Metal Specificities of *Arabidopsis* Zinc and Copper Transport Proteins Match the Relative, But Not the Absolute, Affinities of their N-Terminal Domains

Matthias Zimmermann,[†]Zhiguang Xiao,[†] Christopher S. Cobbett[#] and Anthony G. Wedd^{†,*}

[†] School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, [#]Department of Genetics, University of Melbourne, Parkville, Victoria 3010, Australia.

Email: <u>agw@unimelb.edu.au;</u>

Electronic Supplementary Information

Protoin	Molar Mass (Da)					
I rotein .	Calculated	Found				
HMA4n (2-96)	10730	10730				
HMA7n (56-127)	8001 ^{<i>a</i>}	7999 ^b				

Table S1 ESI-MS Data of Isolated Proteins

^{*a*} including extra residues of N-term Met and C-term Trp;

^b consistent with formation of an intra-molecular disulfide bond.

	3:	[Zn ^{II} (Pa	$r)_2$] + Egta		Zn ^{II} -Egta +	2 Par	K _{ex3}
Egta	[Par] _{total} (µM)	[Zn] _{total} (µM)	[Egta] _{total} (µM)	A ₅₀₀	$\begin{bmatrix} Zn(Par)_2 \end{bmatrix}$ (μ M)	Θ^b	$\frac{K_{\rm ex3}}{({\rm x10}^{-4})}^{c}$
	50.0	10.2	0.00	0.820	10.2		
	49.3	10.1	7.39	0.447	5.58	0.61	4.1
	49.0	10.0	9.80	0.345	4.32	0.58	5.3
	48.8	9.99	12.2	0.269	3.36	0.54	6.3
	48.5	9.95	14.6	0.213	2.66	0.50	7.0
	48.3	9.90	16.9	0.171	2.14	0.46	7.7
	48.1	9.85	19.2	0.139	1.73	0.42	8.4
	47.9	9.80	21.5	0.116	1.46	0.39	8.8
	47.6	9.76	23.8	0.099	1.24	0.36	9.2
	100	10.3	0.00	0.822	10.3		
	98.5	10.1	7.39	0.562	7.02	0.42	7.4
	98.0	10.1	9.80	0.480	5.99	0.42	8.8
	97.6	10.0	12.2	0.415	5.19	0.40	9.6
	97.1	9.98	14.6	0.362	4.52	0.37	10.3
	96.6	9.93	16.9	0.319	3.99	0.35	10.7
	96.2	9.88	19.2	0.284	3.55	0.33	11.0
	95.7	9.84	21.5	0.253	3.16	0.31	11.4
	95.2	9.79	23.8	0.228	2.85	0.29	11.6
	94.8	9.74	26.1	0.207	2.58	0.27	11.8
	94.3	9.70	28.3	0.189	2.36	0.26	11.9
						average	8.9(2.3) ^c

Table S2. Estimation of K_{ex3} for the competition reaction 3^{*a*}

^{*a*} The experiments were carried out in Mops buffer (50 mM; pH 7.3; NaCl 100 mM) under anaerobic conditions. The reported values were confirmed with three independent protein samples;

^b Zn occupancy on Egta;

^c The observed K_{ex3} for reaction A depends on the Zn occupancy on Egta, suggestive of the possible involvement of tertiary complexes such as Par-Zn-Egta in the reaction. Therefore, the average K_{ex3} must be treated as an approximate indicator of the affinity of Par for Zn^{II} only. However, selection of this data has no influence on the relative difference of protein Zn^{II} K_D obtained via competition with Par given in Table S3 where the observed K_{ex1} for reaction 1 does not depend on the Zn occupancy on the protein and thus is reliable.

_										
	Protein (P)	[Par] _{total} (µM)	[Zn] _{total} (µM)	[P] _{total} (µM)	A ₅₀₀	$\begin{array}{c} [Zn(Par)_2] \\ (\mu M) \end{array}$	$\Theta^{\ b}$	$K_{\rm ex1}$ (x10 ⁻³)	$K_{\rm D(ZnP)}{}^{c}$ (10 ⁻¹⁰ M)	
	HMA4n	100	9.33	0	0.747	9.33				
		99.5	9.28	1.84	0.619	7.74	0.84	4.8		
		99.0	9.24	3.66	0.515	6.43	0.77	3.8		
		98.5	9.19	5.47	0.436	5.45	0.68	3.1		
		98.0	9.15	7.25	0.348	4.34	0.66	3.6		
		97.6	9.10	9.02	0.267	3.34	0.64	4.4		
		97.1	9.06	10.8	0.203	2.54	0.60	5.1		
		96.6	9.01	12.5	0.156	1.95	0.56	5.7		
	average							4.3(1.2)	2.1(6)	

Table S3.	Estimation of K_{ex1} for competition reaction 1 and of $K_{D(ZnP)}$ from					
	1: [Zn ^{II} (Par) ₂] + HMA4n \Longrightarrow Zn ^{II} -HMA4n + 2 Par	K _{ex1}				

^a The experiments were carried out in Mops buffer (50 mM; pH 7.3; NaCl 100 mM) under anaerobic conditions. The reported values were confirmed with three independent protein samples;

^b Zn occupancy on Egta;

^c From Eq 5 where $K_D(Zn-Egta) = 1.0 \times 10^{-9} \text{ M}$ and $K_{ex3} \sim 8.9 \times 10^{-4}$ (see Table S2) at pH 7.3, NaCl 100 mM.

Protein	[Par] _{total}	[Zn] _{total}	$[P]_{total}$		$[Zn(Par)_2]$		K_{ex1}	$K_{D(ZnP)}^{c}$
(P)	(µM)	(µM)	(µM)	A_{500}	(µM)	Θ^{b}	$(x10^{-4})$	(10^{-9} M)
HMA7n	50.0	9.86	0	0.789	9.86			
	49.8	9.81	3.98	0.627	7.84	0.50	1.5	
	49.5	9.76	7.92	0.527	6.58	0.40	1.3	
	49.3	9.71	11.8	0.455	5.69	0.34	1.3	
	49.0	9.67	15.7	0.391	4.88	0.30	1.4	
	48.8	9.62	19.5	0.344	4.31	0.27	1.4	
	48.5	9.57	23.3	0.297	3.71	0.25	1.5	
	48.3	9.53	27.1	0.269	3.36	0.23	1.5	
	100	9.61	0.00	0.769	9.61			
	100	9.61	3.90	0.718	8.98	0.16	1.5	
	100	9.61	6.50	0.687	8.58	0.16	1.5	
	100	9.61	9.30	0.652	8.15	0.16	1.6	
	100	9.61	13.3	0.615	7.69	0.14	1.6	
	100	9.61	16.6	0.582	7.27	0.14	1.6	
	100	9.61	20.7	0.549	6.86	0.13	1.7	
	100	9.61	25.9	0.521	6.51	0.12	1.6	
	100	9.61	28.8	0.513	6.41	0.11	1.5	
	100	9.61	32.0	0.505	6.31	0.10	1.4	
average							1.5(1)	5.8(4)

Table S4	Estimation of K_{ex1} for competition reaction 1 and of $K_{D(ZnP)}$ from					
	1: [Zn ^{II} (Par) ₂] + HMA7n \checkmark Zn ^{II} -HMA7n + 2 Par	K _{ex1}				

^a The experiments were carried out in Mops buffer (50 mM; pH 7.3; NaCl 100 mM) under anaerobic conditions. The reported values were confirmed with three independent protein samples;

^b Zn occupancy on Egta;

^c From Eq 5 where $K_D(\text{Zn-Egta}) = 1.0 \times 10^{-9} \text{ M}$ and $K_{\text{ex3}} \sim 8.9 \times 10^{-4}$ (see Table S2) at pH 7.3, NaCl 100 mM.

		- ()2]	······································	_			-0.87	
Protein	[Bcs] _{total}	[Cu ^I] _{total}	[P] _{total}	٨	$\left[\operatorname{Cu}(\operatorname{Bcs})_2\right]^{3-}$	[Cu ^I P]	O^b	$K_{\rm D(CuP)}^{c}$
(P)	(µM)	(µM)	(µM)	A483	(µM)	(µM)	Θ	(M)
HMA4n	200	35.0	3.6	0.4321	33.2	1.8	0.49	3.1 x 10 ⁻¹⁷
	200	35.0	7.20	0.413	31.8	3.2	0.45	3.3 x 10 ⁻¹⁷
	200	35.0	10.8	0.392	30.2	4.9	0.45	3.0 x 10 ⁻¹⁷
	200	35.0	16.1	0.362	27.8	7.2	0.44	2.7 x 10 ⁻¹⁷
	200	35.0	20.0	0.342	26.3	8.7	0.43	2.5 x 10 ⁻¹⁷
average								2.9(3) x 10 ⁻¹⁷
HMA7n	500	32.2	15.8	0.255	19.6	12.6	0.80	3.7 x 10 ⁻¹⁹
	500	32.2	23.7	0.206	15.8	16.4	0.69	5.1 x 10 ⁻¹⁹
	500	32.2	31.4	0.174	13.4	18.8	0.60	6.3 x 10 ⁻¹⁹
	500	32.2	39.0	0.145	11.2	21.1	0.54	6.6 x 10 ⁻¹⁹
	500	32.2	46.6	0.124	9.5	22.7	0.49	6.9 x 10 ⁻¹⁹
	500	32.2	54.1	0.118	9.1	23.1	0.43	8.3 x 10 ⁻¹⁹
	500	32.2	61.5	0.098	7.5	24.7	0.40	7.6 x 10 ⁻¹⁹
	500	32.2	68.9	0.088	6.8	25.4	0.37	7.7 x 10 ⁻¹⁹
average								6.5(1.5) x10 ⁻¹⁹
average								AIU

Table S5. Estimation of K_{ex7} for competition reaction 7 and of $K_{D(CuP)}$ from Eq 8^{*a*} 7: $[Cu^{I}(Bcs)_{2}]^{3-} + apo-P \implies Cu^{I}-P + 2 Bcs^{2-} K_{ex7}$

^{*a*} In Mops buffer (50 mM, pH 7.3; NaCl 100 mM) under anaerobic conditions. The reported are representative values and were confirmed with three independent protein sample preparations.

^b Occupancy of Cu^I on the protein.

^c From Eq 8 where $\beta_2 = 10^{19.8} \text{ M}^{-2}$.

Figure S1. Analytical gel filtration elution profile of Zn-HMA7n on a Superdex-75 gel filtration column (HR10/30; Pharmacia) in Mops buffer (20 mM, pH 7.3, 100 mM NaCl) at a flow rate of 0.7 mL/min.