Efficient synthesis of amino-pyridine derivatives by copper catalyzed amination reactions

Mohammed K. Elmkaddem, Cédric Fischmeister, Christophe M. Thomas and Jean-Luc Renaud $^{\rm c}$

Electronic supplementary data

Cu₂O was purchased from Strem Chemical and used as received. Bromo-derivatives were of commercial grade and used as received. Ethylene glycol was purchased from Acros Organics and used as received. NH₃ (aq.) was purchased from Fluka as a 28% solution. Potassium carbonate (99+%) was purchased from Acros organics. DMEDA was purchased from Acros organics. NMR spectra were recorded on a Bruker Avance 200 dpx and a Bruker Avance 300P. GC/MS analyses were performed on a Shimadzu OP2010 fitted with a quadrupolar mass analyzer (EI, 70eV).

General procedure for the catalytic amination of bromopyridine derivatives

A Schlenck tube was loaded under an argon atmosphere with 3.6 mg of Cu_2O (0.025 mmol, 5 mol%), 0.05 ml of 2-bromopyridine (0.5 mmol), 0.62 ml of a 28% solution of $NH_3.H_2O$ (10 mmol, 20 equiv.), 14 mg of K_2CO_3 (0.1 mmol, 20 mol%), 5.4 μ l of DMEDA (0.05 mmol, 10 mol%) and 1 ml of ethylene glycol. The reaction was stirred for 16 h at 60°C. The reaction mixture was extracted with ethylacetate (4x5ml). Silica gel chromatography afforded 1 in 92% yield. All solvent evaporations and vacuum drying should be performed carefully as some products are volatile under high vaccum.

All the pure products were analysed by ¹H, ¹³C NMR and subjected to low resolution mass spectrometry analysis using a GC/MS equipment.

2-aminopyridine 1

NMR data were consistent with reported data¹

¹H NMR (200 MHz, CDCl₃, δ ppm): 8.06 (d, J = 3.6 Hz, 1H), 7.41 (m, 1H), 6.63 (t, 1H), 6.48 (d, J = 8.2 Hz, 1H), 4.45 (bs, 2H, NH₂).

¹³C NMR (75 MHz, CDCl₃, δ ppm): 158.3 (C), 148.1 (CH), 137.7 (CH), 114.0 (CH), 108,6 (CH).

LRMS: Th: m/z = 94; Exp: m/z (100%) = 94.

2-amino-6-methylpyridine 2

NMR data were consistent with reported data²

¹**H NMR (200 MHz, CDCl₃, δ ppm**): 7.28 (m, 1H), 6.48 (d, J = 7.3Hz, 1H), 6.29 (d, J = 8.1 Hz, 1H), 4.48 (bs, 2H, NH₂), 2.36 (s, 3H, CH₃)

¹³C NMR (75 MHz, CDCl₃, δ ppm): 157.8 (C), 156.7 (C), 137.9 (CH), 113 (CH), 105.3 (CH), 24.1 (CH₃).

LRMS: Th: m/z = 108; Exp: m/z (100%) = 108.

2-amino-3-methylpyridine 3

NMR data were consistent with reported data³

¹H NMR (200 MHz, CDCl₃, δ ppm): 7.88 (d, J = 4.6 Hz, 1H), 7.17 (d, J = 7.1 Hz, 1H), 6.52 (m, 1H), 4.73 (bs, 2H, NH₂), 2.03 (s, 3H, CH₃).

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

¹³C NMR (75 MHz, CDCl₃, δ ppm): 157.7 (C), 145.8 (CH) 137.9 (CH), 116.8 (C), 114.4 (CH), 17.4 (CH₃-C₃).

LRMS: Th: m/z = 108; Exp: m/z (100%) = 108.

2,6-bis-aminopyridine 4

NMR data matched the data of the commercial compound.

¹H NMR (200 MHz, CDCl₃, δ ppm): 7.23 (t, J = 7.8 Hz, 1H), 5.89 (d, J = 7.8 Hz, 2H), 4.20 (bs, 4H, NH₂).

¹³C NMR (75 MHz, CDCl₃, δ ppm): 158.1 (C), 140.1 (CH), 98.2 (CH).

LRMS: Th: m/z = 109; Exp: m/z (100%) = 109.

2-methoxy-6-aminopyridine 5

¹H NMR (200 MHz, CDCl₃, δ ppm): 7.31 (m, 1H), 6.01-6.09 (m, 2H), 4.51 (s large, 2H, NH₂), 3.82 (s, 3H, OCH₃).

¹³C NMR (75 MHz, CDCl₃, δ ppm): 162.8 (C), 156.6 (C), 139.4 (CH), 98.9 (CH), 97.4 (CH), 52.4 (CH₃).

LRMS: Th: m/z = 124; Exp: m/z (100%) = 124.

5-(trifluoromethyl)-2-aminopyridine 6

¹H NMR (200 MHz, CDCl₃, δ ppm): 8.28 (bs, 1H), 7.58 (dd, J = 2.1, 8.7 Hz, 1H), 6.49 (d, J = 8.7 Hz, 1H), 5.15 (bs, 2H, NH₂).

¹³C NMR (75 MHz, CDCl₃, δ ppm): 106.6 (C), 145.8 (q, CH, $J_{CF} = 8.7$ Hz), 134.8 (q, CH, $J_{CF} = 6.4$ Hz), 124.3 (q, CF_3 , $J_{CF} = 267.2$ Hz), 116.4 (q, C, $J_{CF} = 33.0$ Hz), 107.7 (CH). LRMS: Th: m/z = 162; Exp: m/z (100%) = 162.

3-aminopyridine **7**

NMR data were consistent with reported data¹

¹H NMR (200 MHz, CDCl₃, δ ppm): 8.07 (d, J = 2.1 Hz, 1H), 7.99 (d, J = 4.3Hz, 1H), 7.04-6.94 (m, 2H), 3.68 (bs, 2H, NH₂).

¹³C NMR (75 MHz, CDCl₃, δ ppm): 142.5 (C), 139.8 (CH) 137.3 (CH), 123.6 (CH), 121.3 (CH).

LRMS: Th: m/z = 94; Exp: m/z (100%) = 94.

2-aminopyrimidine 8

¹H NMR (200 MHz, CDCl₃, δ ppm): 8.28 (d, J = 4.8 Hz, 2H,), 6.59 (t, J = 4.9 Hz, 1H), 5.27 (bs, 2H, NH₂).

¹³C NMR (75 MHz, CDCl₃, δ ppm): 162.5 (C), 157.7 (CH), 110.9 (CH)

LRMS: Th: m/z = 95; Exp: m/z (100%) = 95.

References

- 1 N. Xia, M. Taillefer, Angew. Chem. Int. Ed., 2009, 48, 337.
- 2 H. Esaki, N. Ito, S. Sakai, T. Maegawa, Y. Monguchi, H. Sajik, *Tetrahedron*, 2006, **62**, 10954.
- 3 J. Yin, B. Xiang, J. Org. Chem., 2007, **72**, 4554.