Supporting Information for:

# $\beta$-Amidoaldehydes via Oxazoline Hydroformylation 

David S. Laitar, John W. Kramer, Bryan T. Whiting,<br>Emil B. Lobkovsky, Geoffrey W. Coates*

Department of Chemistry and Chemical Biology, Baker Laboratory Cornell University, Ithaca, New York 14853-1301 USA

General Considerations. Unless stated otherwise, all synthetic manipulations were carried out using standard Schlenk techniques under a nitrogen atmosphere, or in an MBraun Unilab glovebox under an atmosphere of purified nitrogen. Reactions were carried out in oven-dried glassware cooled under vacuum. Anhydrous toluene, hexanes, tetrahydrofuran, and diethyl ether were purchased from Fischer Scientific and sparged vigorously with nitrogen for 40 minutes prior to first use. The solvents were further purified by passing them under nitrogen pressure through two packed columns of neutral alumina (for diethyl ether and tetrahydrofuran; the tetrahydrofuran was also passed through a third column packed with activated $4 \AA$ molecular sieves) or through neutral alumina and copper(II) oxide (for toluene, hexanes and pentane). All non-dried solvents used were reagent grade or better.

IR spectra were recorded on a Mattson RS-10500 Research Series FTIR using NaCl salt plates. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian 400 MHz instrument, with shifts reported relative to the residual solvent peak. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Varian 400 MHz instrument, with shifts referenced to an external standard of neat $\mathrm{CFCl}_{3}$ ( 0 ppm ). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 500 MHz instrument, with shifts referenced relative to the solvent peak. NMR solvents were purchased from Cambridge Isotope Laboratories; $\mathrm{CDCl}_{3}$ was deacidified by passing through basic alumina prior to use, $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ was used as received.

The starting materials 2-phenyl-2-oxazoline (1a) (TCI America), benzonitrile (Aldrich), ethylene glycol (Mallinckrodt), potassium carbonate (Mallinckrodt), Ltryptophanol (Aldrich), Europium(III) tris[3-(trifluoromethylhydroxymethylene)-(+)camphorate] (Aldrich), Carbon monoxide (Matheson, $99.99 \%$ min. purity) and hydrogen
(Airgas, $99.999 \%$ min. purity) were used as received. Dicobalt octacarbonyl (Strem Chemical) was stored at $-30{ }^{\circ} \mathrm{C}$ in a glove box freezer. L-Isoleucinol, ${ }^{1}$ 2-(4-fluorophenyl)-2-oxazoline (1b), ${ }^{2}$ and 4-((tert-butyldimethylsilyloxy)methyl)-2-(4-tert-butylphenyl)-2-oxazoline $(\mathbf{1 k})^{3}$ were prepared by known literature methods. The following previously synthesized oxazolines were prepared by reaction of the appropriate 2-amino alcohol with an aromatic nitrile in ethylene glycol solution at $125{ }^{\circ} \mathrm{C}^{4}$ and compared with spectral data found in the literature: 2-(4-methoxyphenyl)-2-oxazoline $(\mathbf{1 c}),{ }^{4}(S)$-2-phenyl-4-methyl-2-oxazoline (1d), ${ }^{5}$ (R)-2-phenyl-4-ethyl-2-oxazoline (1e), ${ }^{6}$ (S)-2-phenyl-4-isopropyl-2-oxazoline (1f), ${ }^{7}$ (S)-2-phenyl-4-isobutyl-2-oxazoline ( $\mathbf{1 g}$ ), ${ }^{8}$ (R)-2,4-diphenyl-2-oxazoline (1i), ${ }^{9}$ (S)-2-phenyl-4-benzyl-2-oxazoline ( $\mathbf{1} \mathbf{j}$ ), ${ }^{6}$ 2-phenyl-5-methyl-2-oxazoline. ${ }^{10}$ Liquid oxazolines were purified by distillation and were stored in a nitrogen glove box over activated $4 \AA$ molecular sieves. The enantiomeric purities of all chiral oxazolines were assumed to be the same as the amino alcohols from which they were derived ( $>99 \%$ ee). The enantiomeric purities of all chiral amido aldehydes was determined using the chiral shift reagent europium(III) tris[3-

[^0](trifluoromethylhydroxymethylene)-(+)-camphorate] relative to racemic and/or enantiomerically pure samples.

## Oxazoline Synthesis

(4S)-4-((S)-sec-Butyl)-2-phenyl-2-oxazoline (1h). A Schlenk flask equipped with a Teflon-coated magnetic stir bar was charged with L-
 Isoleucinol ( $3.35 \mathrm{~g}, 28.6 \mathrm{mmol}$ ), potassium carbonate $(0.366 \mathrm{~g}, 2.65 \mathrm{mmol})$ and ethylene glycol ( 5 mL ). A nitrogen atmosphere was established and the reaction mixture was heated to $140^{\circ} \mathrm{C}$. Benzonitrile ( $2.70 \mathrm{~mL}, 26.5 \mathrm{mmol}$ ) was added and the flask was heated at $140{ }^{\circ} \mathrm{C}$ while vented through a mercury bubbler. After 20 h , the flask was cooled to room temperature and water $(60 \mathrm{~mL})$ was added. The reaction mixture was extracted with hexanes ( $3 \times 20 \mathrm{~mL}$ ). The organic extracts were combined and washed with brine, dried with $\mathrm{MgSO}_{4}$, filtered and concentrated in vacuo. The resulting yellow oil was fractionally distilled under vacuum to afford the title compound as a colorless oil ( $3.74 \mathrm{~g}, 70 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ): $\delta 7.95\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{CH}\right), 7.47\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{CH}\right), 7.40$ (t, ${ }^{3} J=7.3 \mathrm{~Hz}, m-\mathrm{CH}$ ), 4.38 (pseudo $\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), $4.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}^{5} \mathrm{Bu}\right), 4.13$ (pseudo $\mathrm{t}, J=7.60 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), $1.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} \underline{\mathrm{HMe}}), 1.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}\right), 1.26(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}\right), 0.96\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) 0.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 163.0,131.3,128.5,128.4,128.2,71.4,69.7,39.4,26.4,14.5,11.9$. IR ( NaCl plate, $\left.\mathrm{cm}^{-1}\right): 2962,2876,1652,1450,1081,1066,1025 .[\alpha]_{\mathrm{D}}^{23}-68.6\left(c=1.0 \mathrm{CHCl}_{3}\right)$. HRMS (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}^{-}\left(\mathrm{M}-\mathrm{H}^{+}\right)$: 204.1388; measured 204.1385.
(S)-4-((3-Indolyl)methyl)-2-phenyl-2-oxazoline (11). A Schlenk flask equipped with a Teflon-coated magnetic stir bar was charged
 with L-tryptophanol ( $2.60 \mathrm{~g}, 13.7 \mathrm{mmol}$ ), potassium carbonate $(0.174 \mathrm{~g}, 1.26 \mathrm{mmol})$ and ethylene glycol ( 2 mL ). A nitrogen atmosphere was established and the reaction mixture was heated to $140{ }^{\circ} \mathrm{C}$. Benzonitrile ( $1.30 \mathrm{~mL}, 12.7 \mathrm{mmol}$ ) was added and the flask was heated at $140^{\circ} \mathrm{C}$ while vented through a mercury bubbler for 20 h . The flask was then cooled to room temperature and water ( 50 mL ) was added and the reaction mixture was extracted with dichloromethane ( $2 \times 50 \mathrm{~mL}$ ). The organic extracts were combined and washed with brine, dried with $\mathrm{MgSO}_{4}$, filtered and concentrated in vacuo to afford an oily solid. The crude product was purified by passing through a plug of silica gel (built with $\mathrm{NEt}_{3} /$ ethyl acetate/hexanes (2:49:49)) and eluted with hexanes/ethyl acetate (1:1). Upon concentration, the cream-colored foam was further purified by trituration with hexanes to yield an off-white solid ( $2.08 \mathrm{~g}, 60 \%, \mathrm{mp}=103-106^{\circ} \mathrm{C}$ ). IR ( NaCl plate, $\mathrm{cm}^{-1}$ ): 3411, $3181,3058,2921,1643,1450,1359,1089,742,695 .[\alpha]_{\mathrm{D}}^{23}+24.3\left(c=1.0 \mathrm{CHCl}_{3}\right)$. HRMS (EI) calculated for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: 276.1263$; measured 276.1251.

## Oxazoline Hydroformylation

General Procedure for Oxazoline Hydroformylation. Unless otherwise noted, the following procedure was used: In a glove box, vials equipped with Teflon-coated magnetic stir bars were charged with the appropriate oxazoline starting material (1.0 $\mathrm{mmol})$ and a toluene solution of $\mathrm{Co}_{2}(\mathrm{CO})_{8}(0.040 \mathrm{mmol} ; 4.0 \mathrm{~mL}$ of a 0.010 M toluene stock solution) was added. The vials were then loaded into a custom-made 6-well high-
pressure reactor. ${ }^{11}$ The reactor was sealed, taken out of the glove box and pressured with hydrogen (41 atm partial pressure) and carbon monoxide (41 atm partial pressure). The reactor was then sealed, heated to $80^{\circ} \mathrm{C}$ and the reaction mixtures were stirred for the specified reaction time ( 6 or 20 h ). The reactor was then cooled with dry ice for 10 min , vented carefully and warmed to room temperature in a water bath. The crude reaction mixtures concentrated in vacuo and immediately purified by column chromatography with silica gel that was pretreated with $1 \% \mathrm{NEt}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then 50:50 EtOAc $/ \mathrm{C}_{6} \mathrm{H}_{14}$ as the eluent. Reported yields are for individual runs and may differ from those reported in Table 2, which are averages of at least two runs.

3-Benzamidopropanal (2a). General procedure was followed with a 6 h reaction time except that a catalyst loading of $2 \mathrm{~mol} \%$ was employed.
 Instability on silica gel precluded isolation of the title compound in satisfactory purity and yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the crude reaction mixture relative to an internal standard of mesitylene ( $81 \%$, average of two runs). Chemical shifts were compared to those previously reported to verify identity. ${ }^{12}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.81$ (s, 1H, O=CH), $7.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.47\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.38\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 6.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 3.71$ (pseudo q, $\left.{ }^{3} J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.82\left(\mathrm{t},{ }^{3} J=5.7 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 202.0(\mathrm{O}=\underline{\mathrm{C}} \mathrm{H}), 167.9(\mathrm{O}=\underline{\mathrm{CN}})$, 134.2, 131.8, $128.8,127.1,43.9,33.7$. The branched isomer of the title compound (7\%) was formed as judged by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture.

[^1]3-(4-Fluorobenzamido)propanal (2b). General procedure was followed with a 6 h reaction time except that a catalyst loading of
 $2 \mathrm{~mol} \%$ was employed. Instability on silica gel precluded isolation of the title compound in satisfactory purity and reported yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the crude reaction mixture relative to an internal standard of mesitylene $(83 \%$, average of two runs). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCH}), 7.75\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=5.4\right.$, 2H), 7.08 (pseudo t, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 6.68 (br s, $1 \mathrm{H}, \mathrm{NH}$ ), 3.73 (pseudo q, ${ }^{3} J=5.7 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.86\left(\mathrm{t},{ }^{3} \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 201.9,166.6$, $164.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=253 \mathrm{~Hz}\right), 130.5\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 129.4\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8.4 \mathrm{~Hz}\right), 115.7(\mathrm{~d}$, $\left.{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21.4 \mathrm{~Hz}\right), 43.8,33.7 .{ }^{19} \mathrm{~F}$ NMR $=\delta-111.1$. The branched isomer of the title compound (7\%) was formed as judged by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture.

3-(4-Methoxybenzamido)propanal (2c). General procedure was followed with a 6 h reaction time except that a catalyst
 loading of $2 \mathrm{~mol} \%$ was employed. Instability on silica gel precluded isolation of the title compound in satisfactory purity and reported yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the crude reaction mixture relative to an internal standard of mesitylene ( $63 \%$, average of two runs). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{O}=\mathrm{CH}), 7.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 6.89\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.71$ (pseudo q, $\left.{ }^{3} J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.84\left(\mathrm{t},{ }^{3} \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{H}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ : $\delta 202.1$ (OCH), 167.1 (OCN), 162.4, 128.9, 126.6, 113.9, 55.6, 44.0, 33.5. The branched
isomer of the title compound (4\%) was formed as judged by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture.
(S)-3-Benzamidobutanal (2d). The general procedure was followed with a 6 h reaction time except that a catalyst loading of $2 \mathrm{~mol} \%$ was
 employed to afford the title compound as a colorless solid ( $0.160 \mathrm{~g}, 84 \% ; \mathrm{mp}=71-73$ ${ }^{\circ} \mathrm{C}$ ). The reaction was repeated at $70^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{C}$ with isolated yields of $71 \%$ and $86 \%$ respectively (average of two runs). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.76$ ( $\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{OCH}\right), 7.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{CH}), 7.44\left(\mathrm{t},{ }^{3} J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{C} \underline{\mathrm{H}}\right), 7.36\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, m-\mathrm{C} \underline{\mathrm{H}}\right), 6.82(\mathrm{br}$ d, ${ }^{3} J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$ ), 4.58 (pent, ${ }^{3} J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{\mathrm{HMe}}$ ), 2.78-2.64 (m, 2H, $\left.\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{H}\right), 1.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(0.037 \mathrm{M} \mathrm{CDCl}_{3},(+)-\mathrm{Eu}(\mathrm{tfc})_{3}(1\right.$ $\mathrm{eq}), \mathrm{OCH})=\delta_{(\mathrm{S})} 10.45, \delta_{(\mathrm{R})} 10.29$. The product $\%$ ee for reactions run at 70,80 and $90^{\circ} \mathrm{C}$ are 94, 90 and $80 \%$ respectively. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 201.4(\mathrm{OCH}), 167.0(\mathrm{OCN})$, 134.4, 131.6, 128.6, 127.1, 49.8, 41.7, $20.6\left(\mathrm{CH}_{3}\right)$. IR ( NaCl plate, $\left.\mathrm{cm}^{-1}\right): 3296,2971$, 1724, 1635, 1533, 696. $[\alpha]_{\mathrm{D}}{ }^{23}-30.0\left(c=1.0 \mathrm{CHCl}_{3}\right)$. HRMS (EI) calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2}$ : 191.0946; measured 191.0937.

3-Benzamido-2-methylpropanal. The general procedure was followed with a 6 h reaction time except that the reaction was carried out at $90^{\circ} \mathrm{C}$
 to afford the title compound as a colorless oil $(0.108 \mathrm{~g}, 57 \%)$. The use of enantiopure 2-phenyl-5-methyl-2-oxazoline under the same reaction conditions produced racemic 3-benzamido-2-methylpropanal. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ : $\delta 9.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCH}), 7.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.2\right.$ $\mathrm{Hz}, 2 \mathrm{H}, o-\mathrm{CH}$ ), 7.46 (pseudo-t, 1H, p-C(H), 7.38 (pseudo-t, m-CH), 6.87 (br, 1H, NH), $3.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}\right.$,
$\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) \cdot{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 204.5(\mathrm{O} \underline{\mathrm{CH}}), 167.8(\mathrm{OCN}), 134.3,131.7,128.7,127.1$, 46.9, 40.0, $11.6\left(\underline{C H}_{3}\right)$. HRMS (ESI) calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}_{2}^{-}\left(\mathrm{M}-\mathrm{H}^{+}\right): 190.0868$; measured 190.0860.
( $\boldsymbol{R}$ )-3-Benzamidopentanal (2e). General procedure was followed with a 6 h reaction time to afford the title compound as a colorless solid ( 0.170
 $\left.\mathrm{g}, 83 \% ; \mathrm{mp}=\operatorname{dec} .98{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 9.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCH}), 7.73\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}\right.$, $2 \mathrm{H}, o-\mathrm{CH}), 7.46\left(\mathrm{t},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{CH}\right), 7.38\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, \mathrm{~m}-\mathrm{CH}\right), 6.67\left(\mathrm{br} \mathrm{d},{ }^{3} \mathrm{~J}=\right.$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHEt}), 2.80-2.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{H}\right), 1.73-1.64(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.96\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.41 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(0.038 \mathrm{M} \mathrm{CDCl}_{3},(+)-\mathrm{Eu}(\mathrm{tfc})_{3}(1 \mathrm{eq})\right.$, $\mathrm{OCH})=\delta_{(\mathrm{R})} 10.28(>99 \%$ ee $) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 201.7(\mathrm{OCH}), 167.4(\mathrm{OCN}), 134.5$, 131.7, 128.7, 127.1, 48.1, 47.3, 27.7, $10.9\left(\mathrm{CH}_{3}\right)$. IR $\left(\mathrm{NaCl}\right.$ plate, $\left.\mathrm{cm}^{-1}\right): 3295,2962$, 2931, 1719, 1637, 1533, 1310, 696. $[\alpha]_{\mathrm{D}}{ }^{23}+73.9\left(c=1.0 \mathrm{CHCl}_{3}\right)$. HRMS (ESI) calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{2}^{-}\left(\mathrm{M}-\mathrm{H}^{+}\right)$: 204.1025; measured 204.1027.
(S)-3-Benzamido-4-methylpentanal (2f). General procedure was followed with a 20 h reaction time to afford the title compound as a
 colorless solid $\left(0.186 \mathrm{~g}, 85 \% ; \mathrm{mp}=\operatorname{dec} .95{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 9.80(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{O}=\mathrm{CH}), 7.73\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{CH}\right), 7.49\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{CH}\right), 7.41\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4\right.$ $\mathrm{Hz}, m-\mathrm{C} \underline{\mathrm{H}}$ ), $6.49\left(\mathrm{br} \mathrm{d},{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), 4.38$ (pent, ${ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}^{i} \mathrm{Pr}$ ), 2.77$2.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{H}\right), 1.99$ (oct, $\left.{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.99\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}\right.$, $\left.3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(0.038 \mathrm{M} \mathrm{CDCl}_{3},(+)-\right.$ $\left.\mathrm{Eu}(\mathrm{tfc})_{3}(1 \mathrm{eq}), \mathrm{OCH}\right)=\delta_{(\mathrm{R})} 10.60(>99 \%$ ee $) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 201.8(\mathrm{OCH}), 167.3$
( OCN ), 134.6, 131.8, 128.8, 127.1, 51.0, 46.2, $31.9\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 19.6\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 19.1$ $\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$. IR $\left(\mathrm{NaCl}\right.$ plate, $\left.\mathrm{cm}^{-1}\right): 3315,2963,1724,1636,1545,696 \cdot[\alpha]_{\mathrm{D}}{ }^{23}-63.7(c=$ 1.0 $\mathrm{CHCl}_{3}$ ). $\mathrm{HRMS}(\mathrm{EI})$ calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}: 219.1259$; measured 219.1255.
(S)-3-Benzamido-5-methylhexanal (2g). General procedure was followed with a 20 h reaction time to afford the title compound as a
 colorless solid ( $\left.0.205 \mathrm{~g}, 88 \% ; \mathrm{mp}=\operatorname{dec} .46{ }^{\circ} \mathrm{C}\right){ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCH})$, $7.73\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{CH}\right), 7.48\left(\mathrm{t},{ }^{3} J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{CH}\right), 7.40\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, m-\right.$ CH), $6.54\left(\mathrm{br} \mathrm{d},{ }^{3} J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N} \underline{H}\right), 4.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}^{\mathrm{i}} \mathrm{Bu}\right), 2.82-2.66(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{H}\right), 1.74-1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{i} \mathrm{Pr}\right), 1.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} \underline{\mathrm{H}}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.94\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz}\right.$, $6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(0.038 \mathrm{M} \mathrm{CDCl}_{3},(+)-\mathrm{Eu}(\mathrm{tfc})_{3} 50 \mathrm{~mol} \%, \mathrm{OCH}\right)=\delta_{(\mathrm{R})} 10.45$ ( $>99 \%$ ee). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 201.7$ (OCH), 167.1 (OCN), 134.5, 131.7, 128.7, 127.1, 49.0, 44.1, 43.8, 25.3, 23.1, 22.2. IR (NaCl plate, $\mathrm{cm}^{-1}$ ): 3305, 2957, 1723, 1634, 1536, 695. $[\alpha]_{\mathrm{D}}{ }^{23}-55.6\left(c=1.0 \mathrm{CHCl}_{3}\right)$. HRMS (EI) calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$ : 233.1416; measured 233.1411.
(3R,4S)-3-Benzamido-4-methylhexanal (2h). General procedure was followed with a 20 h reaction time to afford the title compound as a
 colorless solid $\left(0.204 \mathrm{~g}, 87 \% \mathrm{mp}=\right.$ dec. $\left.66{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.77(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{O}=\mathrm{CH}), 7.71\left(\mathrm{~d},{ }^{3} J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{CH}\right), 7.46\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{CH}\right), 7.38\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.8\right.$ $\mathrm{Hz}, m-\mathrm{CH}), 6.62\left(\mathrm{br} \mathrm{d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N} \underline{\mathrm{H}}\right), 4.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 2.72-2.63(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{H}\right), 1.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} \underline{\mathrm{HMe}}), 1.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.92$ $(\mathrm{m}, 6 \mathrm{H}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(0.037 \mathrm{M} \mathrm{CDCl}_{3},(+)-\mathrm{Eu}(\mathrm{tfc})_{3} 50 \mathrm{~mol} \%\right) \mathrm{OCH}=\delta_{(\mathrm{R})} 10.25(>99 \%)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 201.9$ (OCH$), 167.3$ (OCN), 134.5, 131.7, 128.7, 127.1, 49.8, 45.6, 38.3, 25.9, 15.6, 11.5. IR (NaCl plate, $\mathrm{cm}^{-1}$ ): 3300, 2964, 2876, 1724, 1636, 1539, 1490, 696. $[\alpha]_{\mathrm{D}}{ }^{23}-59.2\left(c=1.0 \mathrm{CHCl}_{3}\right)$. HRMS (EI) calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$ : 233.1416; measured 233.1424.
(R)-3-Benzamido-3-phenylpropanal (2i). General procedure was followed with a 20 h reaction time to afford the title compound as a
 colorless solid ( $\left.0.169 \mathrm{~g}, 67 \% \mathrm{mp}=113-117^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCH})$, $7.77\left(\mathrm{~d},{ }^{3} J=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.50\left(\mathrm{t},{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.41\left(\mathrm{t},{ }^{3} J=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.38-7.28$ $(\mathrm{m}, 6 \mathrm{H}), 7.00\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH}\right), 5.71\left(\mathrm{dd},{ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}\right)$, 3.21 (ddd, $\left.{ }^{3} J=1.9 \mathrm{~Hz},{ }^{3} J=6.4 \mathrm{~Hz},{ }^{2} J=17.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.06\left(\mathrm{dd},{ }^{3} J=5.8,{ }^{2} J=17.0,1 \mathrm{H}\right)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(0.056 \mathrm{M} \mathrm{CDCl}_{3},(+)-\mathrm{Eu}(\mathrm{tfc})_{3} 25 \mathrm{~mol} \%\right) \mathrm{OCH}=\delta_{(\mathrm{S})} 10.04\left(44 \%, \delta_{(\mathrm{R})} 9.98\right.$ (56\%); ee $12 \% .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 200.8$ (OCH), 167.0 (OCN), 140.5, 134.1, 131.9, 129.2, 128.8, 128.1, 127.2, 126.7, 49.3, 49.0. IR ( NaCl plate, $\mathrm{cm}^{-1}$ ): 3306, 1724, 1639, 1536, 699. $[\alpha]_{\mathrm{D}}^{23}-0.2\left(c=1.0 \mathrm{CHCl}_{3}\right)$. HRMS (ESI) calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{2}^{+}(\mathrm{M}+$ $\mathrm{H}^{+}$): 254.1181; measured 254.1171.
(S)-3-Benzamido-4-phenylbutanal (2j). General procedure was followed with a 6 h reaction time to afford the title compound as an off-
 white solid ( $0.217 \mathrm{~g}, 81 \%, \mathrm{mp}=109-114{ }^{\circ} \mathrm{C}$ ). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCH})$, $7.68\left(\mathrm{~d},{ }^{3} J=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.48\left(\mathrm{t},{ }^{3} J=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.31\left(\mathrm{t},{ }^{3} J=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.25(\mathrm{~m}$, $1 \mathrm{H}), 7.21\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.58\left(\mathrm{br} \mathrm{d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), 4.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NC} \underline{\mathrm{H}}), 3.09$ (dd, $\left.{ }^{3} J=6.6 \mathrm{~Hz},{ }^{2} J=13.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.97\left(\mathrm{dd},{ }^{3} J=7.8,{ }^{2} J=13.5,1 \mathrm{H}\right), 2.75(\mathrm{~m}, 2 \mathrm{H}) .{ }^{1} \mathrm{H}$
$\operatorname{NMR}\left(0.0 .37 \mathrm{M} \mathrm{CDCl}_{3},(+)-\mathrm{Eu}(\mathrm{tfc})_{3}(1 \mathrm{eq})\right) \mathrm{OCH}=\delta_{(\mathrm{S})} 10.27(98 \%), \delta_{(\mathrm{R})} 10.07(2 \%) ;$ ee $96 \% .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 201.5(\mathrm{OCH}), 167.2(\mathrm{OCN}), 137.5,134.4,131.8,129.4$, 129.0, 128.8, 127.1, 127.0, 47.0, 46.8, 40.2. IR (NaCl plate, $\mathrm{cm}^{-1}$ ): 3308, 1716, 1640, 1531, 1111, 696. $[\alpha]_{D}^{23}-40.6\left(c=1.0 \mathrm{CHCl}_{3}\right)$. HRMS (EI) calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$ : 267.1259; measured 267.1263.

## 3-(4-tert-Butylbenzamido)-4-(tert-butyldimethylsiloxy)butanal

 $(2 \mathbf{k})$ : General procedure was followed with a 6 h reaction time to afford the title compound as a colorless oil $(0.319 \mathrm{~g}, 88 \%) .{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ): $\delta 9.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{O}=\mathrm{CH}), 7.68\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}\right.$, 2H), 6.76 ( $\mathrm{br} \mathrm{d},{ }^{3} J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$ ), 4.64 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}$ ), 3.79 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTBDMS}$ ), 2.83 (dd, $\left.{ }^{3} J=3.9 \mathrm{~Hz},{ }^{2} J=16.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{H}\right), 2.74\left(\mathrm{dd},{ }^{3} J=4.9 \mathrm{~Hz},{ }^{2} J=16.6 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{H}\right), 1.32\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.91\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.06\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}$ ): $\delta 201.3(\mathrm{OCH}), 166.9(\mathrm{OCN}), 155.4,131.4,126.9,125.8,64.5,47.1$, 45.4, 35.1, 31.3, 26.0, 18.4, -5.3. HRMS (ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NO}_{3} \mathrm{Si}^{-}\left(\mathrm{M}-\mathrm{H}^{+}\right)$: 378.2464; measured 378.2475.
(R)-3-Benzamido-1,2,3,4,-tetrahydrocarbazole (3). General procedure was followed with a 6 h reaction time. A different work
 up procedure was used: the crude reaction mixture was filtered to give an off-white solid which was further purified by column chromatography using silica gel pretreated with a $1 \%$ solution of $\mathrm{NEt}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and eluting with a $5 \%$ solution of EtOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the title compound as a colorless microcrystalline solid $(0.118 \mathrm{~g}, 42 \%, \mathrm{mp}>200$
${ }^{\circ} \mathrm{C}$ ). The $\%$ ee of the crude 3 was not measured, but was assumed to be $>95 \%$ given the structural similarity of substrate $\mathbf{1 1}$ to $\mathbf{1} \mathbf{j}$, and the enantiopurity of $\mathbf{3}$ in single crystals as determined by x-ray diffraction ( $P 2_{1} 2_{2} 2_{1}$ space group). The absolute configuration of $\mathbf{3}$ is assigned as $R$ on the basis of the absolute configuration of the enantiomerically-pure starting material. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 9.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{O}=\mathrm{CH}), 7.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 7.79 (br d, $\left.{ }^{3} J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), 7.50\left(\mathrm{t},{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.43\left(\mathrm{t},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.38$ $\left(\mathrm{d},{ }^{3} J=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.29\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right) 7.03\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.97\left(\mathrm{t},{ }^{3} J=7.4\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 3.15\left(\mathrm{dd},{ }^{2} J=15.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.92(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{dd}$, $\left.{ }^{3} J=8.8 \mathrm{~Hz},{ }^{2} J=15.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta$ 167.0 (OCN), 137.7, 136.3, 134.4, 131.8, 129.1, 128.8, 128.2, 121.5, 119.4, 118.2, 111.5, 108.2, 47.4, 29.8, 28.3, 22.4. $[\alpha]_{\mathrm{D}}{ }^{23}-118\left(c=0.1 \mathrm{CHCl}_{3}\right)$. HRMS (ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right):$291.1497; measured 291.1501.

## X-Ray Crystallography



Table S1. Crystal data and structure refinement for 3.

| Identification code | $\mathrm{dsl1}$ |  |
| :--- | :--- | :--- |
| Empirical formula | $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ |  |
| Formula weight | 290.35 |  |
| Temperature | $173(2) \mathrm{K}$ |  |
| Wavelength | $0.71073 \AA$ |  |
| Crystal system | Orthorhombic |  |
| Space group | $P 2_{1} 2_{1} 2_{1}$ | $\alpha=90^{\circ}$ |
| Unit cell dimensions | $a=9.3075(4) \AA$ | $\beta=90^{\circ}$ |
|  | $b=11.1765(7) \AA$ | $\gamma=90^{\circ}$ |
|  | $c=14.3598(11) \AA$ |  |
| Volume | $1493.78(16) \AA^{3}$ |  |
| Z | 4 |  |
| Density (calculated $)$ | $1.291 \mathrm{~g} / \mathrm{cm}^{3}$ |  |
| Absorption coefficient | $0.081 \mathrm{~mm}^{-1}$ |  |
| F(000) | 616 |  |
| Crystal size | $0.50 \times 0.30 \times 0.20 \mathrm{~mm}{ }^{3}$ |  |
| $\theta$ range for data collection | $2.31 \mathrm{to} 28.42^{\circ}$ |  |
| Index ranges | $-12<=\mathrm{h}<=11,-14<=\mathrm{k}<=14,-7<=1<=19$ |  |
| Reflections collected | 8472 |  |
| Independent reflections | $2145[\mathrm{R}(\mathrm{int})=0.0409]$ |  |

Completeness to $\theta=28.42^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{2}$
Final R indices [ $\mathrm{I}>2 \sigma(\mathrm{I})$ ]
$R$ indices (all data)
Largest diff. peak and hole
99.6 \%

Semi-empirical from equivalents
0.9840 and 0.9608

Full-matrix least-squares on $\mathrm{F}^{2}$
2145 / 0/271
0.996
$R 1=0.0399, w R 2=0.0850$
$R 1=0.0564, w R 2=0.0919$
0.148 and $-0.186 \mathrm{e} / \AA^{3}$

Table S2. Atomic coordinates ( $\times 10^{4}$ ) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $3 . U(e q)$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

|  | x |  |  |  |
| :--- | ---: | ---: | ---: | :--- |
| y | y | z | $\mathrm{U}(\mathrm{eq})$ |  |
| $\mathrm{O}(1)$ | $1633(1)$ | $2994(1)$ | $9261(1)$ | $34(1)$ |
| $\mathrm{N}(1)$ | $-416(1)$ | $3554(1)$ | $9952(1)$ | $36(1)$ |
| $\mathrm{N}(2)$ | $1326(1)$ | $5628(1)$ | $13285(1)$ | $34(1)$ |
| $\mathrm{C}(1)$ | $314(2)$ | $3106(2)$ | $9235(1)$ | $29(1)$ |
| $\mathrm{C}(2)$ | $287(2)$ | $3944(2)$ | $10805(1)$ | $31(1)$ |
| $\mathrm{C}(3)$ | $-794(2)$ | $3917(2)$ | $11601(1)$ | $33(1)$ |
| $\mathrm{C}(4)$ | $-171(2)$ | $4506(1)$ | $12439(1)$ | $28(1)$ |
| $\mathrm{C}(5)$ | $-608(2)$ | $4438(2)$ | $13388(1)$ | $29(1)$ |
| $\mathrm{C}(6)$ | $-1714(2)$ | $3850(2)$ | $13861(1)$ | $35(1)$ |
| $\mathrm{C}(7)$ | $-1809(2)$ | $3974(2)$ | $14812(1)$ | $42(1)$ |
| $\mathrm{C}(8)$ | $-829(2)$ | $4671(2)$ | $15301(1)$ | $46(1)$ |
| $\mathrm{C}(9)$ | $254(2)$ | $5274(2)$ | $14855(1)$ | $40(1)$ |
| $\mathrm{C}(10)$ | $358(2)$ | $5150(2)$ | $13898(1)$ | $32(1)$ |
| $\mathrm{C}(11)$ | $1005(2)$ | $5224(2)$ | $12404(1)$ | $29(1)$ |
| $\mathrm{C}(12)$ | $1852(2)$ | $5497(2)$ | $11558(1)$ | $37(1)$ |
| $\mathrm{C}(13)$ | $963(2)$ | $5177(2)$ | $10700(1)$ | $35(1)$ |
| $\mathrm{C}(14)$ | $-516(2)$ | $2746(2)$ | $8396(1)$ | $28(1)$ |
| $\mathrm{C}(15)$ | $101(2)$ | $1937(2)$ | $7787(1)$ | $36(1)$ |
| $\mathrm{C}(16)$ | $-627(2)$ | $1563(2)$ | $7003(1)$ | $40(1)$ |
| $\mathrm{C}(17)$ | $-1978(2)$ | $2007(2)$ | $6815(1)$ | $38(1)$ |
| $\mathrm{C}(18)$ | $-2591(2)$ | $2829(2)$ | $7409(1)$ | $38(1)$ |
| $\mathrm{C}(19)$ | $-1871(2)$ | $3195(2)$ | $8199(1)$ | $33(1)$ |
|  |  |  |  |  |

Table S3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 3.

| $\mathrm{O}(1)-\mathrm{C}(1)$ | $1.2348(18)$ |  |  |
| :--- | :--- | :--- | :--- |
| $\mathrm{N}(1)-\mathrm{C}(1)$ | $1.331(2)$ | $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $109.17(13)$ |
| $\mathrm{N}(1)-\mathrm{C}(2)$ | $1.456(2)$ | $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(13)$ | $111.92(14)$ |
| $\mathrm{N}(2)-\mathrm{C}(10)$ | $1.368(2)$ | $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(13)$ | $111.47(15)$ |
| $\mathrm{N}(2)-\mathrm{C}(11)$ | $1.376(2)$ | $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$ | $109.86(13)$ |
| $\mathrm{C}(1)-\mathrm{C}(14)$ | $1.486(2)$ | $\mathrm{C}(11)-\mathrm{C}(4)-\mathrm{C}(5)$ | $107.28(14)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | $1.522(2)$ | $\mathrm{C}(11)-\mathrm{C}(4)-\mathrm{C}(3)$ | $123.07(15)$ |
| $\mathrm{C}(2)-\mathrm{C}(13)$ | $1.523(2)$ | $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$ | $129.64(15)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | $1.490(2)$ | $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$ | $118.91(16)$ |
| $\mathrm{C}(4)-\mathrm{C}(11)$ | $1.358(2)$ | $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$ | $134.52(15)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | $1.424(2)$ | $\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(4)$ | $106.57(14)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)$ | $1.398(2)$ | $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$ | $118.91(17)$ |
| $\mathrm{C}(5)-\mathrm{C}(10)$ | $1.406(2)$ | $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | $120.99(18)$ |
| $\mathrm{C}(6)-\mathrm{C}(7)$ | $1.375(2)$ | $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$ | $121.55(17)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | $1.390(3)$ | $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | $117.70(17)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)$ | $1.371(3)$ | $\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(9)$ | $130.15(16)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)$ | $1.386(2)$ | $\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(5)$ | $107.91(15)$ |
| $\mathrm{C}(11)-\mathrm{C}(12)$ | $1.479(2)$ | $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$ | $121.93(16)$ |
| $\mathrm{C}(12)-\mathrm{C}(13)$ | $1.527(2)$ | $\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{N}(2)$ | $109.57(14)$ |
| $\mathrm{C}(14)-\mathrm{C}(15)$ | $1.382(2)$ | $\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)$ | $125.53(15)$ |
| $\mathrm{C}(14)-\mathrm{C}(19)$ | $1.387(2)$ | $\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$ | $124.86(14)$ |
| $\mathrm{C}(15)-\mathrm{C}(16)$ | $1.379(3)$ | $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$ | $109.04(13)$ |
| $\mathrm{C}(16)-\mathrm{C}(17)$ | $1.379(3)$ | $\mathrm{C}(2)-\mathrm{C}(13)-\mathrm{C}(12)$ | $110.82(15)$ |
| $\mathrm{C}(17)-\mathrm{C}(18)$ | $1.377(3)$ | $\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)$ | $119.03(16)$ |
| $\mathrm{C}(18)-\mathrm{C}(19)$ | $1.380(2)$ | $\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(1)$ | $118.32(14)$ |
|  |  | $\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(1)$ | $122.65(15)$ |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$ | $122.27(13)$ | $\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$ | $120.74(16)$ |
| $\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(11)$ | $108.65(14)$ | $\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$ | $119.90(18)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(1)$ | $121.49(15)$ | $\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$ | $119.81(17)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(14)$ | $120.91(14)$ | $\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$ | $120.38(17)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(14)$ | $117.60(13)$ | $\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$ | $120.12(17)$ |
|  |  |  |  |

[^2]Table S4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 3. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

|  | $\mathrm{U}^{11}$ | $\mathrm{U}^{22}$ | $\mathrm{U}^{33}$ | $\mathrm{U}^{23}$ | $\mathrm{U}^{13}$ | $\mathrm{U}^{12}$ |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{O}(1)$ | $24(1)$ | $42(1)$ | $37(1)$ | $3(1)$ | $2(1)$ | $-4(1)$ |
| $\mathrm{N}(1)$ | $24(1)$ | $52(1)$ | $32(1)$ | $-7(1)$ | $-2(1)$ | $2(1)$ |
| $\mathrm{N}(2)$ | $31(1)$ | $31(1)$ | $39(1)$ | $-9(1)$ | $-5(1)$ | $-2(1)$ |
| $\mathrm{C}(1)$ | $27(1)$ | $29(1)$ | $30(1)$ | $4(1)$ | $4(1)$ | $-3(1)$ |
| $\mathrm{C}(2)$ | $27(1)$ | $38(1)$ | $27(1)$ | $-3(1)$ | $-5(1)$ | $1(1)$ |
| $\mathrm{C}(3)$ | $30(1)$ | $38(1)$ | $31(1)$ | $-4(1)$ | $-1(1)$ | $-4(1)$ |
| $\mathrm{C}(4)$ | $26(1)$ | $28(1)$ | $31(1)$ | $-4(1)$ | $-3(1)$ | $1(1)$ |
| $\mathrm{C}(5)$ | $27(1)$ | $28(1)$ | $30(1)$ | $-5(1)$ | $-3(1)$ | $6(1)$ |
| $\mathrm{C}(6)$ | $34(1)$ | $36(1)$ | $35(1)$ | $-3(1)$ | $1(1)$ | $1(1)$ |
| $\mathrm{C}(7)$ | $40(1)$ | $48(1)$ | $38(1)$ | $0(1)$ | $6(1)$ | $3(1)$ |
| $\mathrm{C}(8)$ | $47(1)$ | $59(1)$ | $31(1)$ | $-6(1)$ | $4(1)$ | $14(1)$ |
| $\mathrm{C}(9)$ | $38(1)$ | $45(1)$ | $37(1)$ | $-15(1)$ | $-6(1)$ | $9(1)$ |
| $\mathrm{C}(10)$ | $29(1)$ | $31(1)$ | $35(1)$ | $-6(1)$ | $-2(1)$ | $4(1)$ |
| $\mathrm{C}(11)$ | $27(1)$ | $27(1)$ | $34(1)$ | $-5(1)$ | $-5(1)$ | $2(1)$ |
| $\mathrm{C}(12)$ | $34(1)$ | $35(1)$ | $40(1)$ | $1(1)$ | $-2(1)$ | $-8(1)$ |
| $\mathrm{C}(13)$ | $35(1)$ | $37(1)$ | $33(1)$ | $4(1)$ | $-2(1)$ | $0(1)$ |
| $\mathrm{C}(14)$ | $27(1)$ | $32(1)$ | $26(1)$ | $3(1)$ | $1(1)$ | $-4(1)$ |
| $\mathrm{C}(15)$ | $30(1)$ | $44(1)$ | $33(1)$ | $0(1)$ | $3(1)$ | $2(1)$ |
| $\mathrm{C}(16)$ | $45(1)$ | $46(1)$ | $30(1)$ | $-5(1)$ | $3(1)$ | $1(1)$ |
| $\mathrm{C}(17)$ | $44(1)$ | $39(1)$ | $31(1)$ | $5(1)$ | $-8(1)$ | $-8(1)$ |
| $\mathrm{C}(18)$ | $35(1)$ | $37(1)$ | $41(1)$ | $4(1)$ | $-8(1)$ | $0(1)$ |
| $\mathrm{C}(19)$ | $33(1)$ | $33(1)$ | $35(1)$ | $1(1)$ | $-2(1)$ | $3(1)$ |
|  |  |  |  |  |  |  |

Table S5. Hydrogen coordinates ( $\times 10^{4}$ ) and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ $10^{3}$ ) for 3.

|  | x |  | y | z |
| :--- | ---: | ---: | ---: | ---: |
|  |  | $\mathrm{U}(\mathrm{eq})$ |  |  |
|  |  |  |  |  |
| $\mathrm{H}(1 \mathrm{~N})$ | $-1320(20)$ | $3537(16)$ | $9970(12)$ | $41(5)$ |
| $\mathrm{H}(2 \mathrm{~N})$ | $2040(20)$ | $6123(19)$ | $13424(13)$ | $53(6)$ |
| $\mathrm{H}(2)$ | $1049(16)$ | $3347(15)$ | $10961(11)$ | $24(4)$ |
| $\mathrm{H}(3 \mathrm{~B})$ | $-1709(18)$ | $4347(16)$ | $11396(11)$ | $31(4)$ |
| $\mathrm{H}(3 \mathrm{~A})$ | $-1019(17)$ | $3031(17)$ | $11727(11)$ | $34(5)$ |
| $\mathrm{H}(6)$ | $-2442(17)$ | $3373(15)$ | $13497(11)$ | $25(4)$ |
| $\mathrm{H}(7)$ | $-2630(20)$ | $3548(16)$ | $15152(11)$ | $43(5)$ |
| $\mathrm{H}(8)$ | $-950(18)$ | $4703(18)$ | $15980(13)$ | $42(5)$ |
| $\mathrm{H}(9)$ | $920(20)$ | $5767(17)$ | $15169(13)$ | $47(6)$ |
| $\mathrm{H}(12 \mathrm{~B})$ | $2245(17)$ | $6302(17)$ | $11522(12)$ | $35(5)$ |
| $\mathrm{H}(12 \mathrm{~A})$ | $2799(19)$ | $5032(18)$ | $11567(13)$ | $45(5)$ |
| $\mathrm{H}(13 \mathrm{~B})$ | $151(19)$ | $5777(17)$ | $10609(13)$ | $42(5)$ |
| $\mathrm{H}(13 \mathrm{~A})$ | $1563(17)$ | $5204(15)$ | $10156(11)$ | $25(4)$ |
| $\mathrm{H}(15)$ | $1050(20)$ | $1640(20)$ | $7897(14)$ | $55(6)$ |
| $\mathrm{H}(16)$ | $-210(20)$ | $1030(20)$ | $6555(14)$ | $59(6)$ |
| $\mathrm{H}(17)$ | $-2500(20)$ | $1764(18)$ | $6251(12)$ | $44(5)$ |
| H(18) | $-3560(20)$ | $3145(18)$ | $7258(13)$ | $47(6)$ |
| H(19) | $-2260(20)$ | $3774(18)$ | $8607(12)$ | $43(5)$ |


[^0]:    ${ }^{1}$ Luo, S.-P.; Xu, D.-Q.; Yue, H.-D.; Wang, L.-P.; Yang, W.-L.; Xu, Z.-Y. Tetrahedron: Asymm. 2006, 17, 2028-2033.
    ${ }^{2}$ Lobert, M.; Koehn, U.; Hoogenboom, R.; Schubert, U. S. Chem. Commun. 2008, 14581460
    ${ }^{3}$ Byrne, C, M.; Church, T. L.; Kramer, J. W.; Coates, G. W. Angew. Chem., Int. Ed. 2008, 47, 3979-3983.
    ${ }^{4}$ Karade, N. N.; Tiwari, G. B.; Gampawar, S. V. Synlett 2007, 1921-1924.
    ${ }^{5}$ Ikeda, S.; Kondo, H.; Arii, T.; Odashima, K. Chem. Commun. 2002, 2422-2423.
    ${ }^{6}$ Schwekendiek, K.; Glorius, F. Synthesis 2006, 2996-3002.
    ${ }^{7}$ Ohshima, T.; Iwasaki, T.; Mashima, K. Chem. Commun. 2006, 2711-2713.
    ${ }^{8}$ Fukuhara, T.; Hasegawa, C.; Hara, S. Synthesis 2007, 1528-1534.
    ${ }^{9}$ Gorunova, O. N.; Keuseman, K. J.; Goebel, B. M.; Kataeva, N. A.; Churakov, A. V.; Kuz'mina, L. G.; Dunina, V. V.; Smoliakova, I. P. J. Organomet. Chem. 2004, 689, 2382-2394.
    ${ }^{10}$ Chamchaang, W.; Pinhas, A. R. J. Org. Chem. 1990, 55, 2943-2950.

[^1]:    ${ }^{11}$ Getzler, Y. D. Y. L.; Mahadevan, V.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 1174-1175.
    ${ }^{12}$ Chan, S.; Braish, T. F. Tetrahedron 1994, 50, 9943-9950.

[^2]:    Symmetry transformations used to generate equivalent atoms:

