii) Reduction: A solution of $\mathbf{S 6}(6.0 \mathrm{~g}, 25.2 \mathrm{mmol})$ in THF (30 mL) was added slowly to a stirred suspension of $\mathrm{LiAlH}_{4}\left(3.8 \mathrm{~g}, 100.7 \mathrm{mmol}, 4\right.$ equiv) in THF $(65 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred overnight, quench with water $(3.5 \mathrm{~mL}), 2 \mathrm{~N} \mathrm{NaOH}(3.5 \mathrm{~mL})$ and water $(10.5 \mathrm{~mL})$. The crude product was purified by column chromatography to afford $\mathbf{S} 7$ as a colourless oil $(2.55 \mathrm{~g}, 73 \%) . \mathrm{R}_{\mathrm{f}}=0.4$ (hexanes/EtOAc, 7.5:2.5); $v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1}: 3400,2924,2854,1959,1719,1458,1377,1047,721 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.23(1 \mathrm{H}, \mathrm{m}), 4.09$ $(2 \mathrm{H}, \mathrm{d}, J=5.6), 2.22-2.09(4 \mathrm{H}, \mathrm{m}), 1.65-1.52(6 \mathrm{H}, \mathrm{m}), 1.48(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 197.2, 105.9, 89.7, 61.1, 32.8, 27.4, 26.0; m/z (EI): 138 ($\mathrm{M}^{+}, 8 \%$), 84 (72\%), 55 (78\%), 49 (100%).
(iv) Benzoylation: To a stirred solution of $\mathbf{S} 7(2.5 \mathrm{~g}, 18.5 \mathrm{mmol})$, DMAP ($226 \mathrm{mg}, 1.85 \mathrm{mmol}$) and pyridine ($1.79 \mathrm{~mL}, 22.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, benzoyl chloride ($3.2 \mathrm{~mL}, 27.8 \mathrm{mmol}$) was added dropwise. After stirring overnight at room temperature, the resulting suspension was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with $1 \mathrm{~N} \mathrm{HCl}(2 \times 50 \mathrm{~mL})$, water (50 mL) and aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The organic extracts were combined, dried over MgSO_{4} and concentrated under vacuum. The crude material proved to be unstable on silica gel, so was purified to a moderate standard, and used immediately in the next step. Compound $\mathbf{S 1 0}$ was obtained as a pale yellow oil $(4.40 \mathrm{~g}, 98 \%) . \mathrm{R}_{\mathrm{f}}=0.38$ (hexanes/EtOAc, 20:1); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 8.23-7.99 $(2 \mathrm{H}, \mathrm{m}), 7.62-7.55(1 \mathrm{H}, \mathrm{m}), 7.50-7.43(2 \mathrm{H}, \mathrm{m}), 5.26(1 \mathrm{H}, \mathrm{m}), 4.80(2 \mathrm{H}, \mathrm{d}, J=6.4), 2.25-2.10(4 \mathrm{H}, \mathrm{m}), 1.71-$ $1.44(6 \mathrm{H}, \mathrm{m})$.

S9 was synthesised by a modified procedure: $:^{4}$ At $-78{ }^{\circ} \mathrm{C}$, LHMDS (1 M in THF, $50.7 \mathrm{~mL}, 50.7 \mathrm{mmol}$) was added dropwise, over 1 h , to a solution of methyl 2,2-diphenylacetate ($11.5 \mathrm{~g}, 50.7 \mathrm{mmol}$) in dry THF (100
$\mathrm{mL})$. Stirring was continued for 2 hours at $-78{ }^{\circ} \mathrm{C}$. Meanwhile, a mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}{ }^{6}(0.583 \mathrm{~g}, 10 \mathrm{~mol} \%)$ and $\mathrm{PPh}_{3}(0.798 \mathrm{~g}, 30 \mathrm{~mol} \%)$ was stirred in dry THF $(30 \mathrm{~mL})$ for 1 h at room temperature. $\mathbf{S 8}(2.5 \mathrm{~g}, 10.1 \mathrm{mmol})$ was added to this catalytic mixture and stirred for a further 2 h , before the mixture was transferred by syringe into the first solution at $-78^{\circ} \mathrm{C}$. The combined mixture was warmed to room temperature stirred overnight. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under vacuum. The residue was purified by column chromatography to afford $\mathbf{S 9}$ as a colourless oil ($2 \mathrm{~g}, 58 \%$). $\mathrm{R}_{\mathrm{f}}=0.38$ (hexanes: EtOAc, 20:1); $v_{\max }$ (thin film) $/ \mathrm{cm}^{-1}: 2926,2852,1965,1728,1599,1495,1445,1219,1058,1025,728,696 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.37-$ $7.18(10 \mathrm{H}, \mathrm{m}), 4.73(1 \mathrm{H}, \mathrm{s}), 3.72(3 \mathrm{H}, \mathrm{s}), 3.12(2 \mathrm{H}, \mathrm{d}, J 7.4), 1.96-1.84(4 \mathrm{H}, \mathrm{m}), 1.56-1.41(6 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 200.5,174.6,142.5,129.1,127.8,126.7,101.8,84.4,60.5,52.4,39.5,31.1,27.3,26.1 ; \mathrm{m} / \mathrm{z}(\mathrm{CI}):$ $364\left(\left[\mathrm{MNH}_{4}\right]^{+}, 100 \%\right), 347\left([\mathrm{MH}]^{+}, 17 \%\right), 287(21 \%), 268$ (34%); HRMS (EI) $347.2015\left(\mathrm{MH}^{+} \mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{2}\right.$ requires 347.2011).
Reduction: A solution of $\mathbf{S} \mathbf{9}(1.6 \mathrm{~g}, 7.2 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added slowly to a stirring suspension of $\mathrm{LiAlH}_{4}(1.09 \mathrm{~g}, 28.8 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and left overnight. The reaction was quenched by successive addition of $\mathrm{H}_{2} \mathrm{O}(3.5 \mathrm{~mL}), 1 \mathrm{~N} \mathrm{NaOH}(3.5 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(10.5 \mathrm{~mL})$. The resulting suspension was filtered and the filtrate was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, concentrated under vacuum and purified by column chromatography, to afford $\mathbf{1 b}$ as a white solid $(0.80 \mathrm{~g}, 47 \%) . \mathrm{R}_{\mathrm{f}}=0.13$ (hexanes/EtOAc, 20:1); mp $49-55^{\circ} \mathrm{C} . v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1}: 3558,3058,2921,2851$, 1964, 1494, 1444, 1234, 1069, 1044, 1044, 754, 695; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.36-7.16$ ($10 \mathrm{H}, \mathrm{m}$), 4.70-4.60 $(1 \mathrm{H}, \mathrm{m}), 4.21(2 \mathrm{H}, \mathrm{s}), 2.90(2 \mathrm{H}, \mathrm{d}, J 7.6), 1.98(4 \mathrm{H}, \mathrm{d}, J 4.9), 1.54-1.46(6 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 200.2$, 145.2, 128.4, 128.2, 122.9, 101.7, 84.2, 68.4, 52.2, 37.8, 31.3, 27.4, 26.1; m/z (EI): 318 ($\mathrm{M}^{+}, 5 \%$), 287 (64\%), $227(40 \%), 197(100 \%), 105(91 \%), 91(82 \%) ;$ HRMS (EI) $318.1983\left(\mathrm{M}^{+}, \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}\right.$ requires 318.1984).

Typical procedure for catalytic reactions:

A Radley's reaction tube was charged with a magnetic stir bar, the catalyst $\operatorname{AgOTf}, \mathrm{Sn}(\mathrm{OTf})_{2}$ or $\mathrm{Zn}(\mathrm{OTf})_{2}(0.06$ $\mathrm{mmol})$ and the corresponding γ-allenic alcohol ($\mathbf{1 a}, \mathbf{1 b}$ or $\mathbf{1 c}$) (0.4 mmol). A PTFE screwcap was fitted, and DCE $(0.3 \mathrm{~mL})$ was added to the contents of the tube via syringe through the rubber septum. The tube was then positioned in a reaction carousel, and left to stir at room temperature. Conversions were monitored by TLC and/or NMR integration. Upon completion, the solvent was evaporated and the residue purified by column chromatography (hexanes/EtOAc, 20:1).

4,4-Diphenyl-2-vinyltetrahydrofuran, 2a. ${ }^{1}$ Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.26 ; 5 \%$ IPA in n-hexane, $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ major $)=13.5, \mathrm{t}_{\mathrm{R}}($ minor $)=17.9 ; \quad v_{\max }($ (thin film $) / \mathrm{cm}^{-1}: 2866,1493,1445$,

1054, $987,925,874,842,755,696 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.40-7.17(10 \mathrm{H}, \mathrm{m}), 5.93(1 \mathrm{H}, \mathrm{ddd}, J 6.9,10.2$, 17.1), 5.28 ($1 \mathrm{H}, \mathrm{d}, J 17.1$), 5.14 ($1 \mathrm{H}, \mathrm{d}, J 10.2$), $4.71(1 \mathrm{H}, \mathrm{d}, J 8.7), 4.52-4.42(1 \mathrm{H}, \mathrm{m}), 4.19(1 \mathrm{H}, \mathrm{d}, J 8.7), 2.69$ $(1 \mathrm{H}, \mathrm{dd}, J 5.9,12.1), 2.48(1 \mathrm{H}, \mathrm{dd}, J 9.7,12.1) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 146.0,145.6,138.8,128.5,128.4,127.3$, $127.2,126.5,126.3,115.9,79.72,76.7,56.2,45.2$; (CI): 268 ([MNH $]^{+}, 100 \%$), 251 ([MH] ${ }^{+}, 4 \%$), $269(33 \%)$.

2-(Cyclohexylidenemethyl)-4,4-diphenyltetrahydrofuran, 2b. Colourless oil. $\mathrm{R}_{\mathrm{f}}=$ $0.31 ; v_{\max }$ (thin film) $/ \mathrm{cm}^{-1}: 2924,2863,1668,1486,1446,1143,1045,1003,754,702$, $696 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.40-7.18(10 \mathrm{H}, \mathrm{m}), 5.26(1 \mathrm{H}, \mathrm{d}, J 8.7), 4.80(1 \mathrm{H}, \mathrm{td}, J 5.9$, 9.3), $4.66(1 \mathrm{H}, \mathrm{d}, J 8.7), 4.18(1 \mathrm{H}, \mathrm{d}, J 8.7), 2.64(1 \mathrm{H}, \mathrm{dd}, J 5.9,12.2), 2.42(1 \mathrm{H}, \mathrm{dd}, J 9.7$, 12.2), 2.26-2.03 ($4 \mathrm{H}, \mathrm{m}$), $1.53(7 \mathrm{H}, \mathrm{dd}, J 11.5,40.4) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 146.3,146.1,144.1,128.4,128.3$, $127.2,126.4,126.2,122.5,76.9,74.3,56.4,45.8,37.1,29.2,28.31,27.8,26.7 ; ~ m / z(E I): 318\left(\mathrm{M}^{+}, 100 \%\right)$, 288 (54\%), 241 (48%), 205 (60%), 81 (68%); HRMS (EI) $318.1985\left(\mathrm{M}^{+}, \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}\right.$ requires 318.1984).

3-Vinyl-2-oxaspiro[4.5]decane, 2c. Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.28 ; v_{\max }$ (thin film) $/ \mathrm{cm}^{-1}$: 2922, 2880, 1605, 1449, 1051, 987, 917, 848; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.88$ (1 H , ddd, J 6.7 , $10.3,17.0), 5.27-5.20(1 \mathrm{H}, \mathrm{m}), 5.11-5.08(1 \mathrm{H}, \mathrm{m}), 4.37(1 \mathrm{H}, \mathrm{dd}, J 6.7,15.5), 3.62(2 \mathrm{H}, \mathrm{dd}$, $J 8.4,27.9), 1.95(1 \mathrm{H}, \mathrm{dd}, J 6.8,12.5), 1.58-1.35(11 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 139.5,115.1,79.7,78.6$, 44.8, 44.1, 36.8, 35.5, 26.0, 24.1, 23.6; m/z (CI): 350 ([MNH $]^{+}$, 4\%), 333 ([MH], 2%), 184 (23\%), 167 (100\%), 153 (18\%); HRMS (CI) $167.1430\left(\mathrm{MH}^{+}, \mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}\right.$ requires 167.1436).

4: Isolated as a crystalline solid (recrystallised from hexane). mp: $83-86^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.23$; $v_{\max }$ (thin film)/ $\mathrm{cm}^{-1}: 2950,2932,2858,1459,1377,1072,1045,767,756,708 ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.49-7.15(8 \mathrm{H}, \mathrm{m}), 6.76(1 \mathrm{H}, \mathrm{d}, J 7.4), 4.07(1 \mathrm{H}, \mathrm{d}, J 7.7), 3.88(1 \mathrm{H}, \mathrm{dd}, J$ $3.5,7.7), 2.34-2.18(2 \mathrm{H}, \mathrm{m}), 2.09-1.94(1 \mathrm{H}, \mathrm{m}), 1.75(3 \mathrm{H}, \mathrm{s}), 1.69-1.59(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $143.24,142.57,140.25,128.54,127.44,127.18,127.14,126.24,123.32,120.30,72.23,71.35$, $42.83,33.69,29.27,21.87 . m / z(\mathrm{CI}): 268$ ($\left[\mathrm{MNH}_{4}\right]^{+}, 100 \%$), 251 ([MH] ${ }^{+}, 33 \%$), 220 (11\%), 52 (57%); HRMS (ESI) $251.1431\left(\mathrm{MH}^{+}, \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}\right.$ requires 251.1436).

5: Isolated as a crystalline solid (recrystallised from hexane). $\mathrm{R}_{\mathrm{f}}=0.27$; mp: 102$108^{\circ} \mathrm{C}$. $v_{\max }$ (thin film) $/ \mathrm{cm}^{-1}: 2924,2853,1954,1493,1445,1204,1055,1039$, $1021,879,750,696 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $7.37-7.09(17 \mathrm{H}, \mathrm{m}), 7.00-6.95(1 \mathrm{H}$, $\mathrm{m}), 6.89-6.82(2 \mathrm{H}, \mathrm{m}), 4.70-4.56(1 \mathrm{H}, \mathrm{m}), 4.54-4.36(2 \mathrm{H}, \mathrm{m}), 4.15(1 \mathrm{H}, \mathrm{d}, J=$ 8.4), 3.94 ($1 \mathrm{H}, \mathrm{dd}, J=2.8,11.9$), $3.89(1 \mathrm{H}, \mathrm{d}, J=8.4), 3.20-3.08(1 \mathrm{H}, \mathrm{m}), 2.95-2.87(1 \mathrm{H}, \mathrm{m}), 2.85(1 \mathrm{H}, \mathrm{d}, J=$
11.9), 2.42-2.32 ($1 \mathrm{H}, \mathrm{m}$), 1.97 ($1 \mathrm{H}, \mathrm{dd}, J=3.2,12.6$), $1.62(1 \mathrm{H}, \mathrm{dt}, J=3.3,13.3), 1.29(1 \mathrm{H}, \mathrm{dd}, J=3.8,13.3)$, $1.22(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 209.7,146.5,146.2,146.1,145.6,128.5,128.2,128.0,127.9,127.8$, 127.7, 127.2, 126.0, 125.9, 125.6, 97.0, 85.9, 73.6, 67.5, 64.9, 50.3, 45.0, 36.3, 32.3, 29.3, 23.9; Product fragmentised using MS. $m / z(\mathrm{CI}): 268$ ($\left[\mathrm{MNH}_{4}{ }^{+}\right], 20 \%$), 251 ($\left[\mathrm{MH}^{+}\right], 100 \%$).

6-cyclohexyl-3,3-diphenyl-3,4-dihydro-2H-pyran, 6a: Isolated as a white solid. $\mathrm{R}_{\mathrm{f}}=$ 0.28 ; mp: $82-84^{\circ} \mathrm{C} . v_{\max }$ (thin film) $/ \mathrm{cm}^{-1}: 2922,2856,1598,1493,1445,1131,1074$, $1056,1005,772,755,697 ; \delta_{\text {н }}(400 \mathrm{MHz}, \mathrm{CDCl} 3) 7.52-7.11(10 \mathrm{H}, \mathrm{m}), 5.75-5.71(1 \mathrm{H}$, $\mathrm{m}), 4.69(1 \mathrm{H}, \mathrm{d}, J 12.0), 3.80(1 \mathrm{H}, \mathrm{d}, J 10.9), 3.59(1 \mathrm{H}, \mathrm{d}, J 12.0), 2.49(2 \mathrm{H}, \mathrm{dd}, J 3.6$, 9.0), $2.03(3 \mathrm{H}, \mathrm{s}), 1.90(1 \mathrm{H}, \mathrm{s}), 1.68-1.40(11 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 146.73,145.98,138.53,129.07$, $128.24,127.89,127.04,126.26,125.59,123.36,82.38,75.10,45.88,34.92,29.69,26.54,24.97,24.29,22.63$, 22.52; m/z (CI): 336 ([MNH $\left.]^{+}, 100 \%\right), 319\left([M H]^{+}, 51 \%\right), 301$ (49\%); HRMS (ESI) $319.2054\left(\mathrm{MH}^{+}\right.$, $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}$ requires 319.2062).

2-cyclohexenyl-5,5-diphenyltetrahydro-2H-pyran, 6b: Isolated as a colourless oil. $\mathrm{R}_{\mathrm{f}}=$
 $0.26 ; v_{\max }$ (thin film) $/ \mathrm{cm}^{-1}: 3023,2924,2862,1668,1597,1492,1446,1144,1044,1003$, 939, 857, 780, 753, 696, 680; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 7.53-6.99 ($10 \mathrm{H}, \mathrm{m}$), $5.50(1 \mathrm{H}, \mathrm{m})$, 4.61 ($1 \mathrm{H}, \mathrm{d}, J 8.7$), 4.26-4.19 ($1 \mathrm{H}, \mathrm{m}$), 4.19-4.16 ($1 \mathrm{H}, \mathrm{m}$), 2.62 ($1 \mathrm{H}, \mathrm{dd}, J 5.8,12.2$), $2.40-2.28(2 \mathrm{H}, \mathrm{m}), 2.14(1 \mathrm{H}, \mathrm{dd}, J 5.9,14.0), 2.03-1.93(4 \mathrm{H}, \mathrm{m}), 1.67-1.52(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 146.44,146.18,134.78,128.35,128.28,127.18,127.14,126.34,126.14,123.22,55.87,44.87,44.68$, 28.83, 25.25, 22.89, 22.33. m/z (CI): 336 ([MNH4] ${ }^{+}$100\%), 319 ([MH], 38%), 240 (78\%), 223 (33\%); HRMS (ESI) $319.2053\left(\mathrm{MH}^{+}, \mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}\right.$ requires 319.2062).

7: Isolated as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.56$; $v_{\max }$ (thin film)/ $\mathrm{cm}^{-1}: 2921,2850,1954$, $1451,1371,1245,1201,1104,1044,883,836,765$; Two conformational isomers can be identified in solution (ratio $=1: 1.26) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{C}_{7} \mathrm{D}_{8}, 373 \mathrm{~K}\right), 5.05$ (minor, $1 \mathrm{H}, \mathrm{tt}, J 6.7,8.0$), 4.92 (major, $1 \mathrm{H}, \mathrm{tt}, J 6.7,8.1$), 4.47 (minor, $2 \mathrm{H}, \mathrm{dt}, J$ 2.6, 6.7), 4.43 (major, $2 \mathrm{H}, \mathrm{dt}, J$ 2.5, 6.7), 3.46-3.44 (minor, $2 \mathrm{H}, \mathrm{m}$), 3.38-3.26 (major, $2 \mathrm{H}, \mathrm{m}$), 3.22-3.14 (major, $2 \mathrm{H}, \mathrm{m}$), 3.16-3.15 (minor, $2 \mathrm{H}, \mathrm{m}$), 2.14-2.07 (minor, $2 \mathrm{H}, \mathrm{m}$), 1.93 (major, $2 \mathrm{H}, \mathrm{dt}, J 2.5,8.1$), 1.63 $1.59(3 \mathrm{H}, \mathrm{m}), 1.52-1.49(2 \mathrm{H}, \mathrm{m}), 1.40-1.10(48 \mathrm{H}, \mathrm{m}), 1.04-0.97(1 \mathrm{H}, \mathrm{m})$; Due to the existence of two conformational isomers the carbon spectra was too complicated to be assigned. $\mathrm{m} / \mathrm{z}(\mathrm{CI}): 350$ ($\left[\mathrm{MNH}_{4}\right]^{+}, 2 \%$), $333\left([\mathrm{MH}]^{+}, 4 \%\right), 184(24 \%), \quad 167(100 \%), 153(17 \%) ;$ HRMS (CI) $333.2798\left(\mathrm{MH}^{+}, \mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{2}\right.$ requires $333.2794)$.

X-Ray Crystallography

Crystal data for 4: $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}, M=250.32$, orthorhombic, Pna_{1} (no. 33), $a=14.1920$ (13), $b=12.8979$ (13), c $=7.4178(6) \AA, V=1357.8(2) \AA^{3}, Z=4, D_{\mathrm{c}}=1.225 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.074 \mathrm{~mm}^{-1}, T=173 \mathrm{~K}$, colourless platy needles, Oxford Diffraction Xcalibur 3 diffractometer; 2203 independent measured reflections ($R_{\mathrm{int}}=$ $0.0798), F^{2}$ refinement, $R_{1}(\mathrm{obs})=0.050, w R_{2}($ all $)=0.098,1140$ independent observed reflections $\left[\left|F_{0}\right|>\right.$ $\left.4 \sigma\left(\left|F_{0}\right|\right), 2 \theta_{\max }=55^{\circ}\right], 172$ parameters. The absolute structure of $\mathbf{3}$ could not be determined by either R-factor tests $\left[R_{1}^{+}=0.0497, R_{1}^{-}=0.0497\right]$ or by use of the Flack parameter $\left[x^{+}=+0(3), x^{-}=+1(3)\right] . \operatorname{CCDC726110}$.

Crystal data for 5: $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{O}_{2}, M=500.65$, monoclinic, $P 2_{1} / c$ (no. 14), $a=6.3771(3), b=19.8345(8), c=$ $23.2868(12) \AA, \beta=97.321(4)^{\circ}, V=2921.5(2) \AA^{3}, Z=4, D_{\mathrm{c}}=1.138 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=0.530 \mathrm{~mm}^{-1}, T=293$ K, colourless needles, Oxford Diffraction Xcalibur PX Ultra diffractometer; 4532 independent measured reflections $\left(R_{\text {int }}=0.0278\right), F^{2}$ refinement, $R_{1}(\mathrm{obs})=0.048, w R_{2}(\mathrm{all})=0.128,2460$ independent observed absorption-corrected reflections $\left[\left|F_{\mathrm{o}}\right|>4 \sigma\left(\left|F_{\mathrm{o}}\right|\right), 2 \theta_{\max }=126^{\circ}\right], 357$ parameters. CCDC726111.

The crystals of $\mathbf{4}$ and $\mathbf{5}$, neither of which contains any atoms heavier than oxygen, both grew as thin needles. It was not surprising, therefore, that they were both weak scatterers of X-rays, and this led to the data collections being trimmed to 45° and 120° in 2θ for $\mathbf{4}$ and $\mathbf{5}$ respectively. Compound $\mathbf{4}$ crystallised in a polar space group, $P n a 2_{1}$ (no. 33), but it proved impossible to determine the correct absolute structure, which was not surprising given the lack of any atoms heavier than oxygen and the use of $\mathrm{Mo}-\mathrm{K} \alpha$ radiation. The terminal $\mathrm{C}(11)=\mathrm{C}(12)=\mathrm{C}(13)$ unit in the structure of $\mathbf{5}$ was found to be disordered. Two orientations were identified of ca. 80 and 20% occupancy, and the equivalent bond lengths and angles of the two orientations were lightly restrained to be equal. Only the non-hydrogen atoms of the major occupancy orientation were refined anisotropically. The positions of the $\mathrm{C}(13)$ and $\mathrm{C}\left(13^{\prime}\right)$ protons in the structure of $\mathbf{5}$ were calculated on the basis of trigonal planar geometries at $\mathrm{C}(13)$ and $\mathrm{C}\left(1^{\prime}\right)$, and the assumption that these planes would be coplanar with the $\mathrm{C}(10)-\mathrm{C}(11)$ bond. Once placed, these protons were allowed to ride on their parent atoms.

Fig. S1 The molecular structure of 4 (50% probability ellipsoids).
Fig. S2 The molecular structure of 5 (30\% probability ellipsoids).

Fig. S1

Fig. $\mathbf{S} 2$

References

1. Zhang, Z.; Liu, C.; Kinder, R. E.; Han, X.; Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc. 2006, 128, 9066.
2. Klamo, S. B.; Wendt, O. F.; Henling, L. M.; Day, M. W.; Bercaw, J. E. Organometallics 2007, 26, 3018.
3. Zhang, Z.; Bender, C. F.; Widenhoefer, R. A. Org. Lett., 2007, 9, 2887.
4. Löfstedt, J.; Franzén, J.; Bäckvall, J-E. J. Org. Chem. 2001, 66, 8015.

Figure S3a. ${ }^{1} \mathrm{H}$ NMR spectra of 1a.

Figure S3a. ${ }^{13} \mathrm{C}$ NMR spectra of 1a.
-209.62

S12

Figure S4a. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 b}$.

Figure S4b. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 b}$.
Noल

$\underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{n} \underset{\sim}{n} \underset{\sim}{n}$
No
1b

Figure S5a. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 c}$.

Figure S5b. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 c}$.

Figure S6a. ${ }^{1} \mathrm{H}$ NMR spectra of 2a.

Figure S6b. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 a}$.

T 1	1	1								1		1	1	1			1	1						
145	135	125	115	105	95	90	85		${ }_{1} 7570$	65	60	55	50	45	40	35	30	25	20	15	10	5	0	0

Figure S7a. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 b}$.

Figure S7b. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 b}$.

No
in

Figure S8a. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 c}$.

Figure S8b. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 c}$.

Figure S9a. ${ }^{1} \mathrm{H}$ NMR spectra of 4 .

Figure S9b. ${ }^{13} \mathrm{C}$ NMR spectra of 4 .

Figure S10a. ${ }^{1} \mathrm{H}$ NMR spectra of 5 .

Figure S10b. ${ }^{13} \mathrm{C}$ NMR spectra of 5 .

Figure S11a. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{6 a}$.

Figure S11b. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 a}$.

Figure S12a. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{6 b}$.

Figure S12b. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 b}$.

Figure S13a. ${ }^{1} \mathrm{H}$ NMR spectra of 7 .

Figure S13b. ${ }^{13} \mathrm{C}$ NMR spectra of 7 .

