Electronic Supplementary Information For

A Fluorescent and Colorimetric Probe Specific for Palladium Detection

Honglin Li, Jiangli Fan, Jianjun Du, Kexin Guo, Shiguo Sun, Xiaojian Liu, Xiaojun Peng*

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China. Fax:+86-411-3989-3906; *Tel:* +86-411-3989-3899; *E-mail:* <u>pengxj@dlut.edu.cn</u>

Materials and general methods:

All solvents used were of analytical grade. Analyte solutions were prepared from KCl, NaCl, NH₄Cl, CaCl₂, BaCl₂·2H₂O, MgCl₂·6H₂O, CdCl₂·2.5H₂O, FeCl₃·6H₂O, CrCl₃·6H₂O, MnCl₂·5H₂O, NiCl₂·6H₂O, CoCl₂·6H₂O, PbCl₂, LaCl₃·7H₂O, HgCl₂, Cu(NO₃)₂·2.5H₂O, Zn(NO₃)₂·6H₂O by separately dissolved in distilled water, 2.5 mM for PbCl₂ and HgCl₂, 25.0 mM for other cations. A 10.0 mM solution of **RPd1** (26.8 mg, 0.05 mmol) was prepared in DMSO (5 mL) and stored in a refrigerator for use. A 100 mM solution of PPh₃ (262.3 mg, 1.00 mmol) was prepared in DMSO (10 mL). A 5.0 mM stock solution of PdCl₂ (8.9 mg, 0.05 mmol) was prepared in 75:25 MeOH/brine (10 mL). Further dilution of the 5.0 mM stock solutions. A 50.0 μ M solution of PtCl₂ (3.32 mg, 0.0125 mmol) was prepared in EtOH/H₂O (1 : 1, v/v, 250 mL) solution, directly used for analysis. A 5.0 mM solution of Pd(OAc)₂ (5.61 mg, 0.025 mmol) was prepared in acetone (5mL). A 1.0 mM solution of Pd(Ph₃)₄ (11.6 mg, 0.010 mmol, freshly synthesized from PdCl₂, with colour of light yellow) was prepared in 95 : 5 MeOH/DMF (10 mL). Measurements were done after addition of different cations to **RPd1** solutions overnight.

¹H-NMR, ¹³C-NMR and ¹H-¹H COSY spectras were recorded on a VARIAN INOVA-400 spectrometer chemical shifts reported as ppm (in CDCl₃, TMS as internal standard). Mass spectrometry data were obtained with a HP1100LC/MSD mass spectrometer and a LC/Q-TOF MS spectrometer. Fluorescence measurements were performed on a VAEIAN CARY Eclipse Fluorescence Spectrophotometer (Serial No. FL0812-M018) and the slit width was 5 nm for excitation and 2.5 nm for emission. All pH measurements were made with a Model PHS-3C meter.

The quantum yield of **RPd1**, **RPd1-** Pd^{2+} and **RPd1-** Pd^{0}/PPh_{3} were determined according to the method bellow.

$$\varphi_{u} = \frac{(\varphi_{s})(FA_{u})(A_{s})(\lambda_{exs})(\eta_{u}^{2})}{(FA_{s})(A_{u})(\lambda_{exu})(\eta_{s}^{2})}$$

Where φ is fluorescence quantum yield; FA is integrated area under the corrected emission spectra; A is the absorbance at the excitation wavelength; λ_{ex} is the excitation wavelength; η is the refractive index of the solution; the subscripts u and s refer to the unknown and the standard, respectively. We chose rhodamine B as standard, which has the fluorescence quantum yield of 0.49 in ethanol.¹

Reactors contamination experimental procedure.

To four 10 mL round-bottom flasks were added K_2CO_3 (10 mg) and THF (3 mL). To three of the four flasks were then added PdCl₂, Pd(AcO)₂ and Pd(PPh₃)₄ (10 mg respectively). The mixtures in the three flasks were stirred at room temperature for 1 h, and then all chemicals were removed. The four flasks were brushing with detergent, washing with water and acetone three times.

To the four washed flasks were added 5 mL of **RPd1** aqueous solution (10 μ M). The solutions were stirred at room temperature overnight, then fluorescence measurements were performed (Slit width was 5 nm both for excitation and emission).

Synthetic procedures:

Synthesis of 2

Rhodamine hydrazide (2) was synthesized from rhodamine B by the procedure published in literature.²

Synthesis of RPd1

2 (300.0 mg, 0.66 mmol), K_2CO_3 (96.6 mg, 0.7 mmol) was dissolved in 20 mL acetic ether in a 50-mL flask. 1.0 mL (excess) 3-bromopropene was then added dropwises with vigorous stirring. The mixture was refluxed overnight. After removal of acetic ether under vacuum, the residue was purified by flash chromatography with CH₂Cl₂/acetic ether as eluent to give the white powder **RPd1** (159.3 mg, yield: 45.0%) . TLC analysis: $R_f = 0.6$ in 5.0% acetic ether in CH₂Cl₂.

¹**H-NMR** (400 MHz, CDCl₃), $\delta_{\rm H}$ (ppm): 7.88 (d, 1H, J = 7.6 Hz, C₆H₄), 7.51 (m, 2H, J

= 4.8 Hz, C₆H₄), 7.21 (d, 1H, J = 6.8 Hz, C₆H₄), 6.44 (s, 2H, Xanthene-H), 6.36 (d, 2H, J = 8.8 Hz, Xanthene-H), 6.26 (d, 2H, J = 6.8 Hz, Xanthene-H), 5.09 (m, 2H,CH), 4.85 (d, 2H, J = 16.8 Hz, CH₂), 4.72 (d, 2H, J = 10.0 Hz, CH₂), 3.50 (s, 2H, CH₂), 3.35 (q, 8H, J = 7.2 Hz, CH₂), 3.31 (s, 2H, CH₂), 1.15 (t, 12H, J = 7.2 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃), $\delta_{\rm C}$ (ppm): 165.97, 155.01, 149.30, 149.15, 135.89, 133.85, 132.80, 129.31, 128.35, 124.44, 122.63, 116.67, 107.75, 107.18, 98.50, 66.15, 58.58, 45.05, 12.36; **Q-TOF MS**: [M+H]⁺ 537.3230; found 537.3223.

Experimental procedures

Fig. S1. Time dependent fluorescence intensity (at 580 nm) changes of **RPd1** (10 μ M) with 1.0 equiv of Pd²⁺ in ethanol/H₂O (1:1, v/v, 25 °C), $\lambda_{ex} = 530$ nm.

Fig. S2. Absorption (a, at 560 nm) and fluorescence (b, at 580 nm) intensities of **RPd1** (10 μ M) upon addition of Pd²⁺ (0-20 μ M). Condition: ethanol/H₂O (1:1, v/v, 25 °C) solution, $\lambda_{ex} = 530$ nm.

Fig. S3. a, fluorescence intensity at 580 nm of **RPd1** (10 μ M) upon addition of Pd²⁺ (0-106.4 ppb, 1.0 μ M of Pd²⁺ in the form of PdCl₂ is equal to 106.4 ppb of Pd²⁺). b, normalized response of the fluorescence signal to changing Pd²⁺ concentrations. A linear regression curve was then fitted to these normalized fluorescence intensity data, and the point at which this line crossed the ordinate axis was considered as the detection limit (1.85 × 10⁻⁷ M).³ Y = 7.41509 + 1.1014 * X, R = 0.9912.

Fig. S4. Absorption (a, at 560 nm) and fluorescence (b, 580 nm) responses of **RPd1** (10 μ M) to miscellaneous cations. White bars represent **RPd1** only and **RPd1** + cations; Black bas represent **RPd1** + Pd²⁺ in the presence of other cations (10 μ M for Pd²⁺ and 50 μ M for others). Condition: ethanol/H₂O (1:1, v/v, 25 °C) solution, $\lambda_{ex} = 530$ nm.

Fig. S5. Influence of pH on fluorescence at 580 nm for RPd1 (10 µM) in ethanol

aqueous solution, $\lambda_{ex} = 530$ nm. The pH of solution was adjusted by aqueous solution of NaOH (1 M) or HCl (1 M).

Fig. S6. Time dependent fluorescence intensity (at 580 nm) changes of **RPd1** (10 μ M) with 1.0 equiv of Pd²⁺ in ethanol/H₂O (1:1, v/v, contained 100 μ M PPh₃, 25 °C), $\lambda_{ex} = 530$ nm.

Fig. S7. Absorption (a) and fluorescence (b) spectral changes of **RPd1** (10 μ M) upon addition of Pd²⁺ (0-20 μ M). Inset: a, absorption intensity at 560 nm (0-20 μ M); b, fluorescence intensity at 580 nm (0-6 μ M). Condition: ethanol/H₂O (1:1, v/v, contained 100 μ M PPh₃, 25 °C) solution, $\lambda_{ex} = 530$ nm.

Fig. S8. TOF-MS of RPd1.

Fig. S10. TOF-MS of **RPd1** + PdCl₂ + PPh₃: [**RPd1** + Pd⁰ + PPh₃ + 2H⁺]²⁺, [**RPd1** + Pd⁰ + PPh₃ + H⁺]⁺, [**RPd1** + Pd⁰ + PPh₃ + HCl + H⁺]⁺.

Fig. S11. TOF-MS of **RPd1** + Pd(PPh₃)₄: [**RPd1** + Pd⁰ + PPh₃ + H⁺ $]^+$.

Fig. S14. ¹H-¹H COSY of **RPd1.**

References:

- 1. K. G. Casey and E. L. Quitevis, J. Phys. Chem., 1988, 92, 6590.
- 2. X. F. Yang, X. Q. Guo and Y. B. Zhao, Talanta, 2002, 57, 883.
- 3. M. Shortreed, R. Kopelman, M. Kuhn and B. Hoyland, Anal. Chem., 1996, 68, 1414.