Supporting information

Highly Enantioselective Synthesis of Tertiary Alcohols: C₂-Symmetric N,N'-Dioxide-Sc(III) Complex Promoted Direct Aldol Reaction of α-Ketoesters and Diazo Diazoacetate Esters

Fei Wang, Xiaohua Liu, Yulong Zhang, Lili Lin, and Xiaoming Feng*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.

1.	General	.S2		
2.	General procedure for chiral <i>N</i> , <i>N</i> '-dioxides preparation	.S2		
3.	General procedure for asymmetric Aldol reaction of α -ketoesters and diazoacetate			
	esters	.S2		
4.	Optimization of conditions	.S3		
5.	The analytical and spectral characterization data of Aldol react	tion		
	products	.S5		
6.	Copy of ¹ H NMR and ¹³ C NMR spectra for some products	520		
7.	References	540		

1. General

¹H NMR spectra were recorded on commercial instruments (400 MHz). Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, $\delta = 7.26$). Data are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz), integration, and assignment. ¹³C NMR data were collected on commercial instruments (100 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, $\delta = 77.0$). The enantiomeric excesses were determined by HPLC analysis on Daicel Chiralcel AD or AD-H column at 254 nm in comparison with the authentic racemates. Optical rotations were measured on a Rudolph Research analytical with a sodium lamp and are reported as follows: [α]_D^T (c = g/100 mL, solvent).

Commercial grade reagents were used without further purification. All reactions were carried out under nitrogen atmosphere and monitored by thin-layer chromatography. α -Ketoesters have been prepared in various methods, such as addition of Grignard reagents to oxalates,¹ Friedel-Crafts reaction.²

2. General procedure for chiral N,N'-dioxides preparation

The N,N'-dioxide ligand L1-L4, L6-L7 were synthesized by the same procedure in the literature.³

3. General procedure for the Aldol Reaction of α-Ketoesters and

Diazoacetate Esters

The mixture of ligand L4 (10.0 mg, 0.015 mmol), $Sc(OTf)_3$ (4.9 mg, 0.010 mmol) in CH_2Cl_2 (0.2 mL) was stirred at 30 °C for 30 min under nitrogen atmosphere. Then α -ketoester 1 (15 μ L, 0.1 mmol) and diazoacetate esters 2 (22 μ L, 0.2 mmol) were added sequently under stirring. The reaction mixture was stirred at 30 °C for 72 h and directly purified by flash chromatography on silica gel (ethyl acetate : petroleum ether = 1:10) to obtain the corresponding tertiary alcohols.

4. Optimization of the conditions

MeO Ph +	OEt L4-St	c(0Tf) ₃ (1:1; 10 mol%) Solvent, 30 [°] C		
1a	2a		3a	
entry	metal	solvent	yield $(\%)^b$	ee $(\%)^c$
1	In(OTf) ₃	CH_2Cl_2	trace	-
2	La(OTf) ₃	CH_2Cl_2	trace	-
3	Yb(OTf) ₃	CH_2Cl_2	trace	-
4	Zn(OTf) ₃	CH_2Cl_2	trace	-
5	Sc(OTf) ₃	CH_2Cl_2	54	92
6	Sc(OTf) ₃	toluene	25	45
7	Sc(OTf) ₃	THF	trace	-
8	Sc(OTf) ₃	MeOH	15	57
9	Sc(OTf) ₃	CHCl ₃	46	87
10	Sc(OTf) ₃	CH ₂ ClCH ₂ Cl	50	90

Table 1. Screening of metals and solvents.^a

^{*a*} Reactions were carried out with α -ketoesters (0.1 mmol) and ethyl diazoacetate (0.2 mmol) in solvent (1.0 mL) at 30 °C for 48 h. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC.

Table 2. Optimization of the ratio of ligand to metal and the reaction concentration.^a

	OEt <u>10 mol% S</u> CH ₂ Cl ₂	<u>c(0Tf)₃</u> , L4 , 30 °C MeO	OH O Ph OEt	
entry	Za Ratio of	Reaction	$\frac{3a}{\sqrt{6}}$	$ee(\%)^{c}$
ondy	ligand/metal	concentration	<i>y</i> 1010 (70)	
1	2:1	0.1 M	35	93
2	1.5:1	0.1 M	60	92
3	1:1	0.1 M	54	92
4	1:1.5	0.1 M	40	91

5	1:2	0.1 M	36	90
6	1:1	0.5 M	70	93
7	1:1	0.2 M	56	92
8	1:1	0.5 M	76	93

^{*a*} Reactions were carried out with α -ketoesters (0.1 mmol) and ethyl diazoacetate (0.2 mmol) in CH₂Cl₂ at 30 °C for 48 h. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC.

Table 3. Optimization of the reaction in DCE and CHCl₃ using various catalyst loadings at 40 °C.^{*a*}

MeO O 1a	$ \begin{array}{c} O \\ O \\$.4 OH °C MeO ↔ Ph O N 3a	O OEt	
entry	Catalyst	solvent	yield $(\%)^b$	$ee(\%)^{c}$
	loading			
1	10	DCE	62	90
2	10	CHCl ₃	60	90
3	5	DCE	60	89
4	5	CHCl ₃	56	88

^{*a*} Reactions were carried out with α -ketoesters (0.1 mmol) and ethyl diazoacetate (0.2 mmol) in solvent (0.1 mL) at 40 °C for 72 h. The ratio of ligand/metal was 1.5:1. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC.

Table 4. Optimization of the ratio between α-ketoester and ethyl diazoacetate.^{*a*}

MeO Ph +	OEt -	10 mol% Sc(0Tf)₃ , L4 CH2Cl₂, 30 °C	$\begin{array}{cccc} 4 & & OH & O\\ & & & & \\ & & & & \\ & & & & \\ & & & &$	
Ta	2a		3a	
entry	ethy	yl diazoacetate	yield $(\%)^b$	$ee(\%)^c$
	/α-	ketoesters		
1	1		70	89
2	1.5		72	90
3	2		76	93

^{*a*} Reactions were carried out with α -ketoesters (0.1 mmol) and various equiv of ethyl

diazoacetate in 0.1 mL CH₂Cl₂ at 30 °C for 72 h. The ratio of ligand/metal was 1.5:1.. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC.

5. The analytical and spectral characterization data of direct Aldol

reaction products

4-ethyl 1-methyl 3-diazo-2-hydroxy-2-phenylsuccinate

(C₁₃H₁₄N₂O₅) a yellow viscous liquid; 76% yield, $93\% \ ee, \ [\alpha]_D^{27} = +161.7 \ (c = 0.24 \ in \ CH_2Cl_2); \ HPLC$ DAICEL CHIRALCEL AD, 2-propanol/n-hexane =

20/80, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 6.5 min (major) and 11.2 min (minor); ¹H NMR (400 MHz, CDCl₃) 1.27 (t, *J* = 7.0 Hz, 3H), 3.79 (s, 3H), 4.17-4.29 (m, 2H), 4.52 (s, 1H), 7.31-7.34 (m, 3H), 7.35-7.36 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) 13.3, 52.5, 60.2, 71.8, 125.3, 127.6, 128.0, 135.2, 164.7, 171.6 ppm; HRMS (ESI-TOF) calcd for C₁₃H₁₄N₂O₅ ([M+Na⁺]) = 301.0800, Found 301.0800.

dimethyl 3-diazo-2-hydroxy-2-phenylsuccinate

 $\sum_{OH} \sum_{OH} \sum_{i=1}^{N_2} \sum_{j=1}^{COOMe} (C_{12}H_{12}N_2O_5) \text{ a yellow solid; 78\% yield, 95\% } ee, \\ (\alpha)_D^{27} = +76.0 (c = 0.20 \text{ in } CH_2Cl_2); HPLC DAICEL CHIRALCEL AD, 2-propanol/n-hexane = 20/80, flow rate = 1.0 mL/min,$ $\lambda = 254 nm, retention time: 6.2 min (major) and 9.7 min (minor); ¹H NMR (400 MHz, CDCl_3) 3.76-3.83 (m, 6H), 4.52 (s, 1H), 7.36-7.43 (m, 3H), 7.68-7.71 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl_3) 51.4, 53.0,$ 75.6, 125.3, 127.6, 128.1, 135.1, 165.0, 171.5 ppm; HRMS (ESI-TOF) calcd for C₁₂H₁₂N₂O₅ ([M+Na⁺]) = 287.0644, Found 287.0643.

4-ethyl 1-methyl 3-diazo-2-hydroxy-2-m-tolylsuccinate

N₂ COOEt (C₁₄H₁₆N₂O₅) a yellow viscous liquid; 68% yield, COOMe 96% *ee*, $[\alpha]_D^{27} = +160.0$ (c = 0.20 in CH₂Cl₂); HPLC DAICEL CHIRALCEL AD,

2-propanol/n-hexane = 20/80, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 5.8 min (major) and 9.9 min (minor); ¹H NMR (400 MHz, CDCl₃) 1.27-1.31 (t, *J* = 7.0 Hz, 3H), 2.17 (s, 3H), 3.82 (s, 3H), 4.40-4.46 (m, 2H), 4.50 (s, 1H), 7.15-7.45 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃) 13.3, 20.5, 29.4, 52.9, 60.3, 122.2, 125.6, 127.6, 128.8, 135.1,

135.5, 164.8, 171.7 ppm; HRMS (ESI-TOF) calcd for $C_{14}H_{16}N_2O_5$

 $([M+Na^+]) = 315.0957$, Found 315.0967.

dimethyl 3-diazo-2-hydroxy-2-m-tolylsuccinate

 N_2 COOMe (C₁₃H₁₄N₂O₅) a yellow solid; 70% yield, 97% *ee*, $(\alpha]_D^{27} = +231.5$ (c = 0.11 in CH₂Cl₂); HPLC DAICEL CHIRALCEL AD, 2-propanol/n-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 6.0 min (major) and 9.3 min (minor); ¹H NMR (400 MHz, CDCl₃) 2.37 (s, 3H), 3.80-3.82 (m, 3H), 4.20-4.30 (m, 3H), 4.50 (s,1H), 7.15-7.45 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃) 13.2, 20.4, 52.6, 60.2, 122.3, 125.6, 127.6, 128.8, 135.0, 137.5, 165.1, 171.6 ppm; HRMS (ESI-TOF) calcd for C₁₃H₁₄N₂O₅

 $([M+Na^+]) = 301.0800$, Found 301.0797.

4-ethyl 1-methyl 3-diazo-2-hydroxy-2-p-tolylsuccinate

 N_2 COOEt (C₁₄H₁₆N₂O₅) a yellow viscous liquid; 70% yield, OH^{OOMe} 93% *ee*, $[\alpha]_D^{27} = +104.0$ (c = 0.20 in CH₂Cl₂); HPLC DAICEL CHIRALCEL AD, 2-propanol/n-hexane = 20/80, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 6.4 min (major) and 9.9 min (minor); ¹H NMR (400 MHz, CDCl₃) 1.27-1.31 (t, *J* = 7.2 Hz, 3H), 2.35 (s, 3H), 3.81 (s, 3H), 4.48 (s, 1H), 7.19-7.21 (m, 4H), 7.56-7.58 (m,2H) ppm; ¹³C NMR (100 MHz, CDCl₃) 14.3, 21.0, 30.9, 53.9, 61.3, 77.34, 126.1, 129.4, 139.0, 165.8, 171.2 ppm; HRMS (ESI-TOF) calcd for C₁₄H₁₆N₂O₅ ([M+Na⁺]) = 315.0957, Found 315.0958.

dimethyl 3-diazo-2-hydroxy-2-p-tolylsuccinate

N₂ COOMe (C₁₃H₁₄N₂O₅) a yellow solid; 70% yield, 97% *ee*, COOMe $[\alpha]_D^{27} = +97.5$ (c = 0.16 in CH₂Cl₂); HPLC DAICEL CHIRALCEL AD, 2-propanol/n-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 6.7 min (major) and 9.7 min (minor); ¹H NMR (400 MHz, CDCl₃) 2.35 (s, 3H), 3.80 (s, 3H), 3.82 (s, 3H), 4.48 (s,1H), 7.19-7.21 (m, 2H), 7.55-7.57 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) 20.0, 51.1, 60.2, 76.2, 125.0, 127.0, 132.2, 138.0, 165.1, 171.7 ppm; HRMS (ESI-TOF) calcd for C₁₃H₁₄N₂O₅ ([M+Na⁺]) = 301.0800, Found 301.0799.

4-ethyl 1-methyl 3-diazo-2-hydroxy-2-(4-methoxyphenyl)succinate

N₂ COOEt (C₁₄H₁₆N₂O₆) a yellow liquid; 62% yield, 90% *ee*, COOMe $[\alpha]_D^{27} = +85.0$ (c = 0.11 in CH₂Cl₂); HPLC DAICEL CHIRALCEL AD, 2-propanol/n-hexane =

20/80, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 8.7 min (major) and 12.8 min (minor); ¹H NMR (400 MHz, CDCl₃) 1.26-1.30 (t, J = 7.4 Hz, 3H), 3.81 (s, 3H), 3.82 (s, 3H), 4.24-4.48 (s, 2H), 6.90-6.92 (m, 2H), 7.60-7.62 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) 14.2, 22.7, 29.5, 31.9, 53.3, 61.3, 114.0, 127.5, 128.1, 160.1, 165.8, 171.9 ppm.

dimethyl 3-diazo-2-hydroxy-2-(4-methoxyphenyl)succinate

20/80, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 8.5 min (major) and 12.4 min (minor); ¹H NMR (400 MHz, CDCl₃) 3.79 (s, 3H), 3.80 (s, 3H), 4.46(s, 1H), 6.89-6.92 (m, 2H), 7.58-7.60 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) 22.7, 29.6, 31.9, 54.1, 55.2, 114.1, 127.5, 160.1, 166.1, 172.8 ppm.

4-ethyl 1-methyl 3-diazo-2-(3-fluorophenyl)-2-hydroxysuccinate

rate = 1.0 mL/min, λ = 254 nm, retention time: 5.9 min (major) and 10.4 min (minor); ¹H NMR (400 MHz, CDCl₃) 1.27-1.31 (t, *J* = 7.0 Hz, 3H), 3.84 (s, 3H), 4.22-4.29 (m, 2H), 4.56 (s, 1H), 7.35-7.39 (m, 2H), 7.40-7.45 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) 14.1, 53.2, 60.3, 76.2, 112.6, 115.1, 120.9, 137.8, 160.6, 164.8, 171.0 ppm; HRMS (ESI-TOF) calcd for C₁₃H₁₃FN₂O₅ ([M+Na⁺]) = 319.0706, Found 319.0699.

dimethyl 3-diazo-2-(3-fluorophenyl)-2-hydroxysuccinate

 $\begin{array}{c} \mathsf{N}_2 \leftarrow \mathsf{COOMe} \\ \mathsf{F} \leftarrow \mathsf{OH} \end{array} \begin{array}{c} \mathsf{(C}_{12}\mathbf{H}_{11}\mathbf{FN}_2\mathbf{O}_5) \text{ a yellow solid; 75\% yield, 95\% } ee, \\ [\alpha]_D^{27} = +166.9 \ (c = 0.32 \ \text{in } \mathrm{CH}_2\mathrm{Cl}_2); \ \text{HPLC DAICEL} \end{array}$

CHIRALCEL AD, 2-propanol/n-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 6.2 min (major) and 9.9 min (minor); ¹H NMR (400 MHz, CDCl₃) 3.81 (s, 3H), 3.84 (s, 3H), 4.56 (s, 1H), 7.35-7.45 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃) 51.2, 53.1, 76.2, 112.6, 115.1, 120.9, 129.2, 137.8, 160.4, 164.8, 171.0 ppm; HRMS (ESI-TOF) calcd for $C_{12}H_{11}FN_2O_5$ ([M+Na⁺]) = 315.0550, Found 315.0548.

4-ethyl 1-methyl 3-diazo-2-(4-fluorophenyl)-2-hydroxysuccinate

 $\sum_{F} \sum_{i=1}^{N_2} \sum_{j=1}^{COOEt} (C_{13}H_{13}FN_2O_5) \text{ a yellow liquid; 66\% yield, 93\% } ee, \\ [\alpha]_D^{27} = +125.0 (c = 0.20 \text{ in } CH_2Cl_2); HPLC DAICEL CHIRALCEL AD, 2-propanol/n-hexane = 20/80, flow rate = 1.0 mL/min,$ $<math>\lambda = 254 \text{ nm}, \text{ retention time: 5.6 min (major) and 8.4 min (minor); }^{1}H NMR (400 \text{ MHz, CDCl}_3) 1.27-1.31 (t, <math>J = 7.2 \text{ Hz}, 3H$), 3.83 (s, 3H), $4.24-4.30 \text{ (m, 2H)}, 4.54 \text{ (s, 1H)}, 7.07-7.11 \text{ (m, 2H)}, 7.68-7.69 \text{ (m, 2H)} ppm; \\ ^{13}C NMR (100 \text{ MHz, CDCl}_3) 13.3, 28.6, 53.0, 60.3, 114.6, 127.2,$ $<math>130.9, 160.6, 164.5, 171.4 \text{ ppm}; \text{ HRMS} \text{ (ESI-TOF) calcd for } C_{13}H_{13}FN_2O_5 ([M+Na^+]) = 319.0706, Found 319.0706.$

dimethyl 3-diazo-2-(4-fluorophenyl)-2-hydroxysuccinate

 $[\alpha]_{D}^{27} = +76.7 \text{ (c} = 0.24 \text{ in } CH_2Cl_2); \text{ HPLC DAICEL}$ CHIRALCEL AD, 2-propanol/n-hexane = 20/80, flow

rate = 1.0 mL/min, λ = 254 nm, retention time: 5.9 min (major) and 8.0 min (minor); ¹H NMR (400 MHz, CDCl₃) 3.81 (s, 3H), 3.83 (s, 3H), 4.54 (s, 1H), 7.07-7.11(m, 2H), 7.67-7.69 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) 28.6, 52.1, 114.7, 127.2, 130.9, 160.8, 163.2, 164.9, 171.3 ppm; HRMS (ESI-TOF) calcd for C₁₃H₁₄N₂O₅ ([M+Na⁺]) = 315.0550, Found 315.0545.

4-ethyl 1-methyl 2-(4-bromophenyl)-3-diazo-2-hydroxysuccinate

dimethyl 2-(4-bromophenyl)-3-diazo-2-hydroxysuccinate

N₂ COOMe (C₁₂H₁₁BrN₂O₅) a yellow solid; 85% yield, 94% *ee*, COOMe $[\alpha]_D^{27} = +120.8$ (c = 0.24 in CH₂Cl₂); HPLC DAICEL CHIRALCEL AD, 2-propanol/n-hexane = 20/80, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 6.6 min (major) and 8.4 min (minor); ¹H NMR (400 MHz, CDCl₃) 3.76-3.83 (m, 6H), 4.52 (s, 1H), 7.36-7.43 (m, 3H), 7.68-7.71 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) 51.1, 53.0, 75.6, 114.7, 125.2, 127.6, 128.1, 165.0, 171.5 ppm; HRMS (ESI-TOF) calcd for C₁₂H₁₁BrN₂O₅ ([M+Na⁺]) = 364.9749, Found 364.9745.

4-ethyl 1-methyl 2-(4-chlorophenyl)-3-diazo-2-hydroxysuccinate

 $(C_{13}H_{13}CIN_2O_5) \text{ a yellow liquid; 82\% yield, 95\% } ee,$ $[\alpha]_D^{27} = +86.0 \text{ (c} = 0.30 \text{ in } CH_2Cl_2\text{); HPLC DAICEL}$ CHIRALCEL AD, 2-propanol/n-hexane = 20/80, flow

rate = 1.0 mL/min, λ = 254 nm, retention time: 5.4 min (major) and 7.6 min (minor); ¹H NMR (400 MHz, CDCl₃) 1.27-1.31 (t, *J* = 7.0 Hz, 3H), 3.82 (s, 3H), 4.21-4.30 (m, 2H), 4.53 (s, 1H), 7.37-7.39 (m, 2H), 7.63-7.64 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) 13.3, 28.6, 53.2, 60.4, 126.8, 127.9, 133.8, 134.3, 164.5, 171.3 ppm; HRMS (ESI-TOF) calcd for C₁₃H₁₃ClN₂O₅ ([M+Na⁺]) = 335.0411, Found 335.0409.

dimethyl 2-(4-chlorophenyl)-3-diazo-2-hydroxysuccinate

 $\sum_{CI} \sum_{i=1}^{N_2} \sum_{i=1}^{COOMe} (C_{12}H_{11}CIN_2O_5) \text{ a yellow solid; 84\% yield, 94\% } ee, \\ [\alpha]_D^{27} = +125.0 \quad (c = 0.20 \text{ in } CH_2Cl_2); \text{ HPLC} \\ DAICEL CHIRALCEL AD, 2-propanol/n-hexane = 20/80, flow rate = 1.0 \\ mL/min, \lambda = 254 \text{ nm, retention time: 6.1 min (major) and 7.9 min (minor); }^{1}H NMR (400 \text{ MHz, CDCl}_3) 3.81 (s, 3H), 3.83 (s, 3H), 4.53 (s, 1H), 7.37-7.39 (m, 2H), 7.64-7.66 (m, 2H) ppm; }^{13}C NMR (100 \text{ MHz, CDCl}_3) 29.7, 52.2, 54.2, 127.8, 129.0, 128.1, 134.8, 135.3, 165.9, 172.2 \\ ppm; HRMS (ESI-TOF) calcd for C_{12}H_{11}CIN_2O_5 ([M+Na^+]) = 321.0254, \\ Found 321.0247.$

4-ethyl 1-methyl 3-diazo-2-hydroxy-2-(naphthalen-2-yl)succinate

(C₁₇H₁₆N₂O₅) a yellow solid; 64% yield, 92% *ee*, (α]_D²⁷ = +142.0 (c = 0.20 in CH₂Cl₂); HPLC DAICEL CHIRALCEL AD, 2-propanol/n-hexane =

20/80, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 8.3 min (major) and 11.9 min (minor); ¹H NMR (400 MHz, CDCl₃) 1.29-1.32 (t, *J* = 7.0 Hz, 3H), 3.82 (s, 3H), 3.82 (s, 3H), 3.83-4.31(m, 2H), 4.34 (s, 1H), 7.51-8.24 (m, 7H) ppm; ¹³C NMR (100 MHz, CDCl₃) 14.7, 30.0, 54.4, 61.7, 123.8, 126.4, 126.8, 127.3, 127.8, 128.9, 129.0, 129.1, 133.4, 133.6, 165.1, 171.5 ppm.

dimethyl 3-diazo-2-hydroxy-2-(naphthalen-2-yl)succinate

N₂ COOMe (C₁₆H₁₄N₂O₅) a yellow solid; 80% yield, 94% *ee*, COOMe $[\alpha]_D^{27} = +35.0$ (c = 0.10 in CH₂Cl₂); HPLC DAICEL CHIRALCEL AD, 2-propanol/n-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 8.5 min (major) and 12.2 min (minor); ¹H NMR (400 MHz, CDCl₃) 3.81 (s, 3H), 3.82 (s, 3H), 4.63 (s, 1H), 7.49-7.74 (m, 7H) ppm; ¹³C NMR (100 MHz, CDCl₃) 28.6, 512, 53.1, 122.4, 125.1, 125.5, 125.9, 126.5, 127.6, 127.6, 128.1, 132.0, 132.3, 165.1, 171.5 ppm; HRMS (ESI-TOF) calcd for C₁₆H₁₄N₂O₅ ([M+Na⁺]) = 321.0254, Found 321.0247.

dimethyl 3-diazo-2-hydroxy-2-(thiophen-2-yl)succinate

^{N₂} COOMe (C₁₀H₁₀N₂O₅S) a yellow solid; 65% yield, 87% *ee*, COOMe $[\alpha]_D^{27} = +35.0$ (c = 0.10 in CH₂Cl₂); HPLC DAICEL CHIRALCEL AD, 2-propanol/n-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 7.4 min (major) and 11.2 min (minor); ¹H NMR (400 MHz, CDCl₃) 3.81 (s, 3H), 3.82 (s, 3H), 4.63 (s, 1H), 7.49-7.74 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) 51.2, 53.1, 65.3, 126.5, 127.6, 127.6, 129.1, 165.1, 171.5 ppm.

dimethyl 2-cyclohexyl-3-diazo-2-hydroxysuccinate

(C₁₃H₂₀N₂O₅) a yellow solid; 35% yield, 52% *ee*, $[\alpha]_D^{27} = +2.6$ (c = 0.11 in CH₂Cl₂); HPLC DAICEL CHIRALCEL AD-H, 2-propanol/n-hexane = 1/99, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 15.3 min (major) and 20.0 min (minor); ¹H NMR (400 MHz, CDCl₃) 1.25-1.28 (t, *J* = 7.0 Hz, 3H), 1.33-1.36 (m, 4H), 1.61-1.81 (m, 7H), 3.80 (s, 3H), 4.20-4.24 (m, 2H), 4.42 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) 13.3, 24.9, 25.1, 25.6, 28.6, 41.7, 52.1, 60.1, 165.4, 173.0 ppm; HRMS (ESI-TOF) calcd for

 $C_{13}H_{20}N_2O_5$ ([M+Na⁺]) = 307.1270, Found 307.1270.

diethyl 3-diazo-2-hydroxy-2-phenylsuccinate

 N_2 COOEt $C_{13}H_{14}N_2O_6$) a yellow solid; 75% yield, 94% *ee*, $[\alpha]_D^{27}$ = +192.0 (c = 0.20 in CH₂Cl₂); HPLC DAICEL CHIRALCEL AD, 2-propanol/n-hexane = 20/80, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 7.1 min (major) and 13.5 min (minor); ¹H NMR (400 MHz, CDCl₃) 3.81 (s, 3H), 3.82 (s, 3H), 4.63 (s, 1H), 7.49-7.74 (m, 7H) ppm; ¹³C NMR (100 MHz, CDCl₃) 28.6, 512, 53.1, 122.4, 125.1, 125.5, 125.9, 126.5, 127.6, 127.6, 128.1, 132.0, 132.3, 165.1, 171.5 ppm.

diethyl 2-hydroxy-2-phenylsuccinate

COOEt $C_{13}H_{14}N_2O_6$) a yellow liquid; 80% yield, 94% *ee*, $[\alpha]_D^{27} =$ +6.5 (c = 0.10 in CH₂Cl₂); HPLC DAICEL CHIRALCEL AD-H, 2-propanol/n-hexane = 20/80, flow rate = 1.0

mL/min, $\lambda = 254$ nm, retention time: 14.2 min (minor) and 15.1 min (major); This compound was identical in all respects (¹HNMR, ¹³CNMR, mass spetra) to that previously reported. ⁴

6. References

1. M. Rambaud, M. Balasse, G. Duguay and J. Villieras, Synthesis 1998, 564.

2. J. S. Nimitz and H. S. Mosher, J. Org. Chem. 1981, 46, 211.

3. Z. Yu, X. Liu, Z. Dong, M. Xie and X. Feng, Angew. Chem. Int. Ed. 2008, 47, 1308.

4. H. Moorlag, R. Kellog, Tetrahedron: Asymmetry, 1991, 2, 705.