Supporting Information

Alkoxy chains in ionic liquid anions; Effect of introducing ether oxygen into perfluoroalkylborate in physical and thermal properties

Naohiro Terasawa,^a Seiji Tsuzuki,^b Tatsuya Umecky,^c Yuria Saito^c and Hajime Matsumoto,^{*^c}

^a Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan. Fax: +72-751-8370; Tel: +72-751-7914; E-mail: <u>terasawa-naohiro@aist.go.jp</u>

^b Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan. Fax: +298-61-9288; Tel: +298-61-3171; E-mail: s.tsuzuki@aist.go.jp

^c Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan. Fax: +72-751-9622; Tel: +72-751-9426; E-mail: <u>h-matsumoto@aist.go.jp</u>

1.1. General

¹H, ¹⁹F, and ¹¹B NMR spectra were recorded on a JEOL ECA-500 FT-NMR spectrometer operating at 500.2, 470.6 and 160.5 MHz, respectively. FAB-MS were measured on a JEOL JMS-HX110/110A spectrometer. Elemental analysis (C, H and N) was carried out by the Center for Organic Elemental Microanalysis of Kyoto University.

1.2. Phase transition

Calorimetric measurements were performed on a differential scanning calorimeter (Perkin-Elmer Pyris 1 equipped with a liquid nitrogen cooling unit). The temperature calibration was performed with the following standard samples: *n*-pentane (melting point: -132.66 °C), cyclohexane (solid-solid transition: -87.06 °C; melting point: 6.54 °C), *n*-decane (melting point: -29.64 °C), benzoic acid (melting point: 122.37 °C), and

indium (melting point: 156.6 °C) used as reference. An average weight of 5-10 mg of each sample was hermetically sealed in an aluminum pan in a dry chamber (Daikin, dew point <-50 °C), and then heated and cooled, both at a rate of 10 °C min⁻¹, under a flow of helium gas. Temperature range was -150 °C ~ T_m + 20 °C. The glass transition temperature (T_g , onset of the heat capacity change), and melting point (T_m , onset of the endothermic peak), where appropriate, was recorded on heating in the second heating/cooling cycle for each salt.

1.3. Measurements of the density, viscosity, and conductivity

The following measurements for the room-temperature liquid salts were carried out in a dry chamber (Daikin, HRG-50 A, dew point <-50 °C). The density (ρ) was determined from the weight of 0.5 ml soaked up with an electric pipette at 25 °C. The density data in Table 1 is the average value from three measurements of each ILs. The reported value for the density is the average of three measurements. The dynamic viscosity (η) was examined by a programmable viscometer (Brookfield, LVDV-III+) at 25°C. The conductivity (κ) measurements were carried out using a computer-controlled Schlumberger Solartron 1260 impedance/gain-phase analyzer with a frequency range from 1 Hz to 1 MHz. Impedance data were analyzed by the complex impedance method. The measurement of the samples was carried out in a commercially available conductivity cell with platinum black electrode cells (Radiometer Analytical, CDC749, cell constant: 1.9 cm⁻¹).

1.4 Diffusion coefficient

Diffusion coefficients $(D_{\rm H}^{\rm obs}, D_{\rm F}^{\rm obs})$ of the ionic species were measured using the pulsed gradient spin–echo NMR (PGSE-NMR) technique with a JNM-ECP300W spectrometer. The $D_{\rm H}^{\rm obs}$ and the $D_{\rm F}^{\rm obs}$ were individually determined by the observation of the ¹H nuclei (300.5 MHz) in cation species and the ¹⁹F nuclei (282.7 MHz) in the anion species. In all measurements, the diffusion time was fixed at 50 ms.

2. Synthesis

All materials used are commercially available and were used without further purification.

2.1. *K*[*CF*₃*OCF*₂*CF*₂*BF*₃]

To a stirred solution of CF₃OCF₂CF₂I (15.8 g, 50.7 mmol) in anhydrous Et₂O (300 ml) was added dropwise PhMgBr (3.0M in Et₂O, 17.5 ml) for 1h at -78°C under N₂ atmosphere. After stirring for 1.5 h at -78°C, B(OCH₃)₃ (6.2 g, 60 mmol) was added for 10 min. The mixture was stirred continuously for 2 h at -78°C and subsequently warmed to room temperature for 2 h The resulted suspension poured to the pre-cooled solution (0°C) of 48 % aq. HF (100 ml) and vigorously stirred overnight. After saturation KF at 0°C, the ether phase was separated and the water phase was extracted Et₂O. The combined ether portions were treated with aq. KHCO₃ and dried. The solvents removed *in vacuo*. Recrystallization from MeOH/CHCl₃ gave the product. (7.7 g, 52.0 %)

¹⁹F NMR (CD₃OD, CFCl₃, 470.6 MHz) δ –54.9 (t, *J* = 10.8 Hz, 3F, CF₃), -88.4 (s, 2F, OCF₂), -136.4 (q, *J* = 19.5 Hz, 2F, OCF₂*CF*₂), -154.3 (q, *J* = 40.0 Hz, 3F, BF₃); ¹¹B NMR (CD₃OD, H₃BO₃, 160.5 MHz) δ -19.8 (m, 1B); MS m/z (%) 253 (100) [CF₃OCF₂CF₂BF₃]⁻, 545 (100) [2M-K]⁻; Anal Calcd. for C₃F₁₀OBK: C,12.34; Found : C, 12.09.

2.2. EMI [CF₃OCF₂CF₂BF₃]

To a stirred solution of K[CF₃OCF₂CF₂BF₃] (1.10 g, 3.8 mmol) in water (35 ml) was added 1-ethyl-3-methylimidazolium chloride (EMICl) (0.54 g, 3.7 mmol) at room temperature. The mixture was stirred for an additional 6 h. The bottom layer was separated, dissolved in CH₂Cl₂. The CH₂Cl₂ phase was separated and the water phase was extracted CH₂Cl₂. The combined CH₂Cl₂ was washed with water. After evaporation, the liquid obtained at 80°C and 0.02 Torr for 24h. (0.90 g, 67.2 %) ¹H NMR (CD₃OD, TMS, 500.2 MHz) δ 1.54 (t, *J* = 7.5 Hz, 3H, CH₂*CH*₃), 3.93 (s, 3H, N-CH₃), 4.26 (q, *J* = 7.5 Hz, 2H, *CH*₂CH₃), 7.52 (s, 1H, imidazole 4-H), 7.59 (s, 1H, imidazole-C5), 8.82 (s, 1H, imidazole 2-H); ¹⁹F NMR (CD₃OD, CFCl₃, 470.6 MHz) δ -54.7 (t, *J* = 11.1 Hz, 3F, CF₃), -88.3 (s, 2F, OCF₂), -136.4 (m, 2F, OCF₂*CF*₂), -154.1 (q, *J* = 40.0 Hz, 3F, BF₃); ¹¹B NMR (CD₃OD H₃BO₃, 160.5 MHz) δ -19.8 (m, 1B) ; MS m/z (%) 111 (100) [EMI]⁺, 253 (100) [CF₃OCF₂CF₂BF₃]⁻; Anal Calcd. for C₉H₁₁N₂F₁₀OB: C,29.70; H, 3.05; N,7.70; Found : C, 29.60; H, 3.04; N, 8.00

2.3. *DEME[CF₃OCF₂CF₂BF₃]*(0.36 g, 65.5 %)

¹H NMR (CD₃OD, TMS, 500.2 MHz) δ 1.34 (t, J = 7.3 Hz, 6H, -CH₂CH₃), 3.04 (s, 3H, N-CH₃), 3.39 (s, 3H, -OCH₃), 3.43 (q, J = 7.3 Hz, 4H, -CH₂CH₃), 3.51 (t, J = 4.5

Hz, 2H, N-*CH*₂CH₂O-), 3.79 (m, 2H, N-CH₂*CH*₂O-); ¹⁹F NMR (CD₃OD, CFCl₃, 470.6 MHz) δ -54.7 (m, 3F, CF₃), -88.2 (s, 2F, OCF₂), -136.1 (q, *J* = 18.2 Hz, 2F, , OCF₂*CF*₂), -153.5 (q, *J* = 40.0 Hz, 3F, BF₃); ¹¹B NMR (CD₃OD H₃BO₃, 160.5 MHz) δ -19.6 (m, 1B); MS m/z (%) 146 (100) [DEME]⁺, 253 (100) [CF₃OCF₂CF₂BF₃]⁻; Anal Calcd. for C₁₁H₂₀NF₁₀O₂B: C,33.11; H, 5.05; N,3.51; Found : C, 33.11; H, 4.76; N, 3.78.

2.4. *N*₁₂₂₄*[CF*₃*OCF*₂*CF*₂*BF*₃*]*(1.25 g, 82.9 %)

¹H NMR (CD₃OD, TMS, 500.2 MHz) δ 1.02 (t, J = 7.5 Hz, 3H, -CH₂CH₂CH₂CH₂CH₃), 1.31-1.34 (m, 6H, N-CH₂CH₃), 1.39-1.46 (m, 2H, -CH₂CH₂CH₂CH₃) 1.67-1.73 (m, 2H, -CH₂CH₂CH₂CH₃), 2.97 (s, 3H, N-CH₃), 3.21-3.24 (m, 2H, -CH₂CH₂CH₂CH₂CH₃), 3.35 (q, J = 7.3 Hz, 4H, N-CH₂CH₃); ¹⁹F NMR (CD₃OD, CFCl₃, 470.6 MHz) δ -54.9 (m, 3F, CF₃), -88.3 (s, 2F, -OCF₂), -136.1 (q, J = 18.2 Hz, 2F, -OCF₂CF₂), -153.7 (q, J = 40.0Hz, 3F, BF₃); ¹¹B NMR (CD₃OD H₃BO₃, 160.5 MHz) δ -19.7 (m, 1B); MS m/z (%) 144 (100) [N₁₂₂₄]⁺, 253 (100) [CF₃OCF₂CF₂BF₃]⁻; Anal Calcd. for C₁₂H₂₂NF₁₀OB: C,36.30; H, 5.58; N,3.53; Found : C, 36.12; H, 5.84; N, 3.46.

2.5. *P13[CF₃OCF₂CF₂BF₃]*(0.95 g, 49.9 %)

¹H NMR (CD₃OD, TMS, 500.2 MHz) δ 1.03 (t, J = 7.5 Hz, 3H, -CH₂CH₂CH₃), 1.79-1.90 (m, 2H, -CH₂CH₂CH₃), 2.24 (m, 4H, pyrrolidine 3-H and 4-H), 3.04 (s, 3H, N-CH₃), 3.29 (m, 2H, -CH₂CH₂CH₃), 3.46-3.55 (m, 4H, pyrrolidine 2-H and 5-H); ¹⁹F NMR (CD₃OD, CFCl₃, 470.6 MHz) δ -54.9 (m, 3F, CF₃), -88.3 (s, 2F, -OCF₂), -136.1 (q, J = 19.9 Hz, 2F, -OCF₂CF₂), -153.7 (q, J = 41.7 Hz, 3F, BF₃); ¹¹B NMR (CD₃OD H₃BO₃, 160.5 MHz) δ -19.2(m, 1B); MS m/z (%) 128 (100) [P₁₃]⁺, 253 (100) [CF₃OCF₂CF₂BF₃]⁻; Anal Calcd. for C₁₁H₁₈NF₁₀OB: C,34.67; H, 4.76; N,3.68; Found : C, 34.47; H, 4.73; N, 3.67.