Supporting Information

Construction of Protected Hydroxylated Pyrrolidines
 Using Nitrogen-Centered Radical Cyclizations

Huimin Zhai, Maria Zlotorzynska and Glenn M. Sammis*

Department of Chemistry
University of British Columbia, Vancouver, BC V6T 1Z1, Canada

Table of Contents

General Methods S-2
Instrumentation $\quad \mathrm{S}-2$
Synthesis of Silyl Enol Ether $7 \quad$ S-3
Cyclization to Form Pyrrolidine $9 \quad \mathrm{~S}-3$
Synthesis of $11 \quad \mathrm{~S}-4$
Synthesis of $12 \quad \mathrm{~S}-5$
Synthesis of $13 \quad \mathrm{~S}-5$
Synthesis of $16 \quad$ S-6
Synthesis of $19 \quad$ S-7
Synthesis of 17 S-7
Synthesis of $23 \quad$ S-8
Synthesis of 24 S-9
Synthesis of 25 S-9
Synthesis of $29 \quad \mathrm{~S}-10$
Cyclization optimization for Protected S-11
CYB-3
Fast Addition of Tributyltin Hydride to $25 \quad$ S-13
Crude Data for the DIBAL Reduction S-13
Spectra S-15

General Methods

All reactions were performed under a nitrogen atmosphere in flame-dried glassware. Tetrahydrofuran, diethyl ether, dichloromethane and benzene were purified by MBRAUN MBSPS solvent purification system. Thin layer chromatography (TLC) was performed on Whatman Partisil K6F UV 254 pre-coated TLC plates. Chromatographic separations were effected over Fluka 60 silica gel. Triethylamine washed silica gel has been stirred with triethylamine prior to packing. All chemicals were purchased from commercial sources and used as received. Azidecontaining silyl enol ethers, such as azides 7, 13, 16, 19, 20 and 25, are bench-stable for at least 2 weeks.

Instrumentation

A KD-Scientific KDS100 syringe pump was used for all slow additions. Melting points were performed using a Mel-Temp II apparatus (Lab devices USA) and are uncorrected. Optical rotations were recorded using a Perkin-Elmer 241 ML Polarimeter. Infrared (IR) spectra were obtained using a Thermo Nicolet 4700 FT-IR spectrometer. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded in deuterochloroform using a Bruker AV-300 or AV-400 spectrometer. Carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded in deuterochloroform using a Bruker AV-300 or AV-400 spectrometer. Chemical shifts are reported in parts per million (ppm) and are referenced to the centerline of deuterochloroform ($7.27 \mathrm{ppm}{ }^{1} \mathrm{H}$ NMR; $77.0 \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR). Low resolution mass spectra (LRMS) and high resolution mass spectra (HRMS) were recorded on either a Bruker Esquire-LC spectrometer (for LRMS) or a Waters/Micromass LCT spectrometer (for HRMS).

Syntheses of silyl enol ether 7

7
(Z)-tert-butyl-dimethyl-silanoxy-5-azido-pent-1-ene (7): To a solution of tosylate ${ }^{1}$ (1.381 g , 3.73 mmol) in DMF (20 mL) was added sodium azide ($533 \mathrm{mg}, 7.5 \mathrm{mmol}$). The mixture was heated at $50^{\circ} \mathrm{C}$ for 10 h , then taken up in EtOAc $(40 \mathrm{~mL})$. The mixture was then washed with water ($2 \times 15 \mathrm{~mL}$), brine (15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated by rotary evaporation to provide a yellow oil. Purification by flash chromatography (hexanes) gave 749 $\mathrm{mg}(83 \%)$ of azide $7(Z / E=88: 12)^{2}$ as a clear oil. IR (neat) 2931, 2859, 2097, 1656, $1259 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.27(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, trans 1 H$), 6.23(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, cis 1 H$)$, 4.98-4.89 (m, trans 1 H), $4.43(\mathrm{q}, J=6.4 \mathrm{~Hz}$, cis 1 H$), 3.27(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.70-1.58 (m, 2 H), $0.94(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.6$, 108.4, 51.0, 28.8, 25.6, 20.8, 18.2, -5.4 ; HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{ONaSi}$: 264.1508. Found: 264.1514.

Cyclization to form pyrrolidine 9

2-(tert-Butyl-dimethyl-silanyloxymethyl)-pyrrolidine (9): A solution of silyl enol ether 7 (301 $\mathrm{mg}, 1.27 \mathrm{mmol}) \mathrm{Bu}_{3} \mathrm{SnH}(438 \mathrm{mg}, 1.5 \mathrm{mmol})$, AIBN ($27 \mathrm{mg}, 0.15 \mathrm{mmol}$) in degassed benzene ${ }^{3}$ $(40 \mathrm{~mL})$ was heated to $80^{\circ} \mathrm{C}$ and stirred for 10 h , and the solution was allowed to cool to room temperature and the solvent was removed by rotary evaporation. Purification by flash chromatography (1% methanol in EtOAc) afforded 206 mg (75%) of pyrrolidine 9 as a yellow oil. IR (neat) $3354,2954,2857,1652,1418 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.56$ (dd, $J=$ $10.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49 (dd, $J=10.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.19-3.08 (m, 1 H), 2.96 (dt, $J=10.0,6.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.81 (dt, $J=10.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.57(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 1.79-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 1$ H), $0.86(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 65.6,59.9,46.4,27.4,25.8,25.3$, 18.2, -5.5 ; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{26} \mathrm{NOSiNa}$: 216.1784. Found: 216.1785.

[^0]
(3R)-Methyl-3-hydroxy-5-iodopentanoate (S1): A solution of (3S)-3,5-dihydroxy-pentanoic acid methyl ester (10) ${ }^{4}(6.31 \mathrm{~g}, 42.6 \mathrm{mmol})$, triphenylphosphine ($17.37 \mathrm{~g}, 64.5 \mathrm{mmol}$), pyridine $(10.20 \mathrm{~g}, 129.0 \mathrm{mmol})$, and iodine $(10.91 \mathrm{~g}, 43.0 \mathrm{mmol})$ in benzene $(500 \mathrm{~mL})$ was stirred for 18 h at room temperature. The reaction mixture was then filtered through a pad of Celite. The filtrate was concentrated by rotary evaporation to provide a light yellow oil. Purification by flash chromatography (20% EtOAc in hexanes) afforded 8.42 g (76\%) of iodide S1 as a colorless oil. $[\alpha]^{\mathrm{D}}{ }_{24}=-14.9^{\circ}\left(c=0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat) $3434,2950,1730,1436 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 4.11-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.50-2.38 (m, 2 H), 1.98-1.82 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,67.5,51.7,40.6$, 39.7, 2.0. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{INa}: 280.9651$. Found: 280.9657.

(3R)-Methyl-(tert-Butyl-dimethyl-silanyloxy)-5-iodo-pentanoate (11): A solution of alcohol $\mathbf{S 1}(1.49 \mathrm{~g}, 5.8 \mathrm{mmol})$ and triethylamine $(1.17 \mathrm{~g}, 11.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was cooled to 0 ${ }^{\circ} \mathrm{C}$ and tert-butyldimethylsilyl trifluoromethanesulfonate ($2.30 \mathrm{~g}, 8.7 \mathrm{mmol}$) was added dropwise over 3 min . The resulting solution was stirred for 45 min and then washed with saturated NaHCO_{3} solution (40 mL). The layers were separated the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated by rotary evaporation to provide a yellow oil. Purification by flash chromatography (10% EtOAc in petroleum ether) afforded 2.04 g of silyl ether $11(94 \%)$ as a colorless oil. $[\alpha]^{\mathrm{D}}{ }_{24}$ $=-18.9^{\circ}\left(c=2.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; (neat) 2952, 2929, 2856, 1738, $1436 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 4.18$ (quint, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.11-3.28(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.58(\mathrm{~m}, 2 \mathrm{H}), 1.90-$ $2.13(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3$, 69.3, $51.6,42.0,41.3,25.7,17.9,1.4,-4.5,-4.7$; MS-CI $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{IO}_{3}$ Si: 373.3. Found: 373.2.

11

$\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$

S2
(3R)-(tert-Butyl-dimethyl-silanyloxy)-5-iodo-pentanal (S2): Ester 11 ($1.98 \mathrm{~g}, 5.3 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(27 \mathrm{~mL})$, cooled to $-78^{\circ} \mathrm{C}$, and DIBAL-H (1.0 M in hexanes, 10.7 mL) was added in one portion. The solution was stirred for 30 min , then quenched with $20 \mathrm{~mL} 1: 1$ $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$. The resulting solution was warmed to ambient temperature and stirred for 15 min . The mixture was then filtered through anhydrous MgSO_{4} and the solids were rinsed with EtOAc $(70 \mathrm{~mL})$. The filtrate was concentrated by rotary evaporation to provide the crude aldehyde as a colorless oil. Purification by flash chromatography (15% EtOAc in petroleum ether) afforded

[^1]1.55 g of aldehyde S2 (86 \%) as a colorless oil. $[\alpha]^{\mathrm{D}}{ }_{24}=-20.6^{\circ}\left(c=10.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat) 2953, 2928, 2887, 2856, 1724, $1471 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.80(\mathrm{t}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.28$ (quint, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-2.64(\mathrm{~m}, 2 \mathrm{H}), 1.92-2.16(\mathrm{~m}$, $2 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.0,68.0,50.4$, $41.3,25.7,17.9,1.4,1.3,-4.4,-4.6,-4.6$; MS-CI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{IO}_{2} \mathrm{Si}: 343.1$. Found: 343.2.

(3R)-Bis-(tert-butyl-dimethyl-silanyloxy)-5-iodo-pent-1-ene (12): A solution of alcohol S2 ($500 \mathrm{mg}, 1.56 \mathrm{mmol}$) and DIPEA ($377 \mathrm{mg}, 2.92 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(8.0 \mathrm{~mL}\right.$) was cooled to $0{ }^{\circ} \mathrm{C}$ and tert-butyldimethylsilyl trifluoromethanesulfonate ($579 \mathrm{mg}, 2.19 \mathrm{mmol}$) was added dropwise over 2 min . The resulting solution was stirred for 2 h and then washed with saturated NaHCO_{3} solution (15 mL). The layers were separated the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated by rotary evaporation to provide a yellow oil. Purification by flash chromatography (hexanes) afforded 610 mg (91%) of silyl enol ether 12 ($E / Z 40: 60$) as a colorless oil. IR (neat) 2929, 2857, 1471, 1252, $1048 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.45(\mathrm{~d}, J=12.0 \mathrm{~Hz}, E, 1 \mathrm{H}), 6.19$ (d, $J=5.6 \mathrm{~Hz}, Z, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=12.0,8.8 \mathrm{~Hz}, E, 1 \mathrm{H}), 4.84-4.77(\mathrm{~m}, Z, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=$ $8.8,5.6 \mathrm{~Hz}, E, 1 \mathrm{H}), 4.20-4.12(\mathrm{~m}, E, 1 \mathrm{H}), 3.28-3.19(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.91(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H})$, $0.96(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.5,138.7,113.6,113.4,70.8,66.1,42.5,42.3,25.916,25.877$, $25.63,25.61,18.1,3.4,3.2,-4.0,-4.3,-4.6,-4.9,-5.2,-5.4{ }^{5}$

12

DMF, $50^{\circ} \mathrm{C}$

13
(3R)-Bis-(tert-butyl-dimethyl-silanyloxy)-5-azido-pent-1-ene (13): A solution of iodide 12 $(457 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(130 \mathrm{mg}, 2.0 \mathrm{mmol})$ in DMF (8 mL) was heated to $50^{\circ} \mathrm{C}$ for 1 h . The resulting yellow mixture was taken up in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and washed with brine $(5 \times 10 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated by rotary evaporation to provide crude azide (13) as a yellow oil. Purification by flash chromatography (5% EtOAc in hexanes) afforded 237 mg (64%) of azide 13 ($\mathrm{E} / \mathrm{Z} 40: 60$) as a yellow oil. IR (neat) 2954, 2928, 2857, 2095, 1655, 1472, $1463 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.40(\mathrm{~d}, J=$ $12.3 \mathrm{~Hz}, E, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=6.2 \mathrm{~Hz}, Z, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=12.0,8.1 \mathrm{~Hz}, E, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=$ $8.5,6.2 \mathrm{~Hz}, \mathrm{Z}, 1 \mathrm{H}), 3.41-3.21(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.71$ (m, 2H), 0.94 (s, 9 H$), 0.93$ (s, 9 H$), 0.89$ (s, 9 H), $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 142.3,138.4,114.0,113.6,68.0,63.5,48.0,38.1,37.3,25.9,25.7,25.7,25.6,25.5$, 2.9, -4.4, -4.8, -5.1, $-5.3,-5.5$; MS-ESI (m / z) : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{NaO}_{2} \mathrm{Si}_{2}$: 394.2. Found: 394.3.

[^2]
(3R)-5-iodo-3-(triethylsilanyloxy)pentanal (S3): To a solution of alcohol S1 ($2.51 \mathrm{~g}, 9.7 \mathrm{mmol}$) and imidazole ($990 \mathrm{mg}, 14.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added chlorotriethylsilane $(1.77 \mathrm{~g}, 11.6 \mathrm{mmol})$ dropwise over 3 min . The solution was stirred for 40 min and a white precipitate appeared during this time. The reaction was quenched with saturated NaHCO_{3} solution (30 mL) and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated by rotary evaporation to provide 4.14 g of silyl ether as a yellow oil. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(27 \mathrm{~mL})$, cooled to $-78{ }^{\circ} \mathrm{C}$, and DIBAL-H (1.0 M in hexanes, 29 mL) was added in one portion. The solution was stirred for 2 h , then quenched with 20 mL $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$. The resulting solution was warmed to ambient temperature and stirred for 15 min . The mixture was then filtered through anhydrous MgSO_{4} and the solids were rinsed with EtOAc (100 mL). The filtrate was concentrated by rotary evaporation to provide the crude aldehyde (S3) as a colorless oil. Purification by flash chromatography (10% EtOAc in hexanes) afforded 2.01 g of aldehyde S3 (61 \%) as a colorless oil. IR (neat) 2954, 2909, 2875, 1723, 1457 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dt}, J=6.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-\mathrm{S} 2.57(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.00(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.65(\mathrm{q}, J$ $=7.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.0,68.0,50.6,41.4,6.8,5.0,1.3$.

(3S)-5-azido-3-(triethylsilanyloxy)pentanal (S4): A solution of iodide S3 (1.87g, 5.5 mmol) and $\mathrm{NaN}_{3}(710 \mathrm{mg}, 10.9 \mathrm{mmol})$ in DMF $(20 \mathrm{~mL})$ was heated to $50^{\circ} \mathrm{C}$ for 18 h . The resulting yellow mixture was taken up in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and washed with brine ($5 \times 20 \mathrm{~mL}$). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated by rotary evaporation to provide the crude azide (S4) as a yellow oil. Purification by flash chromatography ($5 \% \mathrm{EtOAc}$ in hexanes) afforded 447 mg of azide $\mathbf{S 4}(31 \%)$ as a yellow oil. $[\alpha]^{\mathrm{D}}{ }_{24}=-34.0^{\circ}\left(c=0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat) 2955, 2912, 2877, 1094, 1724, $1458 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.82(\mathrm{t}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.35 (quint, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.39(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=5.8,2.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.83-1.78(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.63(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 201.0,65.0,51.0,47.5,36.4,6.7,4.8$

(3R)-Bis-(triethylsilanyloxy)-5-azido-pent-1-ene (16): To a solution of S4 ($45 \mathrm{mg}, 0.17 \mathrm{mmol}$) and 1,8 -diazabicyclo[5.4.0]undec-7-ene ($52 \mathrm{mg}, 0.34 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.9 \mathrm{~mL})$ was added chlorotriethylsilane ($38 \mathrm{mg}, 0.26 \mathrm{mmol}$). The solution was stirred for 20 h . The resulting yellow
solution was then concentrated by rotary evaporation and purified by flash chromatography (hexanes) to afford 21 mg of the silyl enol ether $16(Z / E=40: 60)$, along with 82 mg of triethylsilanol as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.41(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}$, trans $)$, 6.19 (dd, $J=5.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}$, cis) 4.98 (dd, $J=12.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}$, trans), 4.87-4.79 (m, 1H, cis), 4.48 (dd, $J=8.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}$, cis), 4.23-4.00 (m, 1H, trans), 3.45-3.17 (m, 2H), 1.94-1.62 (m, 2H), 0.93 ($\mathrm{t}, J=9 \mathrm{~Hz}, 9 \mathrm{H}$, triethylsilanol), 0.53 (q, $J=9 \mathrm{~Hz}, 6 \mathrm{H}$, triethylsilanol).

(E)-(3R)-5-azido-3-triethylsilanyloxy-1-(tert-butyl-dimethyl-silanyloxy)-pent-1-ene (19): To a solution of S4 ($50 \mathrm{mg}, 0.19 \mathrm{mmol}$) and 1,8-diazabicyclo[5.4.0]undec-7-ene ($86 \mathrm{mg}, 0.57$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added tert-butyldimethylsilyl chloride ($57 \mathrm{mg}, 0.38 \mathrm{mmol}$). The solution was heated to $35^{\circ} \mathrm{C}$ in a sealed tube for 14 h . The resulting yellow solution was then concentrated by rotary evaporation and purified by flash chromatography (1% EtOAc in hexanes) to afford $54 \mathrm{mg}(76 \%)$ of silyl enol ether $19(Z / E<5: 95) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.40(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dd}, J=8.5,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.17(\mathrm{~m}, 2 \mathrm{H})$, $1.90-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.63(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.60(\mathrm{q}, J=8.0 \mathrm{~Hz}$, $6 \mathrm{H}), 0.16$ (s, 6H).

1. TESCl, DBU, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$
2. $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, benzene, $80^{\circ} \mathrm{C}$

(2R,3S)-2,3-bis(triethylsilanyloxy)-pyrrolidine (17): To a solution of aldehyde S4 (80 mg, 0.31 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene ($142 \mathrm{mg}, 0.93 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ was added chlorotriethylsilane $(93 \mathrm{mg}, 0.62 \mathrm{mmol})$ in one portion. The solution was stirred for 15 min , then the solution was allowed to warm to room temperature and stirred for 18 h . The resulting yellow solution was then concentrated by rotary evaporation and purified by flash chromatography (hexanes) to afford 17 mg of the silyl enol ether $\mathbf{2 0}(Z / E>95: 5)$, along with 74 mg of triethylsilanol as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.19(\mathrm{dd}, J=5.9,1.1 \mathrm{~Hz}$, $1 \mathrm{H})$, 4.87-4.79 (m, 1H), 4.48 (dd, $J=8.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.33 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.76-1.69 (m, 2H), $0.93\left(\mathrm{t}, J=9 \mathrm{~Hz}, 9 \mathrm{H}\right.$, triethylsilanol), $0.53\left(\mathrm{q}, J=9 \mathrm{~Hz}, 6 \mathrm{H}\right.$, triethylsilanol). ${ }^{6}$

This oil was taken up in benzene (10 mL) and the solution was degassed by bubbling with N_{2} for 30 min . The solution was then brought to reflux and a solution of tributyltin hydride ($73 \mathrm{mg}, 0.25$ $\mathrm{mmol})$ and $\operatorname{AIBN}(9 \mathrm{mg}, 0.05 \mathrm{mmol})$ in benzene (2 mL) was added dropwise over 2 hours. After refluxing for an additional 11 h , the solution was allowed to cool to room temperature and the solvent was removed by rotary evaporation. Purification by flash chromatography ($2 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 12 mg of amine 17 (77% from silyl enol ether 20). $[\alpha]^{\mathrm{D}}{ }_{24}=-17.2^{\circ}(c=0.8$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat) 2955, 2876, 1652, $1458 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.18-4.05(\mathrm{~m}$, $1 \mathrm{H}), 3.65-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.01(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.98(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.77(\mathrm{~m}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.9$

[^3]$\mathrm{Hz}, 18 \mathrm{H}), 0.60(\mathrm{q}, J=7.9 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 73.9,68.5,63.4,45.1,35.6$, 6.9, 5.0, 4.5; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{40} \mathrm{NO}_{2} \mathrm{Si}_{2}$: 346.2598. Found: 346.2605.

(4S,5S)-6-Iodo-hex-1-ene-diol (S5): To a solution of known triol $\mathbf{2 2}^{7}$ ($3.72 \mathrm{~g}, 28.0 \mathrm{mmol}$) in THF (150 mL) at $0^{\circ} \mathrm{C}$ was added triphenylphosphine ($9.61 \mathrm{~g}, 36.4 \mathrm{mmol}$), imidazole (2.86 g , $42.0 \mathrm{mmol})$, and iodine $(8.53 \mathrm{~g}, 33.6 \mathrm{mmol})$ and the solution was stirred for 5 h at room temperature. A white precipitate of imidazole hydroiodide was formed, which was removed by filtering the mixture through a pad of Celite. The filtrate was washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution ($2 \times 25 \mathrm{~mL}$), brine (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated by rotary evaporation to provide a yellow oil. Purification by flash chromatography ($4: 1$ hexanes/EtOAc) afforded $4.61 \mathrm{~g}(68 \%)$ of iodide $\mathbf{S 5}$ as a white solid. $[\alpha]^{\mathrm{D}}{ }_{24}=342.7^{\circ}\left(c=0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{Mp}$: 83 ${ }^{\circ} \mathrm{C}$; IR (neat) $3275,2893,1500,1413,1105 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.92-5.75(\mathrm{~m}, 1$ H), $5.19(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}$, br 1 H$), 3.59-3.33(\mathrm{~m}, 3 \mathrm{H}), 2.47(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.12(\mathrm{~m}, 2$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 133.9,119.0,73.5,72.4,37.2,12.2 ; \operatorname{MS}-E S I(\mathrm{~m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{IO}_{2}: 243.1$. Found: 243.2.

S5

DMF, $0^{\circ} \mathrm{C}$

23
(4S,5S)-Bis-(tert-butyl-dimethyl-silanyloxy)-6-iodo-hex-1-ene (23): To a solution of iodide S5 $(4.48 \mathrm{~g}, 18.5 \mathrm{mmol})$ in DMF $(60 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added imidazole ($7.55 \mathrm{~g}, 111 \mathrm{mmol}$) in one portion. tert-Butyldimethylsilyl chloride ($6.70 \mathrm{~g}, 44.4 \mathrm{mmol}$) was added in small portions to the cold solution. The reaction mixture then allowed to warm to ambient temperature and stirred for 2 days. The reaction was diluted with $\operatorname{EtOAc}(90 \mathrm{~mL})$ an then the mixture was washed with water ($3 \times 40 \mathrm{~mL}$) and brine (40 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed by rotary evaporation to provide a light yellow oil. Purification by flash chromatography ($1 \% \mathrm{EtOAC}$ in hexanes) afforded $7.04 \mathrm{~g}(81 \%)$ of iodide 23 as a white solid. $[\alpha]^{\mathrm{D}}{ }_{24}=95.3^{\circ}\left(c=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{Mp}: 42^{\circ} \mathrm{C}$; IR (neat) 2956, 2858, 1666, 1472, $1255 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.91-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{q}, J$ $=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.29(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}$, $9 \mathrm{H}), 0.16(\mathrm{~s}, 03 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $134.5,117.4,74.6,73.1,37.0,26.0,25.9,18.1,13.3,-4.1,-4.2,-4.4 .{ }^{5}$

[^4]
(E)-(1,3S,4S)-Tris-(tert-butyl-dimethyl-silanyloxy)-5-iodo-pent-1-ene (24): A solution of iodide $23(2.71 \mathrm{~g}, 5.77 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was sparged with ozone for 50 min . Triphenylphosphine ($1.58 \mathrm{~g}, 6.0 \mathrm{mmol}$) was then added in one portion, and the mixture was stirred for an additional 30 min at $-78^{\circ} \mathrm{C}$. The reaction was then warmed to $0^{\circ} \mathrm{C}$. To this solution was added 1,8-diazabicyclo[5.4.0]undec-7-ene ($2.90 \mathrm{~g}, 19.0 \mathrm{mmol}$) and tertbutyldimethylsilyl chloride ($1.30 \mathrm{~g}, 8.7 \mathrm{mmol}$). The resulting solution was allowed to warm to ambient temperature and stirred for 24 h . The reaction mixture was then quenched with saturated NaHCO_{3} solution $(15 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. Excess triphenylphosphine was quenched by adding a solution of I_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{M})$. The organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed by rotary evaporation to provide a yellow oil. Purification by flash chromatography ($1 \% \mathrm{EtOAc}$ in hexanes) gave 1.90 g (55% over 2 steps) of silyl enol ether $24(E / Z>95: 5)$ as a colorless oil. IR (neat) $2958,2858,1655,1463,1363,1256$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.36(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=12.0,9.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.00 (dd, $J=9.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=10.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=$ $10.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.93$ (s, 9 H), 0.91 (s, 9 H), 0.90 (s, 9 H$), 0.16$ (s, 3 H), 0.15 ($\mathrm{s}, 3 \mathrm{H}$), 0.11 (s , $3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 143.6, 110.7, $74.5,73.9,26.0,25.9,25.6,18.13,18.10,-3.8,-4.3,-4.4,-4.5,-5.1,-5.2 .{ }^{5}$

(E)-5-Azido-(1,3S,4S)-(tert-butyl-dimethyl-silanyloxy)-pent-1-ene (25): To a solution of iodide $24(1.708 \mathrm{~g}, 2.91 \mathrm{mmol})$ in DMF (20 mL) was added sodium azide ($426 \mathrm{mg}, 6.0 \mathrm{mmol}$). The mixture was heated at $50{ }^{\circ} \mathrm{C}$ for 10 h and then diluted with EtOAc $(60 \mathrm{~mL})$. The reaction solution was washed with water ($2 \times 20 \mathrm{~mL}$), brine (20 mL). The organics layer was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated by rotary evaporation to provide a yellow oil. Purification by flash chromatography (hexanes) gave $1.23 \mathrm{~g}(84 \%)$ of azide $25(E / Z>95: 5)$ as a clear oil. $[\alpha]^{\mathrm{D}}{ }_{24}=262.7^{\circ}\left(c=0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat) $2956,2858,2102,1667,1472,1256 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.35(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dd}, J=12.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (dd, $J=8.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{q}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=12.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J$ $=12.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.150(\mathrm{~s}, 3 \mathrm{H}), 0.147(\mathrm{~s}, 3 \mathrm{H}), 0.11$ (s, 3 H), 0.08 (s, 3 H), 0.07 (s, 3 H), $0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.4$, 111.3, $75.7,72.6,54.0,25.90,25.88,25.58,18.15,18.11,18.07,-3.9,-4.4,-4.6,-4.7,-5.1,-5.2 .^{5}$

25

29
(2S,3S,4R)-3,4-Bis(tert-butyldimethylsilyloxy)-2-((tert-butyldimethylsilyloxy)methyl)pyrrolidine Hydrochloride (29): To a solution of silyl enol ether ($131 \mathrm{mg}, 0.26 \mathrm{mmol}$), and AIBN (4 mg) in degassed benzene $(26 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ was added a solution of tributyltin hydride ($76 \mathrm{mg}, 0.26 \mathrm{mmol}$) and $\mathrm{AIBN}(4 \mathrm{mg}, 0.1$ equiv.) in benzene (5 mL) dropwise, via syringe pump, over 2 hours. The reaction was stirred at $80^{\circ} \mathrm{C}$ for another 3 hours. The solution was allowed to cool to room temperature and the solvent was removed by rotary evaporation. The resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and cooled to $-78^{\circ} \mathrm{C}$. DIBALH ($0.4 \mathrm{~mL}, 1.0$ M in toluene) was added dropwise over 3 min and the solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour. The reaction was quenched with saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed by rotary evaporation to provide a pale yellow oil. Purification by flash chromatography (15% EtOAc in hexanes) afforded 78 mg colorless oil as the cyclized product 26 (containing 8% of reduced primary amine 28) and $6 \mathrm{mg}(5 \%)$ of pure cylized product 26: $[\alpha]^{\mathrm{D}}{ }_{24}=-88.8^{\circ}\left(c=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat) 2950, 2856, 1252, $1164 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 4.16-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=$ $10.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=10.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.72$ (br, s, 1 H), 0.92 ($\mathrm{s}, 9 \mathrm{H}$), 0.90 (s, $18 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $73.9,73.7,62.6,61.7,50.1,25.98,25.94,18.34,18.30,18.24,-4.3,-4.6,-4.8,-5.0,-5.27$, 5.28; HRMS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{54} \mathrm{NO}_{3} \mathrm{Si}_{3}$: 476.3412. Found: 476.3415 .

To further purify the cyclized product from the free amine byproduct, the impure product mixture (78 mg) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and HCl in diethyl ether $(0.2 \mathrm{~mL}, 1.0 \mathrm{M})$ was added and the flask. The resulting solution was stirred for 5 min . Hexanes (10 mL) was added and the solution was cooled to $4^{\circ} \mathrm{C}$ and let stand for 6 h . Pure white solid as the HCl salt 29 (77 $\mathrm{mg}, 58 \%$) was isolated by filtration. $[\alpha]^{\mathrm{D}}{ }_{24}=-18.5^{\circ}\left(c=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; Mp: 271-272 ${ }^{\circ} \mathrm{C}$; IR (neat) 2954, 2857, 1472, $1254 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.9-10.2(\mathrm{~b}, \mathrm{~s}, 1 \mathrm{H}), 9.3-8.4$ (b, s, 1 H), 4.24 (dd, $J=10.8,4.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.98 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.57 (t, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47-3.40 (m, 1 H), 3.27 (dd, $J=11.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 18 \mathrm{H}), 0.12$ (s, 12 H), $0.10(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 72.2,72.0,61.5,58.8,47.4,25.92,25.87,18.22$, 18.17, -4.3, -4.6, -4.9, -5.0, -5.2, -5.4.

Cyclization optimization for Protected CYB-3

A solution of silyl enol ether $\mathbf{1 3}(402 \mathrm{mg}, 1.08 \mathrm{mmol}) \mathrm{Bu}_{3} \mathrm{SnH}(409 \mathrm{mg}, 1.4 \mathrm{mmol})$, AIBN (36 $\mathrm{mg}, 0.22 \mathrm{mmol}$) in degassed benzene (22 mL) was heated to $80^{\circ} \mathrm{C}$ and stirred for 18 h . The solution was allowed to cool to room temperature and the solvent was removed by rotary evaporation. Analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum showed no remaining starting material, and products 14^{8} and $\mathbf{1 5}$ in a $46: 54$ ratio. Amine 14 was present in a $60: 40$ ratio of trans and cis isomers.

Crude mixture of $\mathbf{1 4}$ and $\mathbf{1 5}$ after cyclization.

[^5]

A solution of silyl enol ether $\mathbf{1 6}(21 \mathrm{mg}, 0.06 \mathrm{mmol}) \mathrm{Bu}_{3} \mathrm{SnH}(106 \mathrm{mg}, 0.36 \mathrm{mmol})$, AIBN $(9.2$ $\mathrm{mg}, 0.08 \mathrm{mmol})$ in degassed benzene (6 mL) was heated to $80^{\circ} \mathrm{C}$ and stirred for 18 h . The solution was allowed to cool to room temperature and the solvent was removed by rotary evaporation. Analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum showed no remaining starting material, and products $\mathbf{1 7}$ and $\mathbf{1 8}$ in a 54:46 ratio. Amine $\mathbf{1 4}$ was present in a 80:20 ratio of trans and cis isomers.

Crude mixture of $\mathbf{1 7}$ and $\mathbf{1 8}$ after cyclization.

A solution of silyl enol ether $16(54 \mathrm{mg}, 0.14 \mathrm{mmol}) \mathrm{Bu}_{3} \mathrm{SnH}(55 \mathrm{mg}, 0.19 \mathrm{mmol})$, AIBN (6.1 $\mathrm{mg}, 0.16 \mathrm{mmol})$ in degassed benzene (20 mL) was heated to $80^{\circ} \mathrm{C}$ and stirred for 4 h , and the solution was allowed to cool to room temperature and the solvent was removed by rotary evaporation. Purification by flash chromatography ($2 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 28 mg of amine $21(57 \%)$ as a $1: 1$ mixture of cis and trans diastereomers. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 4.32-4.30 (m, 1H, cis), 4.16-4.11 (m, 1H, trans), 3.79-3.58 (m, 1H), 3.18-3.08 (m, 1H), 3.00-2.89 $(\mathrm{m}, 2 \mathrm{H}), 2.89-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.06($ broad s, 1 H$), 2.01-1.83(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.90$ ($\mathrm{s}, 9 \mathrm{H}$), $0.59(\mathrm{q}, \mathrm{J}=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H})$.

Fast Addition of Tributyltin Hydride to 25

To a solution of silyl enol ether ($726 \mathrm{mg}, 1.45 \mathrm{mmol}$), and AIBN (20 mg) in degassed benzene $(50 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ was added a solution of tributyltin hydride ($506 \mathrm{mg}, 1.74 \mathrm{mmol}$) and AIBN (20 mg) in benzene (5 mL) dropwise over 5 min . The reaction was stirred at $80^{\circ} \mathrm{C}$ for another 5 hours. The solution was allowed to cool to room temperature and the solvent was removed by rotary evaporation. Crude NMR shows there is a miture of $\mathbf{2 6}$ and $\mathbf{2 8}$ with a ratio about 3:5. Only trace amount of imine 27 was formed.

Crude Data for the DIBAL-H Reduction

To a solution of silyl enol ether ($65 \mathrm{mg}, 0.13 \mathrm{mmol}$), and AIBN (2 mg) in degassed benzene (13 mL) at $80^{\circ} \mathrm{C}$ was added a solution of tributyltin hydride ($38 \mathrm{mg}, 0.13 \mathrm{mmol}$) and AIBN (2 mg , 0.1 equiv.) in benzene (5 mL) dropwise, via syringe pump, over 2 hours. The reaction was stirred at $80{ }^{\circ} \mathrm{C}$ for another 3 hours. The solution was allowed to cool to room temperature and the solvent was removed by rotary evaporation. Crude NMR shows that there is a miture of 26, 27 and $\mathbf{2 8}$ with a ratio about 2:1:1. The imine proton is a doublet at 7.63 ppm with 4.0 Hz coupling constant. The above crude mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$.

DIBAL-H ($0.3 \mathrm{~mL}, 1.0 \mathrm{M}$ in toluene) was added dropwise over 3 min and the solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 hour. The reaction was quenched with saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed by rotary evaporation to provide a pale yellow oil. Crude NMR shows that there is a mixture of $\mathbf{2 6}$ and $\mathbf{2 8}$ with a ratio about 3:1.

Crude mixture of 26 and 28, after DIBAL reduction.

7
JOB NO:
014 spectrum ref. to CDCl 3 at 7.27 ppm

[^6]

S5

UBC Bruleer $\triangle 00 M \mathrm{~Hz}$ BBO probe

[^0]: ${ }^{1}$ Zlotorzynska, M.; Zhai, H.; Sammis, G.M. Org. Lett., 2008, 10, 5083-5086.
 ${ }^{2}$ The geometry of the silyl enol ethers was assigned based on the magnitude of the J coupling in the ${ }^{1} \mathrm{H}$ NMR.
 ${ }^{3}$ Benzene is a listed carcinogen within the EEC. Appropriate ventilation and safety precautions should be taken when working with this solvent.

[^1]: ${ }^{4}$ Loubinoux, B.; Sinnes, J. L.; O'Sullivan, A. C.; Winkler, T. Tetrahedron 1995, 51, 3549-58.

[^2]: ${ }^{5}$ Mass spectroscopy was attempted, but was not successful. The material was further derivatized for structural proof.

[^3]: ${ }^{6}$ For NMR data for a mixture of the E and Z silyl enol ether, see data for compound 16.

[^4]: ${ }^{7}$ Morita, M.; Haketa, T.; Koshino, H.; Nakata, T. Org. Lett. 2008, 10, 1679-1682.

[^5]: ${ }^{8}$ A, Häberli and C. J. Leumann, Org. Lett., 2001, 3, 489.

[^6]: ${ }^{9}$ This spectrum has been included for proof of olefin geometry

