Synthesis

All chemicals were purchased from Aldrich in the highest quality commercially available. All the solvents were dried prior to use. The 1,7-dimethyl-1,4,7,10-tetrazacyclo-dodecane **1** was prepared as described in ref.: M. Ciampolini, P. Dapporto, M. Micheloni, N. Nardi, P. Paoletti and F. Zanobini, J. Chem. Soc., *Dalton Trans.*, 1984, 1357.

Scheme of the synthesis

4-(4,10-Dimethyl-1,4,7,10-tetraazacyclododec-1-yl)-7-nitrobenzo[1,2,5]oxadiazole (L)

A solution (200 cm³) of NBD-chloride (**2**) (1 g, 5 mmol) in freshly distilled anhydrous toluene and a solution (200 cm³) of 1.7-dimethyl-1,4,7,10-tetraazacyclododecane (**1**) (1.0 g, 5 mmol) in freshly distilled toluene were added simultaneously at room temperature to 200 cm³ of vigorously stirred anhydrous toluene. The addition was completed in eight hours after which the resulting suspension was stirred for a further 2 days. The solid formed was filtered, washed with toluene and dried under vacuum. The orange solid obtained was recrystalized from hot aqueous HCl 3M, obtaining **L**·4HCl (1.5 g, 59%). Anal. Calcd for C₁₆H₂₉Cl₄N₇O₃: C, 37.74; H, 5.74; N, 19.25. Found: C, 37.7; H, 5.6; N, 19.3. ¹H NMR (D₂O, pH=2, 25 °C): δ 8.42 (1H, d, *J* = 9.1 Hz), 6.48 (1H, d, *J* = 9.1 Hz), 4.45 (2H, m), 4.15 (2H, m), 3.55 (4H, m), 3.33 (8H, m), 2.93 (6H, s). ¹³C NMR (D₂O, pH=2, 25 °C): δ 146.8, 146.5, 145.5, 137.9, 125.0, 107.4, 57.3, 57.1, 55.9, 51.9, 43.1.

Table S1.

Selected bond distances (Å) and bon angles (°) of the complex cation $[LCuCl]^+$ for 1 and 2.

	1	2
Bond distances		
Cu(1)-N(1)	2.050(8)	2.061(5)
Cu(1)-N(2)	2.044(9)	2.019(5)
Cu(1)-N(3)	2.037(8)	2.045(6)
Cu(1)-N(4)	2.118(8)	2.142(5)
Cu(1)-Cl(1)	2.427(3)	2.376(2)
Bond angles		
Cl(1)-Cu(1)-N(1)	105.2(3)	106.8(2)
Cl(1)-Cu(1)-N(2)	97.1(3)	98.0(2)
Cl(1)-Cu(1)-N(3)	105.6(2)	103.0(2)
Cl(1)-Cu(1)-N(4)	117.7(3)	116.1(2)
Cu(1)-N(1)-C(9)	116.3(7)	113.9(4)
Cu(1)-N(3)-C(10)	112.9(7)	115.9(5)
Cu(1)-N(4)-C(11)	120.2(7)	122.2(4)

Table S2.

Intermolecular contacts in 1 and 2.

	NH […] O distance (Å)	NHO angle (°)
1		
N(2)-H(2n) O(11)	2.35(1)	147.5(6)
2		
N(2)-H(2n) O(1w)	2.83(1)	125.3(4)
N(2)-H(2n) N(6)'	2.420(6)	129.5(4)

° = x+1, −y+0.5, z+0.5

Variation of the absorption spectra of **L** in 0.15 M NMe₄Cl aqueous solution at various pH values. $[\mathbf{L}]=5 \times 10^{-5}$ M.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Figure S2

Variation of the emission spectra of **L** in 0.15 M NMe₄Cl aqueous solution at various pH values. [**L**]= $5x10^{-6}$ M, λ_{ex} =476 nm.

Variation of the absorption spectra of **L** in acetonitrile by adding $Cu(ClO_4)_2$: [**L**]=5x10⁻⁵M, [Cu²⁺]= from 0 to 5x10⁻⁵ M.

Variation of the absorption spectra of **L** in acetonitrile by adding $Zn(ClO_4)_2$: [**L**]=4.5x10⁻⁵M, $[Zn^{2+}]$ = from 0 to 4.5x10⁻⁵ M.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Figure S5

Variation of the emission spectra of **L** in acetonitrile by adding $Zn(ClO_4)_2$: [**L**]=10⁻⁵M, [Zn²⁺]= from 0 to 10⁻⁵ M, λ_{ex} =486 nm.