Electronic Supplementary Information

Efficient ruthenium(IV)-catalyzed synthesis of [3]dendralenes from 1,3-dienic allylic carbonates

Kassem Beydoun, Hui-Jun Zhang, Basker Sundararaju, Bernard Demerseman, Mathieu Achard and Christian Bruneau*

email : christian.bruneau@univ-rennes1.fr

General:

All reactions were carried out under argon atmosphere. HPLC grade solvent (Acetone and Acetonitrile) were stored under nitrogen and used as received. Dichloromethane (CH₂Cl₂) was distilled under conventional method and stored under a nitrogen atmosphere. ¹H NMR spectra were recorded on a Bruker GPX (200.131 MHz) spectrometer. ¹H NMR assignment abbreviations are the following: singlet (s), doublet (d), triplet (t), quartet (q), broad singlet (bs), doublet of doublets (dd),doublet of triplets (dt), and multiplet (m). ¹³C NMR spectra were recorded at 50 MHz on the same spectrometer and reported in ppm. HRMS were recorded on Waters Q-Tof-2.

Part I : Synthesis and Analysis of the ruthenium complexes

Synthesis of [Ru(C₅Me₅)(η⁴-CH₂=CH-CH=CHEt)(MeCN)][X] (X=PF₆⁻ and BF₄⁻) complexes

To a solution of $[Ru(Cp^*)(CH_3CN)_3][X]$ (1.0 mmol) in acetone or in dichloromethane (20 mL), the appropriate allylic carbonate (1.0 mmol) was added. The mixture was stirred overnight at room temperature and then evaporated under vacuum to leave a pale-yellow solid.

[Ru(C₅Me₅)(η⁴-CH₂=CH-CH=CHEt)(MeCN)][PF₆]

¹H NMR (CD₂Cl₂, 200 MHz): δ 4.83 (dd, ³*J* = 9.7 and 5.7 Hz, 1H, H^d), 4.62–4.50 (m, 1H, H^c), 3.20 (d, ³*J* = 8.0 Hz, 1H, H^a), 2.64 (s, 3H, MeCN), 2.13–1.64 (very broad resonances, 3H, H^e and CH₂CH₃), 1.72 (s, 15H, C₅Me₅), 1.37 (d, ³*J* = 11.7 Hz, 1H, H^b), 1.10 (t, ³*J* = 7.2 Hz, 3H, CH₂CH₃).

[Ru(C₅Me₅)(η⁴-CH₂=CH-CH=CHEt)(MeCN)][BF₄]

¹H NMR (CD₂Cl₂, 200 MHz): δ 4.85 (dd, ³*J* = 10.3 and 5.5 Hz, 1H, H^d), 4.63– 4.51 (m, 1H, H^c), 3.13 (dd, ³*J* = 7.7, ²*J* = 1.2 Hz, 1H, H^a), 2.61 (s, 3H, MeCN), 2.18–1.72 (very broad resonances, 3H, H^e and CH₂CH₃), 1.69 (s, 15H, C₅Me₅), 1.37 (broad d, ³*J* = 10.4 Hz, 1H, H^b), 1.05 (t, ³*J* = 7.3 Hz, 3H, CH₂CH₃). ¹³C{¹H} NMR (CD₂Cl₂, 50 MHz): δ 132.08 (MeCN), 96.40 (C₅Me₅), 94.92 (CH=), 89.97 (CH=), 80.55 (CH=), 51.85 (=CH₂), 25.52 (CH₂CH₃), 15.68 (CH₂CH₃), 9.54 (C₅Me₅), 4.65 (MeCN).

$[Ru(C_5Me_5)(\eta^4-CH_2=CH-CH=CH_2)(MeCN)][PF_6]$

¹H NMR (CD₂Cl₂, 200 MHz): δ 4.86–4.73 (m, 2H, CH=CH₂), 3.41 (d, ³J = 7.4 Hz, 2H, =CH₂, syn), 2.60 (s, 3H, MeCN), 1.73 (s, 15H, C₅Me₅), 1.40 (dd, ³J = 10.2, ⁴J = 1.2 Hz, 2H, =CH₂, anti). ¹³C{¹H} NMR (CD₂Cl₂, 50 MHz): δ 131.99 (MeCN), 97.42 (C₅Me₅), 94.00 (CH=CH₂), 53.34 (CH=CH₂), 9.44 (C₅Me₅), 4.69 (MeCN).

Detection of the $[Ru(C_5Me_5)(\eta^3-CH_2CHCHPr^n)(\eta^2-O_2COEt)]^+$

intermediate

To a solution of $[Ru(Cp^*)(CH_3CN)_3][PF_6]$ (0.50 g, 1.0 mmol) in acetone or in dichloromethane (20 mL), $Pr^nCH(OCO_2Et)CH=CH_2$ (or $Pr^nCH=CHCH_2(OCO_2Et)$ (0.17 g, 1.0 mmol) was added. The solution was stirred at room temperature for 30 min and then evaporated under vacuum. A sample of the resulting solid was dissolved in CD_2Cl_2 and immediately examined by ¹H NMR spectroscopy.

¹H NMR (CD₂Cl₂, 200 MHz): δ 5.11–4.97 (m, 1H, CH, medium), 4.45 (d, ³*J* = 6.7 Hz, 1H, CH*H*, syn), 4.25 (q, ³*J* = 7.1 Hz, 2H, OCH₂), 3.80–3.71 (m, 1H, Pr^{*n*}C*H*), 3.04 (d, ³*J* = 10.2 Hz, 1H, =CH*H*, anti), 1.65 (s, 15H, C₅Me₅), other resonances overlapped with resonances from the [**Ru**(**C**₅**Me**₅)(η ⁴-**CH**₂=**CH**-**CH**=**CHEt**)(**MeCN**)][**PF**₆]

Synthesis of [Ru(C₅Me₅)(η³-CH₂CHCHPrⁿ)(η²-O₂CMe)][PF₆]

To a stirred solution of $[Ru(Cp^*)(CH_3CN)_3][PF_6]$ (0.50 g, 1.0 mmol) in dichloromethane (15 mL), acetic acid (0.06 g, 1.0 mmol) then $Pr^nCH=CHCH_2(OCO_2Et)$ (0.17 g, 1.0 mmol) were added. The mixture was stirred overnight at room temperature and then evaporated under vacuum to leave a pale-brown solid.

¹H NMR (CD₂Cl₂, 200 MHz): δ 5.35–5.21 (m, 1H, CH, medium), 4.39 (d, ³*J* = 6.4 Hz, 1H, CH*H*, syn), 3.77–3.66 (m, 1H, Pr^{*n*}C*H*), 3.00 (d, ³*J* = 10.3 Hz, 1H, =CH*H*, anti), 1.94 (s, 3H, MeCO₂), 1.80–1.31 (very broad resonances, 4H, 2 CH₂, Pr^{*n*}), 1.65 (s, 15H, C₅Me₅), 1.05 (t, ³*J* = 7.1 Hz, 3H, Me, Pr^{*n*}). ¹³C{¹H} NMR (CD₂Cl₂, 50 MHz): δ 194.22 (CO₂), 106.95 (*C*₅Me₅), 105.79 (CH, allyl), 92.11 (CH, allyl), 67.13 (CH₂, allyl), 33.18 (CH₂, Pr^{*n*}), 25.52 (*Me*CO₂), 23.46 (CH₂, Pr^{*n*}), 14.03 (Me, Pr^{*n*}), 9.18 (C₅Me₅).

Part II. Synthesis of [3]Dendralenes

A Schlenk containing powdered 4Å molecular sieves (200 mg) was flame-dried under vacuum. After cooling at room temperature, acetonitrile (3 mL) and $[Ru(Cp^*)(4,4'-di-Bu'-2,2'-bipyridine)(CH_3CN)]PF_6$ II (0.020 mmol, 5% mol) were successively added under an argon atmosphere and the resulting mixture was stirred for one minute. The appropriate diene carbonate 1 (0.40 mmol) was added directly via a microsyringe and the system was stirred at 90°C for 12h. Extraction of the acetonitrile layer with pure pentane (4*3mL) followed by direct chromatography using *n*-pentane as solvent affords the expected triene 2 after *careful concentration at room temperature* of the fractions.

[1,2-bis(methylene)but-3-en-1-yl]benzene 2a

Prepared from ethyl 1-methyl-2-methylene-3-phenylbut-3-en-1-yl carbonate **1a** (100 mg, 0.40 mmol). Chromatography afforded compound **2a** as a colourless oil, 48 mg (75%) and spectral data are in accordance with literature¹: ¹H NMR (200 MHz, CDCl₃) δ 7.44-7.25 (m, 5H), 6.46 (dd, *J*= 10.3 Hz, 17.6 Hz, 1H), 5.55 (d, *J*= 1.5 Hz, 1H), 5.33 (d, *J*= 1.5 Hz, 1H), 5.26 (d, *J*= 1.5 Hz, 1H), 5.20 (s, 1H), 5.11-5.03 (m, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 148.2, 147.9, 139.9, 137.3, 128.2, 127.5, 126.7, 118.4, 117.5, 114.8.

(1) T. N. Bradford, A. D. Payne, A. C. Willis, M. N. Paddon-Row and M. S. Sherburn, *Org. Lett.* 2007, **9**, 4861.

1-[1,2-bis(methylene)but-3-en-1-yl]-4-methylbenzene 2b

Prepared from ethyl 1-methyl-2-methylene-3-(4-methylphenyl)but-3-en-1-yl carbonate **1b** (100 mg, 0.38 mmol). Chromatography afforded compound **2b** as a colourless oil, 41 mg (63%): ¹H NMR (200 MHz, CDCl₃) δ 7.32-7.26 (m, 3H), 7.13-7.09 (m, 2H), 6.46 (dd, *J*= 10.0, 17.5 Hz, 1H), 5.50 (d, *J*= 1.0 Hz, 1H), 5.30 (d, J= 1.8 Hz, 1H), 5.20-5.00 (m, 4H), 2.33 (bs, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 148.4, 147.8, 137.4, 137.3, 137.0, 128.9, 126.6, 118.2, 117.4, 114.0, 21.1.

[(3*E*)-1,2-bis(methylene)pent-3-en-1-yl]benzene 2c

Prepared from ethyl 1-ethyl-2-methylene-3-phenylbut-3-en-1-yl carbonate **1c** (100 mg, 0.38 mmol). Chromatography afforded compound **2c** as a colourless oil, 47 mg (72%): ¹H NMR (200 MHz, CDCl₃) δ 7.46-7.30 (m, 5H), 6.19 (d, *J*= 15.5 Hz, 1H), 5.66-5.48 (m, 2H), 5.25 (bs, 1H), 5.21 (bs, 1H), 5.07 (bs, 1H), 1.70 (d, *J*= 6.5 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 148.7, 148.0, 139.7, 131.8, 129.4, 128.2, 127.5, 126.6, 115.8, 114.4, 18.3.

[(3*E*)-1,2-bis(methylene)hex-3-en-1-yl]benzene 2d

Prepared from ethyl 2-methylene-3-phenyl-1-propylbut-3-en-1-yl carbonate **1d** (100 mg, 0.36 mmol). Chromatography afforded compound **2d** as a colourless oil, 44 mg (66%): ¹H NMR (200 MHz, CD₂Cl₂) δ 7.43-7.23 (m, 5H), 6.12 (d, *J*= 15.7 Hz, 1H), 5.56 (dt, *J*= 15.7, 6.6 Hz, 1H), 5.49 (d, *J*= 1.4 Hz, 1H), 5.22 (d, *J*= 1.5 Hz, 1H), 5.20 (d, *J*= 2.2 Hz, 1H), 5.03 (d, *J*= 2.2 Hz, 1H), 2.08 (qu, *J*= 6.5 Hz, 2H), 0.90 (t, *J*= 7.0 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 148.7, 148.0, 140.0, 136.2, 129.4, 128.1, 127.4, 126.7, 115.9, 114.3, 25.7, 13.2.

3,4-bis(methylene)dec-1-ene 2e

Prepared from ethyl 1-methyl-2,3-bis(methylene)nonyl carbonate **1e** (100 mg, 0.39 mmol). Chromatography afforded compound **2e** as a colourless oil, 42 mg (65%): ¹H NMR (200 MHz, CDCl3) δ 6.41 (dd, *J*= 9.8, 17.5 Hz, 1H), 5.29 (dd, *J*= 1.8, 17.5 Hz, 1H), 5.14-4.96 (m, 5H), 2.21 (t, *J*= 6.9 Hz, 2H), 1.49-1.23 (m, 8H), 0.88 (t, *J*= 6.9 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 148.9, 148.3, 137.9, 116.4, 114.5, 113.6, 35.7, 32.3, 29.4, 28.5, 23.0, 14.5

(2*E*)-4,5-bis(methylene)undec-2-ene **2f**

Prepared from ethyl 1-ethyl-2,3-bis(methylene)nonyl carbonate **1f** (100 mg, 0.37 mmol). Chromatography afforded compound **2f** as a colourless oil, 50 mg (75%): ¹H NMR (200 MHz, CDCl₃) δ 6.09 (d, *J*= 15.4 Hz, 1H), 5.75 (dt, *J*= 6.6, 15.4 Hz, 1H), 4.97-4.94 (m, 3H), 4.88 (d, *J*= 1.8 Hz, 1H), 2.19 (t, *J*= 6.9 Hz, 2H), 1.76 (dd, *J*= 1.4, 6.6 Hz, 3H), 1.44-1.20 (m, 8H), 0.87 (t, *J*= 6.6 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 148.8, 148.3, 131.6, 127.7, 112.7, 112.0, 35.4, 31.7, 29.0, 28.1, 22.6, 18.2, 14.0.

3,4-bis(methylene)oct-1-ene 2g

Prepared from ethyl 1-methyl-2,3-bis(methylene)heptyl carbonate **1g** (100 mg, 0.44 mmol). Chromatography afforded compound **2g** as a colourless oil, 47 mg (78%): ¹H NMR (200 MHz, CD₂Cl₂) δ 6.40 (dd, *J*= 10.0, 17.0 Hz, 1H), 5.29 (d, *J*= 17.0 Hz, 1H), 5.14-4.97 (m, 5H), 2.22 (t, *J*= 6.9 Hz, 2H), 1.46-1.25 (m, 4H), 0.89 (t, *J*= 6.5 Hz, 3H); ¹³C NMR (50 MHz, CD₂Cl₂) δ 150.9, 150.4, 137.9, 116.4, 114.5, 113.6, 35.5, 30.9, 22.9, 14.2.

(2E)-4,5-bis(methylene)non-2-ene 2h

Prepared from ethyl 1-ethyl-2,3-bis(methylene)heptyl carbonate **1h** (100 mg, 0.41 mmol). Chromatography afforded compound **2h** as a colourless oil, 46 mg (73%): ¹H NMR (200 MHz, CDCl₃) δ 6.06 (d, *J*= 15.7 Hz, 1H), 5.74 (dqu, *J*= 6.9, 15.7 Hz, 1H), 4.97-4.89 (m, 4H), 2.20 (t, *J*= 6.9 Hz, 2H), 1.76 (d, *J*= 6.5 Hz, 3H), 1.47-1.22 (m, 4H), 0.89 (t, *J*= 6.9 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 148.8, 148.3, 131.6, 127.7, 112.7, 112.0, 35.0, 30.4, 22.4, 18.2, 13.9.

[1,2-bis(methylene)but-3-en-1-yl]cyclohexane 2i

Prepared from 3-cyclohexyl-1-methyl-2-methylenebut-3-en-1-yl ethyl carbonate **1i** (100 mg, 0.39 mmol). Chromatography afforded compound **2i** as a colourless oil, 53 mg (82%): ¹H NMR (200 MHz, CDCl₃) δ 6.39 (dd, *J*= 10.2, 17.2 Hz, 1H), 5.21 (dd, *J*= 1.5, 17.2 Hz, 1H), 5.12-5.06 (m, 2H), 4.98-4.94 (m, 2H), 4.87 (d, *J*= 1.8 Hz, 1H), 2.12-2.00 (m, 1H), 1.85-1.64 (m, 4H), 1.37-1.00 (m, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 153.4, 149.5, 138.2, 116.0, 114.8, 111.0, 42.4, 32.3, 26.7, 26.4.

[(3*E*)-1,2-bis(methylene)pent-3-en-1-yl]cyclopropane 2j

Prepared from 3-cyclopropyl-1-ethyl-2-methylenebut-3-en-1-yl ethyl carbonate **1j** (100 mg, 0.44 mmol). Chromatography afforded compound **2j** as a colourless oil, 41 mg (68%) which dimerized rapidly. Spectral analysis were performed on diluted sample in n-pentane: ¹H NMR (200 MHz, CD₂Cl₂) δ 6.17 (d, *J*= 15.3 Hz, 1H), 5.84 (dqu, *J*= 6.5, 15.3 Hz, 1H), 5.05 (bs, 2H), 4.92-4.89 (m, 2H), 1.80 (d, *J*= 6.5 Hz, 3H), 1.56-1.46 (m, 1H), 0.76-0.67 (m, 2H), 0.52-0.44 (m, 2H); ¹³C NMR (50 MHz, CD₂Cl₂) δ 152.15, 150.3, 134.0, 130.3, 114.6, 112.0, 20.3, 17.6, 8.9.

Concurrent Catalysis: Allylation/Elimination sequence

Compounds 2k

A Schlenk containing powdered 4Å molecular sieves (200 mg) and potassium carbonate (62 mg, 0,44 mmol) was flame-dried under vacuum. After cooling at room temperature, acetonitrile (4 mL), dimethyl malonate (39 mg, 0,29 mmol) and diene dicarbonate **1k** (100 mg, 0,38 mmol) were successively added under an argon atmosphere and the resulting mixture was stirred for two minutes. Then, $[Ru(Cp^*)(4,4'-di-Bu'-2,2'-bipyridine)(CH_3CN)]PF_6$ **II** (15 mg, 0.02 mmol, 7.5 mol%) was added and the system

was stirred at 100°C for 24h. Chromatography (silica gel, n-pentane/diethyl ether : 90/10) of the crude (silica cake) affords 39 mg of the expected triene **2k** (55 %) in a 83:17 Branched:Linear ratio (*only the branched compound is described*): ¹H NMR (200 MHz, C_6D_6) δ 6.30 (ddd, J= 0.7, 10.7, 17.4 Hz, 1H), 5.36 (dd, J= 1.5, 17.4 Hz, 1H), 5.03-4.97 (m, 4H), 3.75 (d, J= 8.8 Hz, 1H), 3.55-3.40 (m, 1H), 3.26 (s, 3H), 3.24 (s, 3H), 1.19 (d, J= 6.9 Hz, 3H); ¹³C NMR (50 MHz, C_6D_6) δ 168.7, 168.6, 149.8, 148.7, 137.9, 116.8, 116.2, 113.8, 56.5, 51.9, 51.7, 38.3, 17.4; HRMS calculated for [$C_{13}H_{18}NaO_4$]⁺, [M+Na]⁺ : 261.1097 found 261.1103.

Compounds 21

Compounds **21** were obtained in 75:25 Branched:Linear ratio using the above protocol (*only the branched compound is described*): ¹H NMR (200 MHz, CDCl₃) δ 6.37 (dd, *J*= 10.3, 17.6 Hz, 1H), 5.30 (ddd, *J*= 1.0, 1.6, 17.6 Hz, 1H), 5.16-5.01 (m, 5H), 4.24-4.10 (m, 4H), 3.55 (d, *J*= 9.01 Hz, 1H), 3.27-3.12 (m, 1H), 1.30-1.19 (m, 6H), 1.12 (d, *J*= 6.9 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 168.5, 168.4, 149.1, 148.0, 137.6, 116.6, 115.9, 113.7, 61.3, 61.2, 56.3, 37.8, 17.2, 14.1, 14.0.

 $[Ru(C_5Me_5)(\eta^4\text{-}CH_2\text{=}CH\text{-}CH\text{=}CHEt)(MeCN)][PF_6]$

 $[Ru(C_5Me_5)(\eta^4\text{-}CH_2\text{=}CH\text{-}CH\text{=}CHEt)(MeCN)][BF_4]$

 $[Ru(C_5Me_5)(\eta^3\text{-}CH_2CHCHPr^n)(\eta^2\text{-}O_2CMe)][PF_6]$

and a free of the second of th	whenever main representative the advance
6.6 1.0 1.1 6.0	

9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

2.5 1.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 2.0 1.0 0.5 3.0

5.5 3.5 2.5 1.0 6.0 6.5 4.5 1.5 8.0 7.5 7.0 4.0 3.0 2.0 0.5

8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

	1		1	1	1	1	1	I		1		1	1			1
80	75	7.0	(=	()	= =	5.0	4.5	4.0	25	2.0	25	2.0	15	1.0	0.5	
8.0	1.5	7.0	0.5	0.0	5.5	5.0	4.5	4.0	3.5	5.0	2.5	2.0	1.5	1.0	0.5	0.0

