Electronic Supplementary Information for Flexible Synthesis, Structural Determination, and Synthetic Application of a New *C*₁-Symmetric Chiral Ammonium Betaine

Daisuke Uraguchi, Kyohei Koshimoto, and Takashi Ooi* Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

General Information: Infrared spectra were recorded on a JASCO FT/IR-300E spectrometer. ¹H NMR spectra were recorded on a Varian Mercury-300BB (300 MHz), a Varian INOVA-500 (500 MHz) or Varian INOVA-700 (700 MHz) spectrometer. Chemical shifts are reported in ppm from the solvent resonance [(CD₃)₂SO; 2.50 ppm, CD₃OD; 3.31 ppm, C₆D₆; 7.16 ppm] or Me₄Si resonance (0.0 ppm; CDCl₃, (CD₃)₂CO) as the internal standard. Data are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, sept = septet, m = multiplet, br = broad) and coupling constants (Hz). ¹³C NMR spectra were recorded on a Varian INOVA-500 (126 MHz) or a Varian INOVA-700 (175 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from the solvent resonance [(CD₃)₂CO; 29.84 ppm, (CD₃)₂SO; 39.51 ppm, CD₃OD; 49.00 ppm, CDCl₃; 77.16 ppm, C₆D₆; 128.06 ppm]. Optical rotations were measured on a JASCO DIP-1000 polarimeter. The high resolution mass spectra were conducted on JEOL JMS-700 (MStation). Analytical thin layer chromatography (TLC) was performed on Merck precoated TLC plates (silica gel 60 GF₂₅₄, 0.25 mm). Flash column chromatography was performed on silica gel 60 (spherical, 40-50 µm; Kanto Chemical Co., Inc.). Enantiomeric excesses were determined by HPLC analysis using chiral columns [ϕ 4.6 mm x 250 mm, DAICEL CHIRALPAK AD-H (AD-H) or CHIRALPAK IA (IA)].

Toluene, THF, Et_2O , and CH_2Cl_2 were supplied from Kanto Chemical Co., Inc. as "Dehydrated solvent system". Aromatic and heteroaromatic imines,¹ and 2-alkoxythiazol-5(4*H*)-ones² were prepared by following the literature procedure. Other simple chemicals were purchased and used as such.

¹ A. G. Wenzel, E. N. Jacobsen, J. Am. Chem. Soc., 2002, **124**, 12964.

² Y. Lin, K. K. Andersen, Eur. J. Org. Chem., 2002, 557.

Experimental Section:

(1) Preparation and Characterization of C₁-Symmetric Chiral Ammonium Betaine 1:

Representative procedure for preparation of 3³: A solution of 2⁴ (6.5 g, 14.0 mmol), Pd(OAc)₂ (472.5 mg, 2.1 mmol), and dppp (948.6 mg, 2.31 mmol) in DMSO (70.0 mL) was evacuated and backfilled with argon. Then, ⁱPr₂NEt (10.6 mL, 62.0 mmol) and MeOH (28.0 mL) were added and the mixture was stirred for 24 h at 80 °C. After being cooled to room temperature, the resulting mixture was poured into H₂O and extracted with ethyl acetate (EA) twice. The combined organic extracts were washed with H₂O twice and brine, and dried over Na₂SO₄. Evaporation of volatiles and subsequent purification of the residue by column chromatography on silica gel [hexane (H)/EA = 20:1-5:1 as eluent] afforded **3** (3.7 g, 9.94 mmol, 71%). ¹H NMR (500 MHz, CDCl₃) *δ*8.13 (1H, d, *J* = 8.5 Hz), 7.98 (1H, d, *J* = 8.5 Hz), 7.94 (1H, d, *J* = 8.5 Hz), 7.92 (1H, d, *J* = 8.5 Hz), 7.85 (1H, d, *J* = 8.5 Hz), 7.55 (1H, d, *J* = 8.5 Hz), 7.51 (1H, ddd, *J* = 8.5, 6.5, 1.5 Hz), 7.32 (1H, d, *J* = 8.5 Hz), 7.31 (1H, ddd, *J* = 8.5, 6.5, 1.5 Hz), 7.26 (1H, ddd, *J* = 8.5, 6.5, 1.5 Hz), 7.17 (1H, ddd, *J* = 8.5, 6.5, 1.5 Hz), 6.97 (1H, d, *J* = 8.5 Hz), 5.05 (1H, d, *J* = 6.5 Hz), 4.96 (1H, d, *J* = 6.5 Hz), 3.46 (3H, s), 3.08 (3H, s); ¹³C NMR (126 MHz, CDCl₃) *δ*167.8, 151.8, 137.3, 135.2, 134.0, 133.1, 129.6, 129.5, 128.9, 128.0₅, 128.0₂, 127.8₄, 127.7₉, 126.7, 126.5, 126.2, 125.2, 124.0, 123.5, 116.5, 94.9, 55.9, 51.9, one carbon was not found probably due to overlapping; IR (neat): 3060, 2950, 1727, 1333, 1278, 1241, 1150, 1035, 1014, 908, 768, 732 cm⁻¹; HRMS (FAB) Calcd for C₂₄H₂₀O₄ ([M+H]⁺) 372.1362. Found 372.1364.

Representative procedure for preparation of 4: $B(O'Pr)_3$ (5.7 mL, 25.0 mmol) and a solution of **3** (3.7 g, 10.0 mmol) in THF (10.0 mL) were sequentially introduced to a THF solution of lithium 2,2,6,6-tetramethylpiperidine (LiTMP) (ca. 1 M, 20 mL, 20.0 mmol) at -78 °C. The resulting reaction mixture was allowed to warm to room temperature without removing cooling bath and poured into saturated NH₄Cl aqueous solution. The aqueous phase was extracted with EA twice and the combined organic extracts were washed with brine. After drying over Na₂SO₄ and filtration, the organic phase was concentrated under vacuum. The residual solid was mixed with CuCl₂ (2.7 g, 20.0 mmol) and KF·2H₂O (941.3 mg, 10.0 mmol), and the whole materials were dissolved into 80%

³ T. Ohta, M. Ito, K. Inagaki, H. Takaya, *Tetrahedron Lett.*, 1993, 34, 1615.

⁴ T. Ooi, K. Ohmatsu, K. Maruoka, J. Am. Chem. Soc., 2007, **129**, 2410.

aqueous THF (30.0 mL). After degassing process, the mixture was stirred overnight. The resulting mixture was quenched by the addition of saturated NH₄Cl aqueous solution and extracted with EA twice. The combined organic phasees were washed with brine and dried over Na₂SO₄. Filtration and concentration were performed, and the crude product was purified by column chromatography on silica gel (H/EA = 20:1-5:1 as eluent) to give **4** (2.1 g, 5.1 mmol, 51%) as a white solid. **4:** ¹H NMR (500 MHz, CDCl₃) δ 8.01 (1H, s), 7.94 (1H, d, *J* = 8.5 Hz), 7.84 (1H, d, *J* = 8.5 Hz), 7.83 (1H, d, *J* = 8.5 Hz), 7.56 (1H, d, *J* = 8.5 Hz), 7.51 (1H, ddd, *J* = 8.5, 7.0, 1.5 Hz), 7.24 (1H, dd, *J* = 8.5, 7.0, 1.5 Hz), 7.28 (1H, ddd, *J* = 8.5, 7.0, 1.5 Hz), 7.25 (1H, ddd, *J* = 8.5, 7.0, 1.5 Hz), 7.24 (1H, d, *J* = 8.5 Hz), 7.07 (1H, d, *J* = 8.5 Hz), 5.11 (1H, d, *J* = 7.0 Hz), 5.02 (1H, d, *J* = 7.0 Hz), 3.31 (3H, s), 3.22 (3H, s); ¹³C NMR (126 MHz, CDCl₃) δ 167.2, 153.0, 135.3, 134.1, 133.7, 132.7, 131.3, 130.6, 129.3, 128.0, 127.8₁, 127.7₉, 127.6, 127.4, 127.1, 127.0, 126.8, 125.6, 124.2, 120.2, 116.0, 94.9, 56.0, 52.0; IR (neat): 3060, 2951, 1737, 1280, 1243, 1137, 1072, 1034, 1014, 909, 733 cm⁻¹; HRMS (FAB) Calcd for C₂₄H₁₉O₄Cl ([M+H]⁺) 406.0972. Found 406.0980.

Representative procedure for preparation of 5: To a suspension of LiAlH₄ (174.6 mg, 4.6 mmol) in Et₂O (23.0 mL) was added 4 (934.0 mg, 2.3 mmol) portionwise at 0 °C and the reaction mixture was stirred for 1 h at 0 °C. The reaction was quenched by the sequential treatment with H_2O (174.6 μ L), 15% NaOH aqueous solution (174.6 μ L), and H₂O (523.8 μ L). After being stirred for 1 h at room temperature, this mixture was filtered through a pad of Celite and the filtrate was concentrated. Without further purification, this crude was used for the subsequent bromination. To a suspension of NBS (2.0 g, 11.5 mmol) in CH₂Cl₂ (11.5 mL) was added Me₂S (845.0 μL, 11.5 mmol) dropwise at 0 °C and the yellow mixture was stirred for 10 min at 0 °C. The crude alcohol was added portionwise at 0 °C. The reaction mixture was stirred for 24 h at 0 °C and poured into saturated NaHCO₃ aqueous solution. Extractive workup was performed with $CHCl_3$ and the combined extracts were dried over Na_2SO_4 . Removal of volatiles and purification of the residue by column chromatography on silica gel (H/EA = 50:1-5:1 as eluent) furnished 5 (840.4 mg, 1.9 mmol, 83% in two steps) as a white solid. 5: ¹H NMR (500 MHz, CDCl₃) δ 8.05 (1H, s), 8.01 (1H, d, J = 8.5 Hz), 7.89 (1H, d, J = 8.5 Hz), 7.81 (1H, d, J = 8.5 Hz), 7.64 (1H, d, J = 8.5 Hz), 7.47 (1H, ddd, J = 8.5, 7.0, 1.5 Hz), 7.36 (1H, ddd, J = 8.5, 7.0, 1.5 Hz), 7.24 (1H, ddd, J = 8.5, 7.0, 1.5 Hz), 7.22 (1H, ddd, J = 8.5, 7.0, 1.5 Hz), 7.11 (1H, d, J = 8.5 Hz), 6.96 (1H, d, J = 8.5 Hz), 5.15 (1H, d, J = 7.0 Hz), 5.00 (1H, d, J = 7.0 Hz), 4.51 (1H, d, J = 10.0 Hz), 4.39 (1H, d, J = 10.0 Hz), 3.17 (3H, s); ¹³C NMR (126 MHz, CDCl₃) δ 152.8, 137.3, 133.9, 133.5, 132.5, 132.2, 131.9, 130.7, 129.7, 128.5, 128.1, 127.6, 127.2, 127.0, 126.8, 125.4, 124.5, 120.5, 116.2, 95.0, 56.1, 30.0, one carbon was not found probably due to overlapping; IR (neat): 2954, 1593, 1508, 1243, 1149, 1071, 1034, 1014, 992, 907, 749 cm⁻¹; HRMS (FAB) Calcd for C₂₃H₁₈O₂ClBr ([M+H]⁺) 440.0179. Found 440.0179.

Representative procedure for preparation of 7: Bromide 5 (220.0 mg, 0.5 mmol) was treated with 50% aqueous Me₂NH (262.0 µL, 2.5 mmol) in MeCN (5.0 mL) for 1 h at room temperature. The reaction mixture was diluted with H₂O and extracted with CHCl₃ twice. The organic extracts were washed with brine, dried over Na₂SO₄, and concentrated. Residual crude product of 6 was satisfactory pure in NMR for the next reaction. To a solution of the crude 6 in THF (5.0 mL) was added a solution of ⁿBuLi in hexane (1.6 M, 780.0 µL, 1.25 mmol) dropwise at 0 °C and the solution was stirred for 30 min. After being cooled to -78 °C, the reaction mixture was treated with 1,2-dibromo-1,1,2,2-tetrafluoroethane (188.0 µL, 1.5 mmol). The resulting reaction mixture was warmed to room temperature, diluted with saturated NH₄Cl aqueous solution, and extracted with EA twice. The organic extracts were dried, filtered, and concentrated. The residual solid was purified by column chromatography on silica gel (H/EA = 20:1-2:1 as eluent) to give 7 (201.7 mg, 0.4 mmol, 83% in two steps) as a vellow highly viscous liquid. **7:** ¹H NMR (500 MHz, CDCl₃) δ 8.28 (1H, s), 8.06 (1H, s), 7.81₂ (1H, d, J = 8.5 Hz), 7.80₆ (1H, d, J = 8.5 Hz), 7.46 (1H, ddd, J = 8.5, 6.5, 1.5 Hz), 7.41 (1H, ddd, J = 8.5, 6.5, 1.5 Hz), 7.24 (1H, ddd, J = 8.5, 6.5, 1.5 Hz), 7.22 (1H, ddd, J = 8.5, 6.5, 1.5 Hz), 7.11 (1H, d, J = 8.5 Hz), 7.06 (1H, d, J = 8.5 Hz), 4.77 (1H, d, J = 5.5 Hz), 4.56 (1H, d, J = 6.5 Hz), 4.77 (1H, d, J = 6.5 Hz), 4.56 (1H, d, J = 6.5 Hz), 4.56 (1H, d, J = 6.5 Hz), 4.77 (1H, d, J = 6.5 Hz), 4.56 (1H, d, J = 6.5 Hz), 4.57 (1H, d, J = 6.5 Hz), 4.56 (1H,d, J = 5.5 Hz), 3.73 (1H, d, J = 13.0 Hz), 3.12 (1H, d, J = 13.0 Hz), 2.58 (3H, s), 1.83 (6H, s); ¹³C NMR (126 MHz, CDCl₃) *δ* 149.1, 135.3, 135.2, 134.2, 133.2, 133.1₃, 133.0₈, 132.1, 131.5, 129.7, 128.8, 127.2, 127.1, 126.8, 126.7, 126.5, 126.1, 117.4, 98.9, 59.2, 56.6, 45.7, two carbons were not found probably due to overlapping; IR (neat): 2939, 2817, 2766, 1160, 1002, 970, 930, 749 cm⁻¹; HRMS (FAB) Calcd for C₂₅H₂₄NO₂BrCl⁺ ([M+H]⁺) 486.0659. Found 486.0667.

Representative procedure for preparation of 8: To a test tube were placed 7 (48.5 mg, 0.1 mmol), p-Tip-C₆H₄B(OH)₂⁵ (**B1**, 48.6 mg, 0.15 mmol), Pd(OAc)₂ (1.1 mg, 0.005 mmol), PPh₃ (2.6 mg, 0.01 mmol), and K₃PO₄ (84.9 mg, 0.4 mmol). After the addition of THF (0.35 mL), evacuation and refill with argon were repeated three times and the reaction mixture was stirred for 18 h at 65 °C. The reaction mixture was filtered through a pad of Celite at room temperature. The concentrated filtrate was purified by column chromatography on silica gel (H/EA = 20:1-2:1 as eluent) to afford **8d** (50.6 mg, 0.74 mmol, 74%) as a white solid.

8a (Ar¹ = Ph): 79% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.04 (1H, s), 7.97 (1H, s), 7.89 (1H, d, J = 8.5 Hz), 7.79

⁵ Tip = 2,4,6-triisopropylphenyl. For preparation of the boronic acid, see below.

(1H, d, J = 8.5 Hz), 7.71 (2H, d, J = 7.5 Hz), 7.46 (2H, t, J = 7.5 Hz), 7.43 (1H, dt, J = 8.5, 4.0 Hz), 7.41-7.35 (2H, m), 7.24-7.19 (3H, m), 7.09 (1H, d, J = 8.5 Hz), 4.23 (1H, d, J = 6.0 Hz), 4.19 (1H, d, J = 6.0 Hz), 3.76 (1H, d, J = 13.0 Hz), 3.37 (1H, d, J = 13.0 Hz), 2.17 (3H, s), 1.94 (6H, s); ¹³C NMR (126 MHz, CDCl₃) δ 150.6, 139.0, 136.4, 135.2, 134.3, 133.4, 133.2, 132.1, 131.0, 130.8, 129.7, 129.6, 128.6, 128.4, 128.0₈, 128.0₆, 127.6, 127.5, 127.0, 126.7, 126.6, 126.4, 126.2, 125.3, 98.4, 59.5, 55.9, 45.8; IR (neat): 2939, 2766, 1158, 996, 976, 933, 751 cm⁻¹; HRMS (FAB) Calcd for C₃₁H₂₉NO₂Cl⁺ ([M+H]⁺) 482.1887. Found 482.1902.

8d (Ar¹ = p^{-t} Bu-C₆H₄): 79% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.04 (1H, s), 7.97 (1H, s), 7.89 (1H, d, J = 8.0 Hz), 7.79 (1H, d, J = 8.0 Hz), 7.64 (2H, d, J = 8.5 Hz), 7.49 (2H, d, J = 8.5 Hz), 7.44 (1H, dt, J = 8.0, 4.0 Hz), 7.39 (1H, t, J = 8.0 Hz), 7.23-7.19 (3H, m), 7.07 (1H, d, J = 8.0 Hz), 4.25 (1H, d, J = 6.0 Hz), 4.20 (1H, d, J = 6.0 Hz), 3.73 (1H, d, J = 13.5 Hz), 3.36 (1H, d, J = 13.5 Hz), 2.16 (3H, s), 1.94 (6H, s), 1.37 (9H, s); ¹³C NMR (126 MHz, CDCl₃) δ 150.8, 150.6, 136.5, 136.0, 135.2, 135.0, 134.3, 133.3, 133.2, 132.2, 131.0, 130.8, 129.1, 128.4, 128.1, 128.0, 127.7, 127.0, 126.7, 126.6, 126.3, 126.2, 125.5, 125.3, 98.4, 59.5, 55.8, 45.8, 34.7, 31.5; IR (neat): 2962, 2764, 1457, 1391, 1158, 1078, 998, 976, 837, 750 cm⁻¹; HRMS (FAB) Calcd for C₃₅H₃₇NO₂Cl⁺ ([M+H]⁺) 538.2513. Found 538.2488.

8e $(Ar^{1} = p$ -Mes-C₆H₄)⁶: 73% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.06 (1H, s), 8.05 (1H, s), 7.92 (1H, d, J = 8.0 Hz), 7.80 (1H, d, J = 8.0 Hz), 7.77 (2H, d, J = 8.0 Hz), 7.44 (1H, ddd, J = 8.0, 5.5, 3.0 Hz), 7.41 (1H, t, J = 8.0 Hz), 7.28-7.19 (5H, m), 7.10 (1H, d, J = 8.0 Hz), 6.97 (2H, s), 4.27 (1H, d, J = 6.0 Hz), 4.24 (1H, d, J = 6.0 Hz), 3.79 (1H, d, J = 13.0 Hz), 3.38 (1H, d, J = 13.0 Hz), 2.34 (3H, s), 2.26 (3H, s), 2.05 (6H, s), 1.94 (6H, s); ¹³C NMR (126 MHz, CDCl₃) δ 150.8, 140.3, 138.8, 137.2, 136.8, 136.3, 136.0, 135.3, 135.0, 134.3, 133.4, 133.2, 132.1, 131.0, 130.9, 129.7, 129.5, 128.5, 128.3, 128.1, 128.0, 127.6, 127.0, 126.7₂, 126.6₇, 126.4, 126.3, 125.3, 98.4, 59.5, 56.0, 45.8, 21.2, 20.9; IR (neat): 2938, 2765, 1454, 1389, 1158, 998, 975, 842, 752 cm⁻¹; HRMS (FAB) Calcd for C₄₀H₃₉NO₂Cl⁺ ([M+H]⁺) 600.2669. Found 600.2686.

8f (Ar¹ = *p*-Tip-C₆H₄): 74% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.10 (1H, s), 8.06 (1H, s), 7.93 (1H, d, *J* = 8.0 Hz), 7.81 (1H, d, *J* = 8.0 Hz), 7.76 (2H, d, *J* = 8.0 Hz), 7.45 (1H, ddd, *J* = 8.0, 5.5, 2.5 Hz), 7.41 (1H, t, *J* = 8.0 Hz), 7.31 (2H, d, *J* = 8.0 Hz), 7.25-7.20 (2H, m), 7.22 (1H, ddd, *J* = 8.0, 6.5, 1.5 Hz), 7.09₄ (1H, d, *J* = 8.0 Hz), 7.08₆ (2H, s), 4.26 (1H, d, *J* = 5.5 Hz), 4.24 (1H, d, *J* = 5.5 Hz), 3.81 (1H, d, *J* = 13.0 Hz), 3.38 (1H, d, *J* = 13.0 Hz), 2.96 (1H, sept, *J* = 7.0 Hz), 2.69 (2H, sept, *J* = 7.0 Hz), 2.32 (3H, s), 1.93 (6H, s), 1.32 (6H, d, *J* = 7.0 Hz), 1.10₃ (6H, d, *J* = 7.0 Hz), 1.09₉ (6H, d, *J* = 7.0 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 150.9, 148.1, 146.6, 140.1, 137.2, 136.9, 136.3, 135.4, 135.0, 134.4, 133.4, 133.3, 132.1, 131.0, 130.9, 130.0, 129.3, 128.5, 128.1, 128.0, 127.6, 127.1, 126.7₄, 126.6₈, 126.3₄, 126.3₂, 125.4, 120.7, 98.5, 59.5, 56.0, 45.8, 34.4, 30.5, 24.3₄, 24.2₈, 24.2; IR (neat): 2959, 2766, 1458, 1362, 1158, 1077, 998, 976, 844, 753 cm⁻¹; HRMS (FAB) Calcd for C₄₆H₅₁NO₂Cl⁺ ([M+H]⁺) 684.3608. Found 684.3624.

⁶ Mes = 2,4,6-trimethylphenyl

Representative procedure for preparation of 9: To a test tube were placed **8f** (68.4 mg, 0.1 mmol), PhB(OH)₂ (24.4 mg, 0.2 mmol), Pd₂dba₃ (4.58 mg, 0.005 mmol), S-phos⁷ (8.21 mg, 0.02 mmol), and K₃PO₄ (84.9 mg, 0.4 mmol). After the addition of DMF (0.2 mL), evacuation and refill with argon were repeated three times and the reaction mixture was stirred for 24 h at 100 °C. The reaction mixture was filtered through a pad of Celite at room temperature and the filtrate was concentrated. The residue was purified by column chromatography on silica gel (H/EA = 20:1-2:1 as eluent) to give **9f** (71.4 mg, 0.098 mmol, 98%) as a white solid.

9a (Ar¹ = Ph, Ar² = Ph): 44% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.93 (1H, s), 7.88 (1H, d, *J* = 8.0 Hz), 7.85 (1H, d, *J* = 8.0 Hz), 7.80 (1H, s), 7.72 (2H, d, *J* = 7.5 Hz), 7.49 (2H, d, *J* = 7.5 Hz), 7.46 (2H, t, *J* = 7.5 Hz), 7.44-7.33 (4H, m), 7.42 (2H, t, *J* = 7.5 Hz), 7.26-7.17 (4H, m), 4.29 (1H, d, *J* = 5.5 Hz), 4.21 (1H, d, *J* = 5.5 Hz), 3.52 (1H, d, *J* = 13.0 Hz), 3.33 (1H, d, *J* = 13.0 Hz), 2.26 (3H, s), 1.55 (6H, s); ¹³C NMR (126 MHz, CDCl₃) δ 150.1, 143.1, 142.2, 139.3, 136.3, 135.4, 134.4, 134.0, 132.9, 132.5, 130.8, 130.4, 129.7, 129.6, 129.5, 129.4, 128.5, 127.9, 127.8, 127.7, 127.4, 127.2, 127.1, 126.6, 126.0, 125.9, 125.8, 125.1, 98.4, 58.6, 55.9, 44.9; IR (neat): 2929, 2853, 2762, 1454, 1157, 993, 971, 934, 752 cm⁻¹; HRMS (FAB) Calcd for C₃₇H₃₄NO₂⁺ ([M+H]⁺) 524.2590. Found 524.2573.

9c (Ar¹ = Ph, Ar² = p- t Bu-C₆H₄): 71% yield. ¹H NMR (700 MHz, CDCl₃) δ 7.93 (1H, s), 7.88 (1H, d, J = 8.4 Hz), 7.84 (1H, d, J = 8.4 Hz), 7.82 (1H, s), 7.72 (2H, d, J = 8.4 H), 7.48-7.34 (9H, m), 7.26-7.18 (4H, m), 4.28 (1H, d, J = 5.6 Hz), 4.19 (1H, d, J = 5.6 Hz), 3.54 (1H, brd, J = 11.2 Hz), 3.36 (1H, brd, J = 11.2 Hz), 2.25 (3H, s), 1.55 (6H, s), 1.39 (9H, s); ¹³C NMR (175 MHz, CDCl₃) δ 149.8, 149.3, 142.0, 139.8, 139.2, 136.3, 135.3, 134.2, 133.8, 132.6, 132.3, 130.7, 130.1, 129.5₁, 129.4₅, 129.3, 129.2, 128.3, 127.7, 127.6, 127.2, 127.0₁, 126.9₈, 125.7, 125.6₂, 125.5₉, 124.9, 124.3, 98.2, 58.4, 55.8, 44.8, 34.5, 31.4; IR (neat): 2961, 2762, 1456, 1158, 994, 973, 751 cm⁻¹; HRMS (FAB) Calcd for C₄₁H₄₂NO₂⁺ ([M+H]⁺) 580.3216. Found 580.3215.

9d (Ar¹ = p- t Bu-C₆H₄, Ar² = Ph): 66% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.93 (1H, s), 7.87 (1H, d, J = 8.5 Hz), 7.84 (1H, d, J = 8.5 Hz), 7.80 (1H, s), 7.66 (2H, d, J = 8.0 Hz), 7.48₇ (2H, d, J = 8.0 Hz), 7.47₉ (2H, d, J = 8.0 Hz), 7.42 (2H, t, J = 8.0 Hz), 7.42-7.34 (3H, m), 7.26 (1H, d, J = 8.5 Hz), 7.23 (1H, t, J = 8.5 Hz), 7.20 (1H, t, J = 8.5 Hz), 7.17 (1H, d, J = 8.5 Hz), 4.32 (1H, d, J = 5.5 Hz), 4.21 (1H, d, J = 5.5 Hz), 3.51 (1H, d, J = 13.5 Hz), 3.34 (1H, d, J = 13.5 Hz), 2.25 (3H, s), 1.54 (6H, s), 1.37 (9H, s); ¹³C NMR (126 MHz, CDCl₃) δ 150.4, 150.2, 143.1, 142.2, 136.3, 135.3, 134.5, 133.8, 132.9, 132.5, 130.9, 130.3, 129.6, 129.4₂, 129.3₉, 129.2, 127.9, 127.8, 127.7, 127.2, 127.1, 126.6, 125.9, 125.8, 125.4, 125.0, 98.4, 58.6, 55.9, 44.9, 34.7, 31.5, two carbons were not found probably due to overlapping; IR (neat): 2960, 2813, 2761, 1463, 1158, 994, 972, 837, 751 cm⁻¹; HRMS (FAB) Calcd for C₄₁H₄₂NO₂⁺ ([M+H]⁺) 580.3216. Found 580.3243.

9e (Ar¹ = *p*-Mes-C₆H₄, Ar² = Ph): 59% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.02 (1H, s), 7.91 (1H, d, *J* = 8.5

⁷ 2-Dicyclohexylphosphino-2',6'-dimethoxybiphenyl

Hz), 7.86 (1H, d, J = 8.5 Hz), 7.81 (1H, s), 7.78 (2H, d, J = 8.0 Hz), 7.49 (2H, d, J = 8.0 Hz), 7.45-7.38 (4H, m), 7.36 (1H, t, J = 8.5 Hz), 7.28 (1H, d, J = 8.5 Hz), 7.26-7.20 (4H, m), 7.19 (1H, d, J = 8.5 Hz), 6.97 (2H, s), 4.33 (1H, d, J = 5.5 Hz), 4.26 (1H, d, J = 5.5 Hz), 3.54 (1H, d, J = 13.0 Hz), 3.35 (1H, d, J = 13.0 Hz), 2.35 (3H, s), 2.34 (3H, s), 2.05 (6H, s), 1.55 (6H, s); ¹³C NMR (126 MHz, CDCl₃) δ 150.3, 143.1, 142.3, 140.2, 138.9, 137.6, 136.8, 136.3, 136.1, 135.4, 134.4, 134.0, 132.9, 132.5, 130.9, 130.3, 129.8, 129.6, 129.4, 128.3, 127.9₂, 127.8₇, 127.7, 127.2, 127.1, 126.6, 126.0, 125.9₃, 125.8₇, 125.1, 98.5, 58.6, 56.1, 45.0, 21.2, 20.9, two carbons were not found probably due to overlapping; IR (neat): 2932, 2853, 2763, 1455, 1157, 994, 972, 842, 752 cm⁻¹; HRMS (FAB) Calcd for C₄₆H₄₄NO₂⁺ ([M+H]⁺) 642.3372. Found 642.3376

9f (Ar¹ = *p*-Tip-C₆H₄, Ar² = Ph): 98% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.05 (1H, s), 7.91 (1H, d, *J* = 8.5 Hz), 7.86 (1H, d, *J* = 8.5 Hz), 7.81 (1H, s), 7.76 (2H, d, *J* = 8.0 Hz), 7.50 (2H, d, *J* = 8.0 Hz), 7.43 (1H, ddd, *J* = 8.5, 6.5, 1.5 Hz), 7.42 (2H, t, *J* = 8.0 Hz), 7.40 (1H, ddd, *J* = 8.5, 6.5, 1.5 Hz), 7.36 (1H, t, *J* = 8.0 Hz), 7.30 (2H, d, *J* = 8.0 Hz), 7.28 (1H, d, *J* = 8.5 Hz), 7.24 (1H, ddd, *J* = 8.5, 6.5, 1.5 Hz), 7.22 (1H, ddd, *J* = 8.5, 6.5, 1.5 Hz), 7.08 (2H, s), 4.33 (1H, d, *J* = 5.5 Hz), 4.27 (1H, d, *J* = 5.5 Hz), 3.55 (1H, d, *J* = 13.0 Hz), 3.35 (1H, d, *J* = 13.0 Hz), 2.96 (1H, sept, *J* = 7.0 Hz), 2.70 (2H, sept, *J* = 7.0 Hz), 2.40 (3H, s), 1.54 (6H, s), 1.32 (6H, d, *J* = 7.0 Hz), 1.11 (6H, d, *J* = 7.0 Hz), 1.10 (6H, d, *J* = 7.0 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 150.4, 148.1, 146.7, 143.1, 142.3, 139.9, 137.5, 137.0, 136.3, 135.5, 134.4, 134.0, 132.9, 132.5, 130.9, 130.3, 129.9, 129.6, 129.5, 129.4₅, 129.3₆, 127.9, 127.6, 127.2, 126.6, 126.0, 125.9₂, 125.8₈, 125.1, 120.7, 98.5, 58.6, 56.1, 45.0, 34.4, 30.5, 24.4, 24.3, 24.2, two carbons were not found probably due to overlapping; IR (neat): 2959, 2867, 2762, 1459, 1362, 1157, 1073, 994, 972, 935, 844, 752 cm⁻¹; HRMS (FAB) Calcd for C₅₂H₅₆NO₂⁺ ([M+H]⁺) 726.4311. Found 726.4317.

Representative procedure for preparation of 9': Amine **9f** was dissolved into MeI (1.0 mL) at room temperature and the solution was stirred for 6 h. After removal of excess MeI, the residual solid was treated with 1 M HCl methanolic solution (1.0 mL) at 40 °C for 12 h. The concentrated crude solid was purified by column chromatography on silica gel (H/EA = 1:1 then CHCl₃/MeOH = 1:0-5:1 as eluent) to give **9'f** quantitatively.

9°a (Ar¹ = Ph, Ar² = Ph): ¹H NMR (700 MHz, (CD₃)₂SO, 80 °C) δ 8.74 (1H, brs), 8.13 (1H, d, *J* = 7.7 Hz), 8.12 (1H, s), 8.09 (1H, s), 8.04 (1H, d, *J* = 7.7 Hz), 7.69 (2H, d, *J* = 7.7 Hz), 7.68-7.64 (3H, m), 7.63 (2H, t, *J* = 7.7 Hz), 7.54 (1H, t, *J* = 7.7 Hz), 7.51 (2H, t, *J* = 7.7 Hz), 7.45 (1H, t, *J* = 7.7 Hz), 7.43 (1H, t, *J* = 7.7 Hz), 7.41 (1H, t, *J* = 7.7 Hz), 7.36 (1H, t, *J* = 7.7 Hz), 7.28 (1H, d, *J* = 7.7 Hz), 6.94 (1H, d, *J* = 7.7 Hz), 4.89 (1H, br), 4.45 (1H, br), 2.54 (9H, brs); ¹³C NMR (175 MHz, (CD₃)₂SO, 80 °C) δ 150.0, 140.9, 140.8, 138.9, 137.6, 133.7, 132.4, 131.8, 131.5, 131.0, 130.9, 129.6, 129.1, 128.7, 128.3, 127.9, 127.8, 127.6, 127.5, 127.0, 126.9, 126.5, 124.5, 123.4, 123.1, 117.7, 64.3, 53.5, two carbons were not found probably due to overlapping; IR (neat): 3055, 2930, 1620, 1486, 1427, 1327, 1238, 1216, 1189, 1127, 1029, 899, 752 cm⁻¹; HRMS (FAB) Calcd for C₃₆H₃₂NO⁺ ([M-X]⁺) 494.2484. Found 494.2493.

9'b (Ar¹ = Ph, Ar² = Cl): ¹H NMR (700 MHz, (CD₃)₂SO, 80 °C) δ 8.80 (1H, brs), 8.47 (1H, s), 8.11 (1H, d, *J* = 7.7 Hz), 8.10 (1H, s), 8.03 (1H, d, *J* = 7.7 Hz), 7.69 (1H, t, *J* = 7.7 Hz), 7.67 (2H, d, *J* = 7.7 Hz), 7.50 (2H, t, *J* = 7.7 Hz), 7.46 (1H, t, *J* = 7.7 Hz), 7.42 (1H, t, *J* = 7.7 Hz), 7.39 (1H, t, *J* = 7.7 Hz), 7.31 (1H, t, *J* = 7.7 Hz), 7.23 (1H, d, *J* = 7.7 Hz), 6.75 (1H, br), 4.83 (1H, br), 4.47 (1H, br), 2.98 (9H, brs); ¹³C NMR (175 MHz, (CD₃)₂SO, 80 °C) δ 150.0, 140.7, 137.5, 134.4, 132.5, 132.1, 131.7, 131.2₁, 131.1₈, 129.3₂, 129.2₉, 129.0, 128.4, 128.3, 128.2, 127.7, 127.3, 127.1, 127.0, 126.6, 124.7, 123.5, 122.7, 116.8, 64.8, 53.5; IR (neat): 3186, 3049, 2928, 1620, 1484, 1427, 1183, 1125, 882, 749 cm⁻¹; HRMS (FAB) Calcd for C₃₀H₂₇NOCl⁺ ([M-X]⁺) 452.1781. Found 452.1788.

9'c (Ar¹ = Ph, Ar² = p-^{*t*}Bu-C₆H₄): ¹H NMR (700 MHz, (CD₃)₂SO, 80 °C) δ 8.72 (1H, br), 8.12 (1H, s), 8.11 (1H, d, J = 7.7 Hz), 8.04 (1H, d, J = 7.7 Hz), 7.70 (2H, d, J = 7.7 Hz), 7.65 (1H, t, J = 7.7 Hz), 7.64 (2H, d, J = 7.7 Hz), 7.59 (2H, d, J = 7.7 Hz), 7.51 (2H, t, J = 7.7 Hz), 7.46-7.39 (4H, m), 7.35 (1H, t, J = 7.7 Hz), 7.27 (1H, d, J = 7.7 Hz), 6.93 (1H, d, J = 7.7 Hz), 4.89 (1H, br), 4.46 (1H, br), 2.53 (9H, s), 1.46 (9H, s); ¹³C NMR (175 MHz, (CD₃)₂SO, 80 °C) δ 150.4, 149.9, 140.8, 138.8, 137.9, 137.6, 133.8, 132.4, 131.8, 131.5, 130.9, 130.8, 129.3, 129.1, 129.0, 128.3, 127.9, 127.7, 127.6, 127.0, 126.8, 126.4, 125.4, 124.8, 123.4, 123.1, 117.7, 64.4, 53.6, 34.0, 30.7; IR (neat): 3381, 2961, 1621, 1487, 1192, 1128, 890, 752 cm⁻¹; HRMS (FAB) Calcd for C₄₀H₄₀NO⁺ ([M-X]⁺) 550.3110. Found 550.3098.

9'd (Ar¹ = p-^{*t*}Bu-C₆H₄, Ar² = Ph): ¹H NMR (700 MHz, (CD₃)₂SO, 80 °C) δ 8.71 (1H, brs), 8.13 (1H, d, J = 7.7 Hz), 8.12 (1H, s), 8.08 (1H, s), 8.02 (1H, d, J = 7.7 Hz), 7.70-7.61 (7H, m), 7.54 (1H, t, J = 7.7 Hz), 7.53 (2H, d, J = 7.7 Hz), 7.44 (1H, t, J = 7.7 Hz), 7.40 (1H, t, J = 7.7 Hz), 7.35 (1H, t, J = 7.7 Hz), 7.28 (1H, d, J = 7.7 Hz), 6.93 (1H, d, J = 7.7 Hz), 4.88 (1H, br), 4.44 (1H, br), 2.54 (9H, brs), 1.38 (9H, s); ¹³C NMR (175 MHz, (CD₃)₂SO, 80 °C) δ 150.1, 149.6, 140.9, 140.8, 139.0, 134.6, 133.7, 132.2, 131.6, 131.5, 131.0, 130.8, 129.6, 128.7₃, 128.7₀, 128.3, 128.2, 127.9, 127.6, 127.5, 126.9, 126.8, 126.5, 124.6, 124.5, 123.4, 123.0, 117.7, 64.3, 53.5, 33.9, 30.7; IR (neat): 3055, 2960, 1618, 1484, 1447, 1401, 1237, 1128, 1027, 899, 753 cm⁻¹; HRMS (FAB) Calcd for C₄₀H₄₀NO⁺ ([M-X]⁺) 550.3104. Found 550.3105.

9'e (Ar¹ = *p*-Mes-C₆H₄, Ar² = Ph): ¹H NMR (700 MHz, (CD₃)₂SO, 80 °C) δ 8.80 (1H, brs), 8.19 (1H, s), 8.14 (1H, d, *J* = 7.7 Hz), 8.13 (1H, s), 8.07 (1H, d, *J* = 7.7 Hz), 7.79 (2H, d, *J* = 7.7 Hz), 7.67 (2H, d, *J* = 7.7 Hz), 7.66 (1H, t, *J* = 7.7 Hz), 7.63 (2H, t, *J* = 7.7 Hz), 7.54 (1H, t, *J* = 7.7 Hz), 7.45 (1H, t, *J* = 7.7 Hz), 7.42 (1H, t, *J* = 7.7 Hz), 7.36 (1H, t, *J* = 7.7 Hz), 7.29 (1H, d, *J* = 7.7 Hz), 7.25 (2H, d, *J* = 7.7 Hz), 6.96₄ (2H, s), 6.95₆ (1H, d, *J* = 7.7 Hz), 4.90 (1H, br), 4.54 (1H, br), 2.56 (9H, brs), 2.30 (3H, s), 2.05 (6H, s); ¹³C NMR (175 MHz, (CD₃)₂SO, 80 °C) δ 150.0, 140.9, 140.8, 139.4, 138.9, 137.9, 135.8, 135.5, 134.7, 133.7, 132.3, 131.5, 131.0₃, 130.9₈, 129.6, 129.0, 128.7, 128.6, 128.4, 128.3, 127.9, 127.6, 127.5₃, 127.4₇, 127.0, 126.9, 126.5, 124.5, 123.4, 123.2, 117.8, 64.3, 53.5, 20.1, 19.9, one carbon was not found probably due to overlapping; IR (neat): 3012, 2922, 1615, 1482, 1434, 1236, 1126, 1004, 847, 753 cm⁻¹; HRMS (FAB) Calcd for C₄₅H₄₂NO⁺ ([M-X]⁺) 612.3266. Found 612.3293.

9'f (Ar¹ = *p*-Tip-C₆H₄, Ar² = Ph): ¹H NMR (700 MHz, (CD₃)₂SO, 80 °C) δ 8.85 (1H, brs), 8.22 (1H, s), 8.14 (1H, d, J = 7.7 Hz), 8.13 (1H, s), 8.08 (1H, d, J = 7.7 Hz), 7.78 (2H, d, J = 7.7 Hz), 7.67 (2H, d, J = 7.7 Hz), 7.66 (1H, t, J = 7.7 Hz), 7.63 (2H, t, J = 7.7 Hz), 7.54 (1H, t, J = 7.7 Hz), 7.45 (1H, t, J = 7.7 Hz), 7.42 (1H, t, J = 7.7 Hz), 7.36 (1H, t, J = 7.7 Hz), 7.31-7.26 (3H, m), 7.10 (2H, s), 6.95 (1H, d, J = 7.7 Hz), 4.89 (1H, br), 4.59 (1H, br), 2.95 (1H, sept, J = 7.0 Hz), 2.71 (2H, sept, J = 7.0 Hz), 2.56 (9H, brs), 1.29 (6H, d, J = 7.0 Hz), 1.10 (12H, d, J = 7.0 Hz); ¹³C NMR (175 MHz, (CD₃)₂SO, 80 °C) δ 150.0, 147.2, 145.7, 140.9₂, 140.8₆, 139.2, 138.8, 136.1, 135.8, 133.7, 132.4,

131.5, 131.0, 129.6, 129.0, 128.7, 128.6, 128.4, 128.3, 127.9, 127.6, 127.5, 127.0, 126.9, 126.5, 124.6, 123.4, 123.1, 119.8, 117.8, 64.3, 53.5, 33.1, 29.3₇, 29.3₆, 23.6, 23.4, two carbons were not found probably due to overlapping; IR (neat): 2959, 2868, 1618, 1469, 1361, 1217, 1128, 1005, 877, 752 cm⁻¹; HRMS (FAB) Calcd for $C_{51}H_{54}NO^+$ ([M-X]⁺) 696.4205. Found 696.4221.

Representative procedure for preparation of 1: A solution of **9'f** (ca. 0.1 mmol) in EA (5.0 mL) was washed with 0.1 M NaHCO₃ aqueous solution (20.0 mL) three times. The resulting yellow organic phase was dried over Na₂SO₄, filtered, and concentrated to furnish crude betaine. Washing it with ether on a funnel followed by drying under vacuum afforded **1f** as a yellow powder (57.0 mg, 0.082 mmol, 82%).

1a (Ar¹ = Ph, Ar² = Ph): 74% yield (3 steps). ¹H NMR (700 MHz, CD₃OD) δ 7.95 (br), 7.94 (br), 7.90 (br), 7.82 (br), 7.72 (d, *J* = 7.7 Hz), 7.67 (br), 7.58 (br), 7.53 (t, *J* = 7.7 Hz), 7.48 (br), 7.38 (br), 7.26 (d, *J* = 7.7 Hz), 7.11 (br), 6.98 (br), 6.63 (br), 5.10 (d, *J* = 14.0 Hz), 4.98 (br), 4.94 (d, *J* = 14.0 Hz), 4.45 (br), 2.63 (br), 2.34 (br); IR (KBr): 3025, 1605, 1582, 1487, 1424, 1391, 1227, 969, 887, 759 cm⁻¹; HRMS (FAB) Calcd for C₃₆H₃₂NO⁺ ([M+H]⁺) 494.2484. Found 494.2477.

1b (Ar¹ = Ph, Ar² = Cl): 76% yield (3 steps). ¹H NMR (300 MHz, CD₃OD) δ 8.22 (br), 7.95 (br), 7.93 (br), 7.87 (br), 7.76 (br), 7.72 (br), 7.59 (t, *J* = 7.5 Hz), 7.40 (t, *J* = 7.5 Hz), 7.29 (t, *J* = 7.5 Hz), 7.09 (br), 6.62 (br), 6.51 (br), 4.98-4.76 (br), 4.41 (br), 3.08 (br), 2.83 (br); IR (KBr): 3021, 1608, 1583, 1487, 1421, 1281, 1150, 975, 880, 748 cm⁻¹; HRMS (FAB) Calcd for C₃₀H₂₇NOCl⁺ ([M+H]⁺) 452.1781. Found 452.1784.

1c (Ar¹ = Ph, Ar² = p^{-t} Bu-C₆H₄): 72% yield (3 steps). ¹H NMR (700 MHz, CD₃OD) δ 8.55 (br), 7.97 (d, J = 8.4 Hz), 7.96 (br), 7.92 (br), 7.87 (br), 7.81 (br), 7.76 (br), 7.70 (br), 7.68 (d, J = 8.4 Hz), 7.64 (br), 7.58 (br), 7.57 (d, J = 8.4 Hz), 7.45 (d, J = 8.4 Hz), 7.44-7.36 (m), 7.36-7.32 (m), 7.30 (br), 7.22 (br), 7.16 (br), 7.04 (br), 6.77 (br), 6.68 (br), 5.16 (d, J = 14.7 Hz), 5.10 (d, J = 14.7 Hz), 4.38 (d, J = 14.7 Hz), 2.63 (brs), 2.35 (brs), 1.40 (s); IR (KBr): 2961, 1609, 1486, 1416, 1386, 1224, 889, 750 cm⁻¹; HRMS (FAB) Calcd for C₄₀H₄₀NO⁺ ([M+H]⁺) 550.3110. Found 550.3105.

1d (Ar¹ = p-^{*t*}Bu-C₆H₄, Ar² = Ph): 78% yield (3 steps). ¹H NMR (500 MHz, CD₃OD) δ 7.97 (br), 7.96 (br), 7.94 (br), 7.90 (br), 7.82 (br), 7.75 (br), 7.71 (d, J = 7.5 Hz), 7.67 (br), 7.58 (br), 7.54 (t, J = 7.5 Hz), 7.49 (br), 7.43 (d, J = 7.5 Hz), 7.38 (br), 7.28 (br), 7.10 (br), 6.98 (br), 6.63 (br), 5.10 (d, J = 13.0 Hz), 5.04-4.91 (br), 4.45 (br), 2.62 (br), 2.34 (br), 1.36 (s); IR (KBr): 3025, 2959, 1607, 1583, 1486, 1425, 1203, 1151, 891, 831, 756 cm⁻¹; HRMS (FAB) Calcd for C₄₀H₄₀NO⁺ ([M+H]⁺) 550.3110. Found 550.3113.

1e (Ar¹ = *p*-Mes-C₆H₄, Ar² = Ph): 81% yield (3 steps). ¹H NMR (500 MHz, CD₃OD) δ 7.99 (br), 7.97 (br), 7.96 (br), 7.92 (br), 7.85 (br), 7.77 (br), 7.69 (br), 7.59 (br), 7.50 (br), 7.39 (br), 7.29 (br), 7.14 (d, *J* = 7.5 Hz), 7.06 (br), 7.01 (br), 6.92 (s), 6.66 (br), 5.13 (d, *J* = 14.0 Hz), 5.03 (br), 4.95 (d, *J* = 14.0 Hz), 4.47 (br), 2.66 (br), 2.37 (br),

2.30 (s), 2.04 (s); IR (KBr): 3023, 1606, 1581, 1483, 1425, 1389, 1279, 1150, 1003, 835, 745 cm⁻¹; HRMS (FAB) Calcd for $C_{45}H_{42}NO^+$ ([M+H]⁺) 612.3266. Found 612.3237.

1f (Ar¹ = *p*-Tip-C₆H₄, Ar² = Ph): 82% yield (3 steps). ¹H NMR (500 MHz, CD₃OD) δ 7.98 (br), 7.96 (br), 7.93 (br), 7.82 (br), 7.79 (br), 7.68 (br), 7.59 (br), 7.57 (br), 7.51 (br), 7.41 (br), 7.31 (br), 7.18 (d, *J* = 8.0 Hz), 7.06 (s), 7.02 (br), 6.73 (br), 6.67 (br), 5.13 (d, *J* = 14.5 Hz), 5.04 (br), 4.93 (d, *J* = 14.5 Hz), 4.45 (br), 2.92 (sept, *J* = 7.0 Hz), 2.78 (br), 2.67 (br), 2.37 (br), 1.29 (d, *J* = 7.0 Hz), 1.09 (d, *J* = 7.0 Hz); IR (KBr): 3020, 2958, 1605, 1581, 1468, 1426, 1389, 1203, 838, 747 cm⁻¹; HRMS (FAB) Calcd for C₅₁H₅₄NO⁺ ([M+H]⁺) 696.4205. Found 696.4221.

(2) Preparation of Boronic Acid B1:

Conversion of B2 to B3: Title compound was prepared from known intermediate **B2**⁸ according to the literature procedure.⁹ **B3:** ¹H NMR (500 MHz, CDCl₃) δ 7.87 (2H, d, J = 7.5 Hz), 7.63 (2H, d, J = 7.5 Hz), 7.12 (2H, t, J = 7.5 Hz), 7.04 (2H, d, J = 7.5 Hz), 6.39 (2H, d, J = 7.5 Hz), 6.03 (2H, s), 1.36 (12H, s); ¹³C NMR (126 MHz, CDCl₃) δ 141.1, 136.5, 134.5, 130.8, 127.7, 120.0, 118.0, 106.2, 84.1, 25.0, the boron-bound carbons were not detected due to quadrupolar relaxation; IR (KBr): 3424, 3372, 2979, 1600, 1528, 1392, 1360, 1321, 1235, 1141, 1094, 768 cm⁻¹.

Conversion of B3 to B4: Title compound was prepared according to the procedure for the synthesis of **9**. **B4:** ¹H NMR (500 MHz, CDCl₃) δ 7.67 (2H, d, *J* = 7.5 Hz), 7.27 (2H, d, *J* = 7.5 Hz), 7.14 (2H, t, *J* = 7.5 Hz), 7.08 (2H, s), 7.06 (2H, d, *J* = 7.5 Hz), 6.41 (2H, d, *J* = 7.5 Hz), 6.08 (2H, s), 2.95 (1H, sept, *J* = 7.0 Hz), 2.60 (2H, sept, *J* = 7.0 Hz), 1.32 (6H, d, *J* = 7.0 Hz), 1.10 (12H, d, *J* = 7.0 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 148.2, 146.5, 143.3, 141.3, 136.9, 136.5, 131.3, 129.9, 127.8, 120.7, 120.0, 117.9, 106.1, 34.4, 30.5, 24.4, 24.2, the boron-bound carbon was not detected due to quadrupolar relaxation; IR (KBr): 3419, 2959, 2867, 2586, 1588, 1525, 1466, 1399, 1361, 1319, 1260, 1089, 1005, 818 cm⁻¹; HRMS (FAB) Calcd for C₃₁H₃₅N₂B⁺ ([M+H]⁺) 446.2899, Found 446.2896.

⁸ H. Noguchi, K. Hojo, M. Suginome J. Am. Chem. Soc., 2007, **129**, 758.

⁹ N. A. Powell, F. L. Ciske, C. Cai, D. D. Holsworth, K. Mennen, C. A. Van Huis, M. Jalaie, J. Day, M. Mastronardi, P. McConnell, I. Mochalkin, E. Zhang, M. J. Ryan, J. Bryant, W. Collard, S. Ferreira, C. Gu, R. Collins, J. J. Edmunds *Bioorg. Med. Chem.*, 2007, 15, 5912.

Conversion of B4 to B1: Title compound was prepared according to the literature procedure.⁷ **B1:** ¹H NMR (500 MHz, (CD₃)₂CO) δ 7.94 (2H, d, *J* = 8.0 Hz), 7.18 (2H, br), 7.17 (2H, d, *J* = 8.0 Hz), 7.11 (2H, s), 2.95 (1H, sept, *J* = 7.0 Hz), 2.60 (2H, sept, *J* = 7.0 Hz), 1.29 (6H, d, *J* = 7.0 Hz), 1.06 (12H, d, *J* = 7.0 Hz); ¹³C NMR (126 MHz, (CD₃)₂CO) δ 148.7, 147.0, 143.9, 138.1, 134.8, 129.8, 121.2, 35.1, 31.0, 24.5, 24.4, the boron-bound carbon was not detected due to quadrupolar relaxation; IR (KBr): 3387, 2961, 2869, 1705, 1609, 1461, 1359, 1259, 1102, 1005 cm⁻¹.

(3) Characterization of 2-Alkoxythiazol-5(4*H*)-one 10: A series of 2-Alkoxythiazol-5(4*H*)-one 10 was prepared by following the literature method.²

 $\begin{array}{c} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$

IR (neat): 1752, 1631, 1454, 1368, 1247, 1196, 1092, 1068, 908, 753 cm⁻¹; HRMS (FAB) Calcd for $C_{16}H_{14}NO_2S^+$ ([M+H]⁺) 284.0745. Found 284.0749.

Clock of the NMR (500 MHz, CDCl₃) δ 7.47 (2H, d, J = 7.5 Hz), 7.44-7.37 (3H, m), 7.31 (2H, d, J = 8.5 Hz), 7.17 (2H, d, J = 8.5 Hz), 5.57 (1H, d, J = 12.0 Hz), 5.56 (1H, s), 5.51 (1H, d, J = 12.0 Hz); 13C NMR (126 MHz, CDCl₃) δ 204.1, 162.4, 135.0, 134.7, 133.2, 129.0, 128.9₃, 128.8₆, 128.7, 128.1, 82.8, 71.6; IR (neat): 1733, 1633, 1488, 1455, 1246, 1193, 1085, 1013, 903, 741 cm⁻¹; HRMS

(FAB) Calcd for $C_{16}H_{13}NO_2SCl^+$ ([M+H]⁺) 318.0356. Found 318.0355.

10c: ¹H NMR (500 MHz, CDCl₃) δ 7.42-7.33 (5H, m), 7.26-7.19 (3H, m), 7.15-7.12 (2H, m), Solve the set of the se

(4) Representative procedure for catalytic asymmetric Mannich-type reaction of 2-alkoxythiazol-5(4*H*)-one: To a solution of 1f (1.39 mg, 0.002 mmol) and 10a (56.7 mg, 0.20 mmol) in Et₂O (2 mL) was added benzaldehyde *N*-Boc imine (45.2 mg, 0.22 mmol) at -40 °C under argon atmosphere. After 15 min of stirring, a 0.5 M solution of trifluoroacetic acid in toluene (20.0 µL) was introduced to the reaction mixture. The resulting solution was poured into ice-cooled 1 M HCl aqueous solution and the aqueous phase was extracted with EA twice. The combined organic phases were washed with brine and dried over Na₂SO₄. After concentration to give the crude residue, the diastereomeric ratio of the product was determined by ¹H NMR analysis (500 MHz). Silica gel column chromatography using H/EA solvent system (H/EA = 10:1-5:1 as eluent) afforded **11a** (94.9 mg) as a mixture of diastereomers in 97% yield (*anti/syn* = 10:1) and the enantiomeric excess was measured by HPLC analysis. **11a:** HPLC: AD-H, H/EtOH = 32:1, flow rate = 1.0 mL/min, λ = 210 nm, 5.3 min (minor *anti* isomer), ^{Boc} NH O S.7 min (major *anti* isomer), 6.4 min (major *syn* isomer), 24.4 min (minor *syn* isomer), Absolute and relative configurations were assigned by derivatization to **13** (see below); ¹H NMR (500 MHz, (CD₃)₂CO) for major *anti* isomer δ 7.69-7.64 (2H, m), 7.58 (2H, d, *J* = 7.5 Hz), 7.49 (2H, t, *J* = 7.5 Hz), 7.45 (1H, t, *J* = 7.5 Hz), 7.40-7.31 (5H, m), 7.31-7.26 (3H, m), 6.42 (1H, d, *J* = 10.0 Hz), 5.82 (1H, d, *J* = 12.0 Hz), 5.78 (1H, d, *J* = 12.0 Hz), 5.72 (1H, d, *J* = 10.0 Hz), 1.18 (9H, s); ¹³C NMR (126 MHz, (CD₃)₂CO) for major *anti* isomer δ 206.4, 161.9, 155.6, 138.4, 137.1, 136.6, 129.8, 129.7, 129.5, 129.3, 129.1, 128.7, 128.6,

127.5, 94.2, 79.3, 72.5, 61.4, 28.4, one carbon was not found probably due to overlapping; IR (neat): 3438, 3017, 2979, 1712, 1635, 1494, 1367, 1217, 1169, 1076, 755 cm⁻¹; HRMS (FAB) Calcd for $C_{28}H_{29}N_2O_4S^+$ ([M+H]⁺) 489.1848. Found 489.1866.

Boc NH O F C NH O C NH O C NH O C NH O C NH C SOU MHZ. (CD₃)₂CO) for major *anti* isomer), 9.6 min (minor *anti* isomer), 15.0 min (minor *syn* isomer), 29.1 min (major *syn* isomer), 4bsolute and relative configurations were assigned on the analogy of **11a**; ¹H NMR (500 MHz, (CD₃)₂CO) for major *anti* isomer δ 7.68-7.64 (2H, m), 7.60 (2H, d, J = 7.0 Hz), 7.51 (2H, t, J = 7.0 Hz), 7.46 (1H, t, J = 7.0 Hz), 7.42-7.30 (5H, m), 7.05 (2H, t, J = 8.5 Hz), 6.45 (1H, d, J = 9.5 Hz), 5.83 (1H, d, J = 12.0 Hz), 5.78 (1H, d, J = 12.0 Hz), 5.71 (1H, d, J = 9.5 Hz), 1.18 (9H, s); ¹³C NMR (126 MHz, (CD₃)₂CO) for major *anti* isomer δ 206.4, 163.0 (d, $J_{F-C} = 262.5$ Hz), 162.1, 155.5, 136.9, 136.6, 134.6 (d, $J_{F-C} = 3.8$ Hz), 131.8 (d, $J_{F-C} = 8.4$ Hz), 129.7, 129.58, 129.56, 129.3, 129.1, 127.4, 115.4 (d, $J_{F-C} = 21.4$ Hz), 94.1, 79.4, 72.6, 60.7, 28.3; IR (neat): 3439, 2978, 1714, 1635, 1510, 1393, 1367, 1226, 1161, 752 cm⁻¹; HRMS (FAB) Calcd for C₂₈H₂₈N₂O₄SF⁺ ([M+H]⁺) 507.1754. Found 507.1766.

Boc NH o Ph^N N= O_{Bn} 11c: HPLC: IA, H/IPA = 32:1, flow rate = 0.5 mL/min, $\lambda = 254$ nm, 7.7 min (minor *anti* isomer), 8.0 min (major *anti* isomer), 10.6 min (minor *syn* isomer), 23.0 min (major *syn* isomer), 80 min (major *anti* isomer), 10.6 min (minor *syn* isomer), 23.0 min (major *syn* isomer), Absolute and relative configurations were assigned on the analogy of 11a; ¹H NMR (500 MHz, C₆D₆) for major *anti* isomer δ 7.77 (2H, d, J = 7.5 Hz), 7.19 (2H, t, J = 7.5 Hz), 7.15-7.06 (8H, m), 6.76 (2H, d, J = 8.5 Hz), 5.97 (1H, d, J = 9.5 Hz), 5.46 (1H, d, J = 9.5 Hz), 5.08 (1H, d, J = 12.0 Hz), 4.91 (1H, d, J = 12.0 Hz), 1.22 (9H, s); ¹³C NMR (126 MHz, C₆D₆) for major *anti* isomer δ 204.5, 162.8, 154.8, 136.8, 136.4, 135.5, 131.4, 130.8, 129.0_0, 128.9_7, 128.9_1, 128.8_7, 126.8, 122.3, 93.1, 79.6, 71.5, 60.5, 28.2, one carbon was not found probably due to overlapping; IR (neat): 3436, 3016, 2979, 1712, 1634, 1488, 1368, 1217, 1166, 1074, 756 cm⁻¹; HRMS (FAB) Calcd for C₂₈H₂₈N₂O₄SBr⁺ ([M+H]⁺) 569.0936. Found 569.0935.

11a; ¹H NMR (500 MHz, (CD₃)₂CO) for major *anti* isomer δ 7.67-7.64 (2H, m), 7.58 (2H, d, J = 7.5 Hz), 7.49 (2H,

t, J = 7.5 Hz), 7.45 (1H, d, J = 7.5 Hz), 7.40-7.34 (3H, m), 7.22 (2H, d, J = 8.0 Hz), 7.10 (2H, d, J = 8.0 Hz), 6.37 (1H, d, J = 10.0 Hz), 5.82 (1H, d, J = 12.0 Hz), 5.78 (1H, d, J = 12.0 Hz), 5.67 (1H, d, J = 10.0 Hz), 2.29 (3H, s), 1.18 (9H, s); ¹³C NMR (126 MHz, (CD₃)₂CO) for major *anti* isomer δ 206.4, 161.8, 155.5, 138.1, 137.2, 136.6, 135.5, 129.7, 129.6, 129.5, 129.3, 129.2, 129.0, 128.9, 127.4, 94.3, 79.2, 72.4, 61.2, 28.4, 21.2; IR (neat): 3438, 3011, 2978, 1714, 1635, 1494, 1367, 1226, 1168, 1072, 756 cm⁻¹; HRMS (FAB) Calcd for C₂₉H₃₁N₂O₄S⁺ ([M+H]⁺) 503.2005. Found 503.1993.

11e: HPLC: IA, H/IPA/EtOH = 98.5:0.5:1, flow rate = 0.5 mL/min, λ = 210 nm, 14.5 min (minor *anti* isomer), 16.2 min (major *anti* isomer), 18.5 min (major *syn* isomer), 23.6 min (minor *syn* isomer), Absolute and relative configurations were assigned on the analogy of

11a; ¹H NMR (500 MHz, C₆D₆) for major *anti* isomer δ 7.77 (2H, d, J = 8.0 Hz), 7.57 (1H, s), 7.23-7.14 (6H, m), 7.14-7.08 (3H, m), 7.01 (1H, d, J = 7.5 Hz), 6.60 (1H, t, J = 7.5 Hz), 6.06 (1H, d, J = 9.5 Hz), 5.54 (1H, d, J = 9.5 Hz), 5.11 (1H, d, J = 11.5 Hz), 5.04 (1H, d, J = 11.5 Hz), 1.21 (9H, s); ¹³C NMR (126 MHz, C₆D₆) for major *anti* isomer δ 204.6, 162.9, 154.8, 140.2, 136.3, 135.2, 131.9, 131.3, 129.9, 129.1, 129.0, 128.9₃, 128.8₇, 126.9, 122.3, 93.1, 79.7, 71.9, 60.7, 28.2, two carbons were not found probably due to overlapping; IR (neat): 3434, 3014, 2978, 1714, 1634, 1493, 1367, 1225, 1166, 1074, 755 cm⁻¹; HRMS (FAB) Calcd for C₂₈H₂₈N₂O₄SBr⁺ ([M+H]⁺) 569.0936. Found 569.0911.

11f: HPLC: AD-H, H/IPA = 10:1, flow rate = 0.5 mL/min, λ = 210 nm, 10.5 min (minor *anti* isomer), 11.4 min (major *anti* isomer), 15.5 min (minor *syn* isomer), 20.5 min (major *syn* isomer), Absolute and relative configurations were assigned on the analogy of

^{OBn} (hills) by it isometry, resolute and retained configurations were assigned on the analogy of **11a**; ¹H NMR (500 MHz, (CD₃)₂CO) for major *anti* isomer δ 7.67-7.65 (2H, m), 7.56 (2H, d, *J* = 7.5 Hz), 7.48 (2H, t, *J* = 7.5 Hz), 7.43 (1H, t, *J* = 7.5 Hz), 7.40-7.32 (3H, m), 7.22 (1H, t, *J* = 7.5 Hz), 7.09 (1H, s), 6.93 (1H, d, *J* = 7.5 Hz), 6.86 (1H, d, *J* = 7.5 Hz), 6.52 (1H, d, *J* = 10.0 Hz), 5.82 (1H, d, *J* = 12.0 Hz), 5.79 (1H, d, *J* = 12.0 Hz), 5.72 (1H, d, *J* = 10.0 Hz), 3.80 (3H, s), 1.18 (9H, s); ¹³C NMR (126 MHz, (CD₃)₂CO) for major *anti* isomer δ 206.4, 161.8, 160.2, 155.6, 140.0, 137.1, 136.4, 129.7, 129.6, 129.5, 129.2, 129.0, 128.9, 127.5, 122.1, 115.6, 114.1, 94.2, 79.2, 72.5, 61.5, 55.6, 28.4; IR (neat): 3440, 3014, 2978, 1713, 1636, 1493, 1257, 1219, 1174, 1072, 756 cm⁻¹; HRMS (FAB) Calcd for C₂₉H₃₁N₂O₅S⁺ ([M+H]⁺) 519.1954. Found 519.1974.

Boc NH O NH O Ph^N N= S_{OBn} 11g: HPLC: AD-H, H/IPA = 10:1, flow rate = 0.5 mL/min, λ = 210 nm, 10.6 min (major *anti* isomer), 11.7 min (minor *anti* isomer), 20.7 min (minor *syn* isomer), 33.7 min (major *syn* isomer), Absolute and relative configurations were assigned on the analogy of **11a**; ¹H NMR (500 MHz, C₆D₆) for major *anti* isomer δ 7.78 (2H, d, *J* = 7.5 Hz), 7.18 (2H, t, *J* = 7.5 Hz), 7.16-7.05 (6H, m), 7.02 (1H, s), 6.91 (1H, s), 6.09 (1H, d, *J* = 10.0 Hz), 5.99 (1H, s), 5.32 (1H, d, *J* = 10.0 Hz), 5.09 (1H, d, *J* = 12.0 Hz), 4.99 (1H, d, *J* = 12.0 Hz), 1.22 (9H, s); ¹³C NMR (126 MHz, C₆D₆) for major *anti* isomer δ 204.8, 162.7, 154.8, 143.0, 141.3, 136.3, 135.5, 128.9, 128.7, 128.6, 126.9, 122.8, 110.2, 93.5, 79.4, 71.4, 53.8, 28.2, two carbons were not found probably due to overlapping; IR (neat): 3430, 2978, 1723, 1636, 1495, 1367, 1256, 1223, 1166, 1072, 754 cm⁻¹; HRMS (FAB) Calcd for C₂₆H₂₇N₂O₅S⁺ ([M+H]⁺) 479.1641. Found 479.1632.

11h: HPLC: AD-H, H/IPA = 10:1, flow rate = 0.5 mL/min, λ = 210 nm, 11.1 min (minor *anti* isomer), 11.8 min (major *anti* isomer), 16.5 min (minor *syn* isomer), 54.4 min (major *syn* isomer), Absolute and relative configurations were assigned on the analogy of **11a**; ¹H

NMR (500 MHz, CD₃OD) for major *anti* isomer δ 7.79-7.71 (3H, m), 7.70-7.64 (3H, m), 7.50-7.24 (11H, m), 5.81 (1H, s), 5.69 (1H, d, J = 11.5 Hz), 5.66 (1H, d, J = 11.5 Hz), 1.19 (9H, s), N-H proton was not found probably due to deuteration; ¹³C NMR (126 MHz, CD₃OD) for major *anti* isomer δ 207.0, 162.6, 157.1, 137.5, 136.8, 135.8, 134.3, 134.1, 129.8, 129.7, 129.6, 129.4, 129.1, 128.6, 128.5, 127.7, 127.4, 127.3, 127.2, 94.5, 80.6, 72.8, 62.3, 28.5, two carbons were not found probably due to overlapping; IR (neat): 3426, 2977, 1712, 1634, 1494, 1392, 1367, 1255, 1176, 1072, 751 cm⁻¹; HRMS (FAB) Calcd for C₃₂H₃₁N₂O₄S⁺ ([M+H]⁺) 539.2005. Found 539.1997.

11i: HPLC: AD-H, H/EtOH = 32:1, flow rate = 1.0 mL/min, λ = 210 nm, 6.8 min (minor *anti* isomer), 7.3 min (major *anti* isomer), 9.4 min (major *syn* isomer), 16.4 min (minor *syn* isomer), Absolute and relative configurations were assigned on the analogy of **11a**; ¹H NMR (500 MHz,

^{Cl} (CD₃)₂CO) for major *anti* isomer δ 7.68 (2H, d, J = 9.0 Hz), 7.58 (2H, d, J = 7.0 Hz), 7.50 (2H, t, J = 7.0 Hz), 7.45 (1H, t, J = 7.0 Hz), 7.39 (2H, d, J = 9.0 Hz), 7.36 (2H, d, J = 7.0 Hz), 7.32-7.28 (3H, m), 6.55 (1H, d, J = 10.5 Hz), 5.82 (1H, d, J = 12.0 Hz), 5.78 (1H, d, J = 12.0 Hz), 5.67 (1H, d, J = 10.5 Hz), 1.19 (9H, s); ¹³C NMR (126 MHz, (CD₃)₂CO) for major *anti* isomer δ 206.3, 162.0, 155.6, 138.0, 136.5, 136.1, 134.9, 129.8, 129.6₃, 129.5₆, 129.5, 129.4, 129.0, 128.7, 93.8, 79.4, 72.6, 61.8, 28.3, one carbon was not found probably due to overlapping; IR (neat): 3433, 3033, 2978, 1714, 1634, 1491, 1367, 1227, 1166, 1095, 754 cm⁻¹; HRMS (FAB) Calcd for C₂₈H₂₈N₂O₄SCI⁺ ([M+H]⁺) 523.1458. Found 523.1446.

11j: HPLC: AD-H, H/IPA = 10:1, flow rate = 0.5 mL/min, λ = 210 nm, 10.1 min (minor *anti* isomer), 10.8 min (major *anti* isomer), 14.7 min (major *syn* isomer), 28.4 min (minor *syn* isomer), Absolute and relative configurations were assigned on the analogy of **11a**; ¹H NMR

(500 MHz, (CD₃)₂CO) for major *anti* isomer δ 7.52-7.32 (6H, m), 7.24-7.16 (7H, m), 7.14-7.08 (2H, m), 6.76 (1H, d, J = 10.0 Hz), 5.64 (1H, d, J = 12.0 Hz), 5.61 (1H, d, J = 12.0 Hz), 5.24 (1H, d, J = 10.0 Hz), 3.48 (1H, d, J = 13.0 Hz), 3.28 (1H, d, J = 13.0 Hz), 1.43 (9H, s); ¹³C NMR (126 MHz, (CD₃)₂CO) for major *anti* isomer δ 208.3, 161.9, 156.2, 138.6, 136.7, 135.6, 131.5, 129.7, 129.5, 129.3, 128.7, 128.5, 127.6, 93.7, 79.7, 72.0, 60.9, 42.6, 28.6, two carbons were not found probably due to overlapping; IR (neat): 3426, 3032, 2979, 1715, 1633, 1495, 1367, 1218, 1166, 754 cm⁻¹; HRMS (FAB) Calcd for C₂₉H₃₁N₂O₄S⁺ ([M+H]⁺) 503.2005. Found 503.1992.

(5) Derivatization of 11a:

Procedure for derivatization of 11a to 12: A solution of **11a** (*anti/syn* = 10:1, 99% ee for *anti* isomer) (24.9 mg, 0.0533 mmol) in THF (5.3 mL) was treated with 30% H_2O_2 aqueous solution (315.0 µL) and a 1.0 M LiOH aqueous solution (530.0 µL, 0.53 mmol) at room temperature for 20 h. Then, a saturated aqueous solution of Na₂SO₃ was added until peroxides were completely reduced. The resulting mixture was acidified with 2 M KHSO₄ aqueous solution and extracted with EA twice. The organic extracts were dried over Na₂SO₄ and evaporated under reduced pressure to give the crude carboxylic acid. In the presence of K₂CO₃ (29.3 mg, 0.212

mmol), MeI (7 µL, 0.106 mmol) was added to a solution of the obtaining acid in DMF (0.18 mL) at 0 °C, and the mixture was stirred for 1 h at room temperature. The reaction mixture was diluted with H₂O and extracted with ether twice. After concentration of the organic extracts, purification of the residue by column chromatography on silica gel (H/EA = 10:1-3:1 as eluent) gave diastereomerically pure **12** as a white solid (17.8 mg, 0.0353 mmol, 66% in two steps) without loss of the enantiomeric purity. **12:** HPLC: AD-H, H/EtOH = 19:1, flow rate = 1.0 mL/min, $\lambda = 210$ nm, 6.9 min (major isomer), 8.1 min (minor isomer); ¹H NMR (500 MHz, CDCl₃) δ 7.61 (1H, d, J = 8.5 Hz), 7.51 (2H, d, J = 7.5 Hz), 7.43-7.30 (8H, m), 7.25-7.20 (3H, m), 7.12 (2H, dd, J = 7.5, 2.0 Hz), 6.41 (1H, s), 6.22 (1H, d, J = 8.5 Hz), 5.22 (1H, d, J = 12.5 Hz), 5.07 (1H, d, J = 12.5 Hz), 3.71 (3H, s), 1.37 (9H, s); ¹³C NMR (126 MHz, CDCl₃) δ 171.1, 156.2, 156.1, 138.8, 136.3₀, 136.2₈, 128.7, 128.6, 128.5, 128.3, 127.9, 127.4, 127.3, 79.4, 70.6, 67.4, 59.0, 53.9, 28.6; IR (neat): 3395, 2978, 1713, 1504, 1455, 1366, 1269, 1168, 1053, 730 cm⁻¹; [α]_D²⁸ -45.4° (c = 0.55, CHCl₃); HRMS (FAB) Calcd for C₂₉H₃₃N₂O₆⁺ ([M+H]⁺) 505.2339. Found 505.2331.

Preparation of 13 from 11a: Treatment of **11a** (*anti/syn* = 10:1, 99% ee for *anti* isomer) with 1 M HCl methanolic solution at room temperature for 30 min followed by purification by silica gel column chromatography (H/EA = 5:1-1:1 as eluent) furnished **13** as a white solid. **13:** ¹H NMR (500 MHz, CD₃OD) for major *anti* isomer δ 7.68 (2H, d, *J* = 7.5 Hz), 7.46 (2H, t, *J* = 7.5 Hz), 7.41 (1H, t, *J* = 7.5 Hz), 7.39-7.34 (3H, m), 7.32 (2H, d, *J* = 7.5 Hz), 6.93 (1H, d, *J* = 9.5 Hz), 5.82 (1H, br), 1.23 (9H, s) , a N-H proton was not found probably due to deuteration; ¹³C NMR (126 MHz, CD₃OD) for major *anti* isomer δ 199.5, 167.2, 156.8, 137.7, 136.7, 130.2, 129.9, 129.8, 129.5, 127.4, 82.7, 81.0, 60.9, 28.4, one carbon was not found probably due to overlapping; IR (neat): 3292, 2979, 1710, 1685, 1523, 1395, 1245, 1161, 1065, 753 cm⁻¹; HRMS (FAB) Calcd for C₂₁H₂₃N₂O₄S⁺ ([M+H]⁺) 399.1379. Found 399.1383.

Conversion of 13 to 14: To a solution of **13** (*anti/syn* = 10:1) obtained as above in MeCN was added 40% aqueous solution of MeNH₂ at room temperature and the mixture was stirred for 30 min. After concentration to remove all volatiles, **14** was isolated by silica gel column chromatography (CHCl₃/MeOH = 1:0-5:1 as eluent) in 92% yield (two steps) without loss of the enantiomeric purity. **14:** HPLC: IA, H/EtOH = 19:1, flow rate = 1.0 mL/min, λ = 210 nm, 11.5 min (major *syn* isomer), 16.5 min (minor *syn* isomer), 21.5 min (major *anti* isomer), 25.4 min (minor *anti* isomer); ¹H NMR (500 MHz, CD₃OD) for major *anti* isomer δ 7.75 (2H, d, *J* = 7.5 Hz), 7.41 (2H, d, *J* = 7.5 Hz), 7.38-7.30 (4H, m), 7.27 (2H, t, *J* = 7.5 Hz), 6.13 (1H, s), 2.50 (3H, s), 1.27 (9H, s), N-H protons were not

found probably due to deuteration; ¹³C NMR (126 MHz, CD₃OD) for major *anti* isomer δ 176.0, 157.6, 142.2, 140.4, 129.5, 129.3, 129.0, 128.6, 128.3, 127.6, 80.2, 68.7, 59.6, 28.7, 26.3; IR (neat): 3363, 2978, 1693, 1653, 1520, 1496, 1411, 1365, 1248, 1168, 881, 754 cm⁻¹; HRMS (FAB) Calcd for C₂₁H₂₈N₃O₃⁺ ([M+H]⁺) 370.2131. Found 370.2115.

Crystallographic Structure Determination:

Recrystallization of 1a: Recrystallization of 1a was achieved by using MeOH/toluene solvent system at -15 °C.

The single crystal thus obtained was mounted on CryoLoop. Data of X-ray diffraction were collected at 153 K on a Bruker SMART APEX CCD diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). An absorption correction was made using SADABS. The structure was solved by direct methods and Fourier syntheses, and refined by full-matrix least squares on F^2 by using SHELXTL.¹⁰ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed in calculated positions and isotropic thermal parameters refined. The crystallographic data were summarized in the following table.

Table S1. Crystal data and structure refinement for $1a \cdot 2MeOH \cdot H_2O$.

Empirical formula	C38 H41 N O4			
Formula weight	575.72			
Temperature	153(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	$P2_1$			
Unit cell dimensions	a = 11.552(5) Å	$\alpha = 90^{\circ}$.		
	b = 9.827(5) Å	$\beta = 109.875(11)^{\circ}$.		
	c = 14.569(7) Å	$\gamma = 90^{\circ}$.		
Volume	1555.4(13) Å ³			
Z	2			
Density (calculated)	1.229 Mg/m^3	1.229 Mg/m^3		
Absorption coefficient	0.079 mm^{-1}			
F(000)	616			
Crystal size	0.60 x 0.20 x 0.10 mm ³			
Theta range for data collection	1.49 to 28.39°.			
Index ranges	-15<=h<=15, -13<=k<=12, -14<=l<=19			
Reflections collected	11719			
Independent reflections	$6478 [R_{int} = 0.0329]$			
Completeness to theta = 28.39°	98.7 %	98.7 %		
Absorption correction	None	None		
Max. and min. transmission	0.9922 and 0.9543	0.9922 and 0.9543		
Refinement method	Full-matrix least-squa	Full-matrix least-squares on F ²		
Data / restraints / parameters	6478 / 1 / 399			
Goodness-of-fit on F ²	1.032			
Final R indices [I>2sigma(I)]	R1 = 0.0496, wR2 = 0	R1 = 0.0496, $wR2 = 0.1157$		
R indices (all data)	R1 = 0.0593, wR2 = 0	R1 = 0.0593, $wR2 = 0.1216$		
Largest diff. peak and hole	$0.291 \text{ and } -0.234 \text{ e.}\text{Å}^{-3}$	0.291 and -0.234 e.Å ⁻³		

¹⁰ Sheldrick, G. M. SHELXTL 5.1, Bruker AXS Inc., Madison, Wisconsin, 1997.

(a) Top view

(b) Front view

Figure S1. Molecular structure of 1a. All hydrogen atoms and solvent molecules are omitted for clarity. Blue = nitrogen, red = oxygen, black = carbon. The thermal ellipsoids of non-hydrogen atoms are shown at the 50% probability level.

Figure S2. Packing model of 1a. All hydrogen atoms except O-H protons are omitted for clarity. Blue = nitrogen, red = oxygen, black = carbon. The molecules form helical hydrogen-bonding network $(\dots H-O-H\dots O(Me)-H\dots O^{-}(1a)\dots H-O(Me)\dots H-O-H\dots).$

Recrystallization of *anti***-13:** Recrystallization of *anti***-13** was achieved by using CD₃OD as a solvent at room temperature.

The single crystal thus obtained was mounted on CryoLoop. Data of X-ray diffraction were collected at 153 K on a Bruker SMART APEX CCD diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). An absorption correction was made using SADABS. The structure was solved by direct methods and Fourier syntheses, and refined by full-matrix least squares on F^2 by using SHELXTL.¹⁰ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms bonded to nitrogen atoms were located from a difference synthesis and their coordinates and isotropic thermal parameters refined. The other hydrogen atoms were placed in calculated positions and isotropic thermal parameters refined. The crystallographic data were summarized in the following table.

Empirical formula	C21 H22 N2 O4 S1	C21 H22 N2 O4 S1	
Formula weight	398.47	398.47	
Temperature	153(2) K	153(2) K	
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	$P2_{1}2_{1}2_{1}$		
Unit cell dimensions	a = 11.7097(16) Å	$\alpha = 90^{\circ}$.	
	b = 16.840(2) Å	$\beta = 90^{\circ}$.	
	c = 21.042(3) Å	$\gamma = 90^{\circ}$.	
Volume	4149.2(10) Å ³		
Z	8	8	
Density (calculated)	1.276 Mg/m^3	1.276 Mg/m^3	
Absorption coefficient	0.184 mm^{-1}	0.184 mm ⁻¹	
F(000)	1680	1680	
Crystal size	$0.30 \ge 0.20 \ge 0.20 \text{ mm}^3$	$0.30 \ge 0.20 \ge 0.20 \text{ mm}^3$	
Theta range for data collection	1.55 to 28.33°.		
Index ranges	-15<=h<=15, -22<=k<=2	-15<=h<=15, -22<=k<=12, -28<=l<=27	
Reflections collected	31771	31771	
Independent reflections	$10322 [R_{int} = 0.0696]$	$10322 [R_{int} = 0.0696]$	
Completeness to theta = 28.33°	99.8 %	99.8 %	
Absorption correction	Empirical	Empirical	
Max. and min. transmission	0.9641 and 0.9468	0.9641 and 0.9468	
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²	
Data / restraints / parameters	10322 / 0 / 527	10322 / 0 / 527	
Goodness-of-fit on F ²	1.084	1.084	
Final R indices [I>2sigma(I)]	R1 = 0.0627, WR2 = 0.11	R1 = 0.0627, wR2 = 0.1196	
R indices (all data)	R1 = 0.0824, WR2 = 0.12	R1 = 0.0824, $wR2 = 0.1277$	
Absolute structure parameter	0.01(7)	0.01(7)	
Largest diff. peak and hole	$0.430 \text{ and } -0.224 \text{ e.}\text{\AA}^{-3}$		

 Table S2.
 Crystal data and structure refinement for anti-13.

Figure S3. Molecular structure of *anti*-13. Blue = nitrogen, red = oxygen, yellow = sulfur, black = carbon. The thermal ellipsoids of non-hydrogen atoms are shown at the 50% probability level.