Brønsted Acid Activation of α-Diazo Imides: A Highly syn-Selective Glycolate Mannich Reaction

Timothy L. Troyer, Hubert Muchalski, and Jeffrey N. Johnston*

Department of Chemistry & Vanderbilt Institute of Chemical Biology Vanderbilt University 2301 Vanderbilt Place, Nashville, TN 37235-1822

S-II-X

Figure 1. ¹ H NMR (400 MHz, CDCl ₃) of 1b	3
Figure 2. ¹³ C NMR (100 MHz, CDCl ₃) of 1b	4
Figure 3. ¹ H NMR (400 MHz, CDCl ₃) of 1c	5
Figure 4. ¹³ C NMR (100 MHz, CDCl ₃) of 1c	6
Figure 5. ¹ H NMR (400 MHz, CDCl ₃) of 1d	7
Figure 6. ¹³ C NMR (100 MHz, CDCl ₃) of 1d	8
Figure 7. ¹ H NMR (400 MHz, CDCl ₃) of 1e	9
Figure 8. 13 C NMR (100 MHz, CDCl ₃) of 1e	10
Figure 9. ¹ H NMR (400 MHz, CDCl ₃) of 1f	11
Figure 10. ¹³ C NMR (100 MHz, CDCl ₃) of 1f	12
Figure 11. 1 H NMR (500 MHz, CDCl ₃) of 1g	13
Figure 12. ¹³ C NMR (125 MHz, CDCl ₃) of 1g	14
Figure 13. ¹ H NMR (400 MHz, CDCl ₃) of 1h	15
Figure 14. ¹³ C NMR (100 MHz, CDCl ₃) of 1h	16
Figure 15. ¹ H NMR (400 MHz, CDCl ₃) of 1i	17
Figure 16. ¹³ C NMR (100 MHz, CDCl ₃) of 1i	18
Figure 17. ¹ H NMR (400 MHz, CDCl ₃) of 1 j	19
Figure 18. ¹³ C NMR (100 MHz, CDCl ₃) of 1j	20
Figure 19. ¹ H NMR (400 MHz, CDCl ₃) of 1k	21
Figure 20. 13 C NMR (100 MHz, CDCl ₃) of 1k	22
Figure 21. ¹ H NMR (400 MHz, CDCl ₃) of 11	23
Figure 22. ¹³ C NMR (100 MHz, CDCl ₃) of 11	24
Figure 23. ¹ H NMR (400 MHz, CDCl ₃) of $1m$	25
Figure 24. 13 C NMR (100 MHz, CDCl ₃) of 1m	26
Figure 25. ¹ H NMR (400 MHz, CDCl ₃) of $1n$	27
Figure 26. 15 C NMR (100 MHz, CDCl ₃) of 1n	28
Figure 27. ¹ H NMR (400 MHz, CDCl ₃) of 10	29
Figure 28. 15 C NMR (100 MHz, CDCl ₃) of 10	30
Figure 29. ${}^{1}_{12}$ NMR (400 MHz, CDCl ₃) of 1q	31
Figure 30. 15 C NMR (100 MHz, CDCl ₃) of 1q	32
Figure 31. $^{1}_{12}$ NMR (400 MHz, CDCl ₃) of 1t	33
Figure 32. 13 C NMR (100 MHz, CDCl ₃) of 1t	34
Figure 33. ¹ H NMR (400 MHz, CDCl ₃) of 1 w	35
Figure 34. ¹³ C NMR (100 MHz, CDCl ₃) of 1 w	36
Figure 35. ¹ H NMR (400 MHz, CDCl ₃) of S1	37
Figure 36. ¹³ C NMR (100 MHz, CDCl ₃) of S1	38
Figure 37. ¹ H NMR (400 MHz, $CDCl_3$) of 2	39
Figure 38. ¹³ C NMR (100 MHz, CDCl ₃) of 2	40
Figure 39. ¹ H NMR (500 MHz, CDCl ₃) of 3a	41
Figure 40. ¹³ C NMR (125 MHz, CDCl ₃) of $3a$	42
Figure 41. ¹ H NMR (500 MHz, CDCl ₃) of 3b	43
Figure 42. C NMR (125 MHz, CDCl ₃) of 3b	44
Figure 43. ^T H NMR (600 MHz, CDCl ₃) of 3c	45

Johnston et al.	Supporting Information
Figure 44. 13 C NMR (150 MHz, CDCl ₃) of 3c	
Figure 45. ¹ H NMR (600 MHz, CDCl ₃) of 3d	
Figure 46. ¹³ C NMR (150 MHz, CDCl ₃) of 3d	
Figure 47. ¹ H NMR (600 MHz, CDCl ₃) of 3e	
Figure 48. ¹³ C NMR (150 MHz, CDCl ₃) of 3e	
Figure 49. ¹ H NMR (600 MHz, CDCl ₃) of 3f	
Figure 50. ¹³ C NMR (150 MHz, CDCl ₃) of 3f	
Figure 51. ¹ H NMR (600 MHz, CDCl ₃) of 3g	
Figure 52. ¹³ C NMR (150 MHz, CDCl ₃) of 3g	
Figure 53. ¹ H NMR (500 MHz, CDCl ₃) of 3h	
Figure 54. ¹³ C NMR (125 MHz, CDCl ₃) of 3h	
Figure 55. ¹ H NMR (600 MHz, CDCl ₃) of 3i	
Figure 56. ¹³ C NMR (150 MHz, CDCl ₃) of 3i	
Figure 57. ¹ H NMR (500 MHz, CDCl ₃) of 3j	
Figure 58. ¹³ C NMR (125 MHz, CDCl ₃) of 3j	
Figure 59. ¹ H NMR (500 MHz, CDCl ₃) of 3k	
Figure 60. ¹³ C NMR (125 MHz, CDCl ₃) of 3k	
Figure 61. ¹ H NMR (500 MHz, CDCl ₃) of 31	
Figure 62. ¹³ C NMR (125 MHz, CDCl ₃) of 31	
Figure 63. ¹ H NMR (400 MHz, CDCl ₃) of 3m.	
Figure 64. ¹³ C NMR (100 MHz, CDCl ₃) of 3m	
Figure 65. ¹ H NMR (400 MHz, CDCl ₃) of 3n	
Figure 66. ¹³ C NMR (100 MHz, CDCl ₃) of 3n	
Figure 67. ¹ H NMR (500 MHz, CDCl ₃) of 30	
Figure 68. ¹³ C NMR (125 MHz, CDCl ₃) of 30	
Figure 69. ¹ H NMR (500 MHz, CDCl ₃) of 3p	
Figure 70. ¹³ C NMR (125 MHz, CDCl ₃) of 3p	
Figure 71. ¹ H NMR (500 MHz, CDCl ₃) of 3q	
Figure 72. 13 C NMR (125 MHz, CDCl ₃) of 3q	
Figure 73. ¹ H NMR (500 MHz, CDCl ₃) of 3r.	
Figure 74. ¹³ C NMR (125 MHz, CDCl ₃) of 3r	
Figure 75. ¹ H NMR (500 MHz, CDCl ₃) of 3s	
Figure 76. ¹³ C NMR (125 MHz, CDCl ₃) of 3s	
Figure 77. ¹ H NMR (500 MHz, CDCl ₃) of 3t	
Figure 78. ¹³ C NMR (125 MHz, CDCl ₃) of 3t	
Figure 79. ¹ H NMR (500 MHz, CDCl ₃) of 3u	
Figure 80. ¹³ C NMR (125 MHz, CDCl ₃) of 3u	
Figure 81. ¹ H NMR (500 MHz, CDCl ₃) of 3v	
Figure 82. ¹³ C NMR (125 MHz, CDCl ₃) of 3v	
Figure 83. ¹ H NMR (500 MHz, CDCl ₃) of 3w	
Figure 84. ¹³ C NMR (125 MHz, CDCl ₃) of 3w	
Figure 85. ¹ H NMR (600 MHz, CDCl ₃) of $3x$	
Figure 86. 13 C NMR (150 MHz, CDCl ₃) of 3x	
Figure 87. ¹ H NMR (600 MHz, CDCl ₃) of 3y	
Figure 88. ¹³ C NMR (150 MHz, CDCl ₃) of 3y	
Figure 89. ¹ H NMR (500 MHz, CDCl ₃) of 5	
Figure 90. ¹³ C NMR (125 MHz, CDCl ₃) of 5	
Figure 91. ¹ H NMR (600 MHz, CDCl ₃) of 6	
Figure 92. ¹³ C NMR (150 MHz, CDCl ₃) of 6	

Johnston et al. **Figure 1.** ¹H NMR (400 MHz, CDCl₃) of **1b**

Johnston et al. **Figure 2.** ¹³C NMR (100 MHz, CDCl₃) of **1b**

Johnston et al. **Figure 3.** ¹H NMR (400 MHz, CDCl₃) of **1c**

Johnston et al. **Figure 4.** ¹³C NMR (100 MHz, CDCl₃) of **1c**

Johnston et al. **Figure 5.** ¹H NMR (400 MHz, CDCl₃) of **1d**

Johnston et al. **Figure 6.** ¹³C NMR (100 MHz, CDCl₃) of **1d**

Johnston et al. **Figure 7.** ¹H NMR (400 MHz, CDCl₃) of **1e**

Johnston et al. **Figure 8.** ¹³C NMR (100 MHz, CDCl₃) of **1e**

Johnston et al. **Figure 9.** ¹H NMR (400 MHz, CDCl₃) of **1f**

Johnston et al. **Figure 10.** ¹³C NMR (100 MHz, CDCl₃) of **1f**

Johnston et al. **Figure 11.** ¹H NMR (500 MHz, CDCl₃) of **1g**

Johnston et al. **Figure 12.** ¹³C NMR (125 MHz, CDCl₃) of **1g**

Johnston et al. **Figure 13.** ¹H NMR (400 MHz, CDCl₃) of **1h**

Johnston et al. **Figure 14.** ¹³C NMR (100 MHz, CDCl₃) of **1h**

Johnston et al. **Figure 16.** ¹³C NMR (100 MHz, CDCl₃) of **1i**

Johnston et al. **Figure 17.** ¹H NMR (400 MHz, CDCl₃) of **1**j

Johnston et al. **Figure 18.** ¹³C NMR (100 MHz, CDCl₃) of **1**j

Johnston et al. Figure 19. ¹H NMR (400 MHz, CDCl₃) of 1k

Johnston et al. **Figure 20.** ¹³C NMR (100 MHz, CDCl₃) of **1k**

Johnston et al. **Figure 22.** ¹³C NMR (100 MHz, CDCl₃) of **11**

Johnston et al. **Figure 24.** ¹³C NMR (100 MHz, CDCl₃) of **1m**

Johnston et al. **Figure 25.** ¹H NMR (400 MHz, CDCl₃) of **1n**

Johnston et al. **Figure 26.** ¹³C NMR (100 MHz, CDCl₃) of **1n**

Johnston et al. **Figure 28.** ¹³C NMR (100 MHz, CDCl₃) of **10**

Johnston et al. **Figure 30.** ¹³C NMR (100 MHz, CDCl₃) of **1q**

Johnston et al. **Figure 31.** ¹H NMR (400 MHz, CDCl₃) of **1t**

Johnston et al. **Figure 32.** ¹³C NMR (100 MHz, CDCl₃) of **1t**

Johnston et al. **Figure 33.** ¹H NMR (400 MHz, CDCl₃) of **1w**

Johnston et al. **Figure 34.** ¹³C NMR (100 MHz, CDCl₃) of **1w**

Johnston et al. Figure 35. ¹H NMR (400 MHz, CDCl₃) of S1

Johnston et al. **Figure 36.** ¹³C NMR (100 MHz, CDCl₃) of **S1**

Johnston et al. **Figure 37.** ¹H NMR (400 MHz, CDCl₃) of **2**

Johnston et al. **Figure 38.** ¹³C NMR (100 MHz, CDCl₃) of **2**

Johnston et al. **Figure 40.** ¹³C NMR (125 MHz, CDCl₃) of **3a**

Johnston et al. **Figure 41.** ¹H NMR (500 MHz, CDCl₃) of **3b**

Johnston et al. **Figure 42.** ¹³C NMR (125 MHz, CDCl₃) of **3b**

Johnston et al. **Figure 44.** ¹³C NMR (150 MHz, CDCl₃) of **3c**

Johnston et al. **Figure 45.** ¹H NMR (600 MHz, CDCl₃) of **3d**

Johnston et al. **Figure 46.** ¹³C NMR (150 MHz, CDCl₃) of **3d**

Johnston et al. **Figure 47.** ¹H NMR (600 MHz, CDCl₃) of **3e**

Johnston et al. **Figure 48.** ¹³C NMR (150 MHz, CDCl₃) of **3e**

Johnston et al. **Figure 49.** ¹H NMR (600 MHz, CDCl₃) of **3f**

Johnston et al. **Figure 50.** ¹³C NMR (150 MHz, CDCl₃) of **3f**

Johnston et al. **Figure 52.** ¹³C NMR (150 MHz, CDCl₃) of **3g**

Johnston et al. **Figure 54.** ¹³C NMR (125 MHz, CDCl₃) of **3h**

Johnston et al. **Figure 55.** ¹H NMR (600 MHz, CDCl₃) of **3i**

Johnston et al. **Figure 56.** ¹³C NMR (150 MHz, CDCl₃) of **3i**

Johnston et al. **Figure 57.** ¹H NMR (500 MHz, CDCl₃) of **3j**

Johnston et al. **Figure 58.** ¹³C NMR (125 MHz, CDCl₃) of **3j**

Johnston et al. **Figure 59.** ¹H NMR (500 MHz, CDCl₃) of **3k**

Johnston et al. **Figure 60.** ¹³C NMR (125 MHz, CDCl₃) of **3k**

Johnston et al. **Figure 62.** ¹³C NMR (125 MHz, CDCl₃) of **3**

2010**3**2007 8 <u>-</u> SOLVENT CHEROS C 210 20302-14.2 214.2 214.2 215 2215 2215 0.3255.44 0.325572 Hz 1.225772 Hz 1.25572 Hz 1.25772 Hz 069556666 15 2-1-2 200 190 890 890 890 180 170 Ph₂HC Ψ ယ 160 150 140 130] 120 110 100 90 8 6 8 ខ 8 ဗ ╡ 20 5 mdd

Johnston et al. **Figure 63.** ¹H NMR (400 MHz, CDCl₃) of **3m**

Johnston et al. **Figure 64.** ¹³C NMR (100 MHz, CDCl₃) of **3m**

Johnston et al. **Figure 66.** ¹³C NMR (100 MHz, CDCl₃) of **3n**

Johnston et al. **Figure 68.** ¹³C NMR (125 MHz, CDCl₃) of **30**

Johnston et al. **Figure 70.** ¹³C NMR (125 MHz, CDCl₃) of **3p**

Johnston et al. **Figure 72.** ¹³C NMR (125 MHz, CDCl₃) of **3**q

Johnston et al. **Figure 74.** ¹³C NMR (125 MHz, CDCl₃) of **3r**

Johnston et al. **Figure 76.** ¹³C NMR (125 MHz, CDCl₃) of **3s**

Johnston et al. **Figure 78.** ¹³C NMR (125 MHz, CDCl₃) of **3t**

Johnston et al. **Figure 80.** ¹³C NMR (125 MHz, CDCl₃) of **3u**

Johnston et al. Figure 81. ¹H NMR (500 MHz, CDCl₃) of 3v

Johnston et al. **Figure 82.** ¹³C NMR (125 MHz, CDCl₃) of **3v**

Johnston et al. **Figure 83.** ¹H NMR (500 MHz, CDCl₃) of **3w**

Johnston et al. **Figure 84.** ¹³C NMR (125 MHz, CDCl₃) of **3w**

Johnston et al. Figure 85. ¹H NMR (600 MHz, CDCl₃) of 3x

Johnston et al. **Figure 86.** ¹³C NMR (150 MHz, CDCl₃) of **3x**

Johnston et al. **Figure 87.** ¹H NMR (600 MHz, CDCl₃) of **3y**

Johnston et al. **Figure 88.** ¹³C NMR (150 MHz, CDCl₃) of **3y**

Johnston et al. **Figure 89.** ¹H NMR (500 MHz, CDCl₃) of **5**

Johnston et al. **Figure 90.** ¹³C NMR (125 MHz, CDCl₃) of **5**

Johnston et al. **Figure 91.** ¹H NMR (600 MHz, CDCl₃) of **6**

Johnston et al. Figure 92. ¹³C NMR (150 MHz, CDCl₃) of 6

