Supplementary Information

The Effect of Atomic Nitrogen on the C₆₀ Cage

Hidefumi Nikawa,[†] Yasuyuki Araki,[‡] Zdenek Slanina,[†] Takahiro Tsuchiya,[†] Takeshi Akasaka,^{*,†} Takehiko Wada,[‡] Osamu Ito,[‡] Klaus-Peter Dinse,[#] Masafumi Ata,[¶] Tatsuhisa Kato,[%] & Shigeru Nagase[§]

† Center for Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.

‡ Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan.

¶ Technology Information Department, National Institute of Advanced Industrial Science and Technology (AIST) and Headquarters. Office, Ministry of Economy, Trade and Industry, 1-3-1 Kasumigaseki, Chiyodaku, Tokyo 100-8921, Japan.

Physical Chemistry III, Darmstadt University of Technology, Petersenstrasse 20, D-64287 Darmstadt, Germany. % Department of Chemistry, Josai University, Sakado 171-8501, Japan.

§ Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan.

Table of contents

Experimental details.

Figure S1. (a) HPLC profile of the sublimed soot containing N@C₆₀ and (b) its expanded view. (c) EPR spectra of the soot and each fraction (I-IV) after separation by HPLC in toluene.

Figure S2. EPR spectra of N@C₆₀ in toluene.

Figure S3. Decay profiles of N@C₆₀ (red line), a mixture of N@C₆₀/C₆₀ (6:4) (blue line), and C₆₀ (black line) at 750 nm in Ar-saturated toluene at room temperature.

Figure S4. Decay profiles of $N@C_{60}$ at 750 nm in Ar-saturated toluene at room temperature. The inset shows first-order plots.

Figure S5. Decay profiles of a mixture of $N@C_{60}/C_{60}$ (6:4) at 750 nm in Ar-saturated toluene at room temperature. The inset shows first-order plots.

Figure S6. Decay profiles of C_{60} at 750 nm in Ar-saturated toluene at room temperature. The inset shows first-order plots.

Figure S7. Decay profiles of $N@C_{60}$ at 750 nm with different laser power in deaerated toluene at room temperture. The inset shows pseudo-first-order plots.

Figure S8. Decay profiles of C_{60} at 750 nm with different laser power in deaerated toluene at room temperture. The inset shows pseudo-first-order plots.

Figure S9. ${}^{1}O_{2}$ phosphorescence emission spectra in the near-IR region observed by the 400 nm laser irradiation of N@C₆₀ (filled circles) and C₆₀ (open circles) in O₂-saturated toluene.

Experimental details

N@C₆₀ was prepared by the nitrogen bombardment method and successfully isolated from a crude mixture of N@C₆₀, C₆₀, C₆₀, O, and so on using a multi-step and recycling HPLC system. HPLC was performed by a Cosmosil Buckyprep column (ϕ 20 × 250 mm) and toluene as eluent at a flow rate of 9.9 mL/min at room temperature (Figure S1a, b). To clarify the location of N@C₆₀ in the chromatogram, the C₆₀ peak was divided into four fractions and each fractions were masured by electron paramagnetic resonance (EPR) measurements using ϕ 5mm quart tube (Figure S1c). The volume of EPR sample and concentration of C₆₀ for each fraction was 200 µL and 1g/L, respectively. Figure S1a shows the HPLC diagram of our fullerene sample after preparation by nitrogen bombardment method. The vertical lines define the different fractions in which the C₆₀ peak was divided (Figure S1b). In Figure S1c, the EPR spectra of the fractions I to IV are displayed. The triplet seen in the lower three spectra is the fingerprint of N@C₆₀; the intensity (peak-to-peak height) is a direct measure of the amount of N@C₆₀ in the sample. The highest intensity is found in the third fraction, i.e. at the upper tail of the C₆₀ peak. Thus N@C₆₀ is clearly delayed in our column, compared to C₆₀, and enrichment is possible. Consequently, this preparative HPLC was repeated tens of times for the enrichment of N@C₆₀. Finally, several tens of µg N@C₆₀ was isolated by recycling HPLC system.

The EPR measurements were performed with a conventional continuous wave spectrometer in the X band (about 9:4 GHz). Figure 2 shows the three characteristic ¹⁴N EPR lines (g = 2.0028, hfc = 5.67 G) of the sample irradiated with ¹⁴N atom (nuclear spin I = 1, NA = 99.634%) and the doublet ¹⁵N EPR lines (g = 2.0028, hfc = 7.96 G) from the sample irradiated with ¹⁵N atom (nuclear spin I = 1/2, NA = 0.366%). The line splitting is due to the hyperfine interaction with the nuclear spin.

Figure S3-S6 show the decay kinetics of exited states of Ar-saturated toluene solutions of N@ C_{60} , $N@C_{60}/C_{60}(3:2)$, and C_{60} at room temperature. These spectra demonstrated that the presence of the N atom enhances the intrinsic first order decay of $(N@C_{60})^*$. Meanwhile, these decay times are influenced a great deal by the concentration of residual oxygen in the solution, beccase these etxited species are quenched by oxygen. To shed undoubtedly light on the effect of the N atom on C₆₀ cage in the exited state, we have performed laser flash photolysis of the deoxygenated toluene solutions of N@C60 and C60 (Figure S7-S8). The decay rates of the exited states were strongly affected by the laser power as shown in Figure S7 and S8. The decay time profiles are composed of mixed-order kinetics of first- and second-order, in which the former is the intrinsic decay rate of the exited state and the latter is due to the annihilation process among the exited species such as triplet-triplet annihilation in the case of C_{60} . The decay rates of the exited states were strongly affected by the laser power as shown in Figure S7 and S8. The decay time profiles are composed of mixed-order kinetics of first- and second-order, in which the former is the intrinsic decay rate of the exited state and the latter is due to the annihilation process among the exited species such as triplet-triplet annihilation in the case of C_{60} . As shown in an inset of Figure S7 and S8, plot of $\Delta k_{\rm T}$ to ΔA_0 shows a linear correlation. From this slope, an intrinsic first-order decay rate ($\Delta k_{\rm T}^0$) of the excited state was estimated.

 ${}^{3}C_{60}^{*}$ is well know to be quenched efficiently by molecular oxygen (O₂) to generate singlet oxygen (¹O₂). The quenching of ${}^{3}C_{60}^{*}$ by molecular oxygen (O₂) is generally probed by monitoring the decrease of the triplet-triplet absorption and the increase of the emission from ${}^{1}O_{2}$ at 1272 nm. The lifetime of ${}^{m}(N@C_{60})^{*}$ decreased in a O₂-saturated toluene solution and the emission from ${}^{1}O_{2}$ was observed at 1274 nm (Figure S9). This may reveal that ${}^{m}(N@C_{60})^{*}$ is quenched by triplet oxygen (${}^{3}O_{2}$) as well as ${}^{3}C_{60}^{*}$ and the quantum yield (Φ_{ISC}) for formation of ${}^{m}(N@C_{60})^{*}$ via intersystem crossing from ${}^{3/2}(N@C_{60})^{*}$ was estimated as same as that of ${}^{3}C_{60}^{*}$ ($\Phi_{ISC} = 0.96$).

The MALDI-TOF MS were measured on a BIFLEXTM III (Bruker, Germany) with 1,1,4,4tetraphenyl-1,3-butadiene as a matrix. ¹³C NMR spectra at 125 MHz were measured on a Bruker AVANCE 500 spectrometer with a CryoProbe system in carbon disulfide with a capillary tube of acetone- d_6 as an external lock. UV-vis-NIR spectra were measured on a UV 3150 (Shimadzu, Japan) in toluene. The nanosecond transient absorption spectra were measured by using 532 nm laser light (SHG) of a Nd:YAG laser (Spectra-Physics, Quanta-Ray GCR-130) as an excitation source. A continuous xenon flash lamp was used as a probe light. A Ge-APD module (Hamamatsu Photonics, B2834) attached to a monochromator (Ritsu MC-10N) was employed as a detector of transient absorption spectra in the visible and near-IR regions (400-1000 nm). Emission spectra of the singlet oxygen ($^{1}O_{2}*$) in the near-IR regions were detected by using an InGaAs detector. All the spectral measurements were carried out in 1 cm optical cell. All calculations were carried out using the Gaussian 03 program. Geometries were optimized with the hybrid density functional theory at the B3LYP level^{i,ii,iii} with the 6-31G(d) basis set^{iv} for C and N, while the chemical shifts were evaluated with the MPW1K functional^v and the same basis set and calibrated to the observation.vi

- i) A. D. Becke, Phys. Rev. A, 1988, 38, 3098.
- ii) A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- iii) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785.
 iv) W. J. Hehre, R. Ditchfield and J. A. Pople, *J. Chem. Phys.*, 1972, **56**, 2257.
- v) B. J. Lynch, P. L. Fast, M. Harris and D. G. Truhlar, J. Phys. Chem. A, 2000, 104, 4811.
- vi) G. Y. Sun and M. Kertesz, J. Phys. Chem. A 2000, 104, 7398.

Figure S1.

Figure S2.

Figure S3.

Figure S5.

Figure S6.

Figure S7.

Figure S8.

Figure S9.

