Electronic Supplementary Information For

A Fluorescent and Colorimetric Probe Specific for Palladium Detection
Honglin Li, Jiangli Fan, Jianjun Du, Kexin Guo, Shiguo Sun, Xiaojian Liu, Xiaojun Peng*

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China. Fax:+86-411-3989-3906; Tel: +86-411-3989-3899; E-mail: pengxj@dlut.edu.cn

Materials and general methods:

All solvents used were of analytical grade. Analyte solutions were prepared from KCl , $\mathrm{NaCl}, \quad \mathrm{NH}_{4} \mathrm{Cl}, \quad \mathrm{CaCl}_{2}, \quad \mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{CdCl}_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{MnCl}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}, \mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{PbCl}_{2}, \mathrm{LaCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{HgCl}_{2}$, $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}, \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ by separately dissolved in distilled water, 2.5 mM for PbCl_{2} and $\mathrm{HgCl}_{2}, 25.0 \mathrm{mM}$ for other cations. A 10.0 mM solution of RPd1 $(26.8 \mathrm{mg}$, $0.05 \mathrm{mmol})$ was prepared in DMSO (5 mL) and stored in a refrigerator for use. A 100 mM solution of $\mathrm{PPh}_{3}(262.3 \mathrm{mg}, 1.00 \mathrm{mmol})$ was prepared in DMSO $(10 \mathrm{~mL})$. A 5.0 mM stock solution of $\mathrm{PdCl}_{2}(8.9 \mathrm{mg}, 0.05 \mathrm{mmol})$ was prepared in $75: 25 \mathrm{MeOH} /$ brine $(10 \mathrm{~mL})$. Further dilution of the 5.0 mM stock solution of PdCl_{2} with MeOH was done to prepare the 1.0 mM and $100.0 \mu \mathrm{M}$ stock solutions. A $50.0 \mu \mathrm{M}$ solution of $\mathrm{PtCl}_{2}(3.32 \mathrm{mg}, 0.0125$ $\mathrm{mmol})$ was prepared in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(1: 1, \mathrm{v} / \mathrm{v}, 250 \mathrm{~mL})$ solution, directly used for analysis. A 5.0 mM solution of $\operatorname{Pd}(\mathrm{OAc})_{2}(5.61 \mathrm{mg}, 0.025 \mathrm{mmol})$ was prepared in acetone $(5 \mathrm{~mL})$. A 1.0 mM solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(11.6 \mathrm{mg}, 0.010 \mathrm{mmol}\right.$, freshly synthesized from PdCl_{2}, with colour of light yellow) was prepared in $95: 5 \mathrm{MeOH} / \mathrm{DMF}(10 \mathrm{~mL})$. Measurements were done after addition of different cations to RPd1 solutions overnight.
${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$ and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectras were recorded on a VARIAN INOVA- 400 spectrometer chemical shifts reported as ppm (in CDCl_{3}, TMS as internal standard). Mass spectrometry data were obtained with a HP1100LC/MSD mass spectrometer and a LC/Q-TOF MS spectrometer. Fluorescence measurements were performed on a VAEIAN CARY Eclipse Fluorescence Spectrophotometer (Serial No. FL0812-M018) and the slit width was 5 nm for excitation and 2.5 nm for emission. All pH measurements were made with a Model PHS-3C meter.

The quantum yield of RPd1, RPd1 $-\mathrm{Pd}^{2+}$ and $\mathbf{R P d} 1-\mathrm{Pd}^{0} / \mathrm{PPh}_{3}$ were determined according to the method bellow.

$$
\varphi_{u}=\frac{\left(\varphi_{s}\right)\left(F A_{u}\right)\left(A_{s}\right)\left(\lambda_{e x s}\right)\left(\eta_{u}^{2}\right)}{\left(F A_{s}\right)\left(A_{u}\right)\left(\lambda_{e x u}\right)\left(\eta_{s}^{2}\right)}
$$

Where φ is fluorescence quantum yield; FA is integrated area under the corrected emission spectra; A is the absorbance at the excitation wavelength; $\boldsymbol{\lambda}_{\mathrm{ex}}$ is the excitation wavelength; η is the refractive index of the solution; the subscripts u and s refer to the unknown and the standard, respectively. We chose rhodamine B as standard, which has the fluorescence quantum yield of 0.49 in ethanol. ${ }^{1}$

Reactors contamination experimental procedure.

To four 10 mL round-bottom flasks were added $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{mg})$ and THF (3 mL). To three of the four flasks were then added $\mathrm{PdCl}_{2}, \mathrm{Pd}(\mathrm{AcO})_{2}$ and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{mg}$ respectively). The mixtures in the three flasks were stirred at room temperature for 1 h , and then all chemicals were removed. The four flasks were brushing with detergent, washing with water and acetone three times.

To the four washed flasks were added 5 mL of RPd1 aqueous solution ($10 \mu \mathrm{M}$). The solutions were stirred at room temperature overnight, then fluorescence measurements were performed (Slit width was 5 nm both for excitation and emission).

Synthetic procedures:

Scheme S1. Synthesis of RPd1.

Synthesis of 2

Rhodamine hydrazide (2) was synthesized from rhodamine B by the procedure published in literature. ${ }^{2}$

Synthesis of RPd1

2 ($300.0 \mathrm{mg}, 0.66 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(96.6 \mathrm{mg}, 0.7 \mathrm{mmol})$ was dissolved in 20 mL acetic ether in a $50-\mathrm{mL}$ flask. 1.0 mL (excess) 3-bromopropene was then added dropwises with vigorous stirring. The mixture was refluxed overnight. After removal of acetic ether under vacuum, the residue was purified by flash chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ acetic ether as eluent to give the white powder RPd1 (159.3 mg , yield: 45.0%) . TLC analysis: $\mathrm{R}_{\mathrm{f}}=0.6$ in 5.0% acetic ether in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta_{\mathrm{H}}(\mathrm{ppm}): 7.88\left(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.51(\mathrm{~m}, 2 \mathrm{H}, J$
$\left.=4.8 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.21\left(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.44(\mathrm{~s}, 2 \mathrm{H}$, Xanthene- H$), 6.36(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.8 \mathrm{~Hz}$, Xanthene-H), $6.26(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}$, Xanthene-H), $5.09(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 4.85(\mathrm{~d}$, $\left.2 \mathrm{H}, J=16.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.72\left(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.35(\mathrm{q}, 8 \mathrm{H}, J$ $\left.=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.15\left(\mathrm{t}, 12 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), \delta_{\mathrm{C}}(\mathrm{ppm}): 165.97,155.01,149.30,149.15,135.89,133.85,132.80,129.31$, $128.35,124.44,122.63,116.67,107.75,107.18,98.50,66.15,58.58,45.05,12.36$; Q-TOF MS: $[\mathrm{M}+\mathrm{H}]^{+} 537.3230$; found 537.3223 .

Experimental procedures

Fig. S1. Time dependent fluorescence intensity (at 580 nm) changes of RPd1 ($10 \mu \mathrm{M}$) with 1.0 equiv of Pd^{2+} in ethanol/ $\mathrm{H}_{2} \mathrm{O}\left(1: 1, \mathrm{v} / \mathrm{v}, 25^{\circ} \mathrm{C}\right), \lambda_{\text {ex }}=530 \mathrm{~nm}$.

Fig. S2. Absorption (a, at 560 nm) and fluorescence (b, at 580 nm) intensities of RPd1 $(10 \mu \mathrm{M})$ upon addition of $\mathrm{Pd}^{2+}(0-20 \mu \mathrm{M})$. Condition: ethanol/ $\mathrm{H}_{2} \mathrm{O}\left(1: 1, \mathrm{v} / \mathrm{v}, 25^{\circ} \mathrm{C}\right)$ solution, $\lambda_{\mathrm{ex}}=530 \mathrm{~nm}$.

Fig. S3. a, fluorescence intensity at 580 nm of RPd1 $(10 \mu \mathrm{M})$ upon addition of Pd^{2+} ($0-106.4 \mathrm{ppb}, 1.0 \mu \mathrm{M}$ of Pd^{2+} in the form of PdCl_{2} is equal to 106.4 ppb of Pd^{2+}). b , normalized response of the fluorescence signal to changing Pd^{2+} concentrations. A linear regression curve was then fitted to these normalized fluorescence intensity data, and the point at which this line crossed the ordinate axis was considered as the detection limit $\left(1.85 \times 10^{-7} \mathrm{M}\right) .{ }^{3} \mathrm{Y}=7.41509+1.1014 * \mathrm{X}, \mathrm{R}=0.9912$.

Fig. S4. Absorption (a, at 560 nm) and fluorescence (b, 580 nm) responses of RPd1 (10 $\mu \mathrm{M})$ to miscellaneous cations. White bars represent RPd1 only and RPd1 + cations; Black bas represent RPd1 $+\mathrm{Pd}^{2+}$ in the presence of other cations $\left(10 \mu \mathrm{M}\right.$ for Pd^{2+} and 50 $\mu \mathrm{M}$ for others). Condition: ethanol/ $/ \mathrm{H}_{2} \mathrm{O}\left(1: 1, \mathrm{v} / \mathrm{v}, 25^{\circ} \mathrm{C}\right)$ solution, $\lambda_{\mathrm{ex}}=530 \mathrm{~nm}$.

Fig. S5. Influence of pH on fluorescence at 580 nm for $\mathbf{R P d 1}(10 \mu \mathrm{M})$ in ethanol
aqueous solution, $\lambda_{\mathrm{ex}}=530 \mathrm{~nm}$. The pH of solution was adjusted by aqueous solution of $\mathrm{NaOH}(1 \mathrm{M})$ or $\mathrm{HCl}(1 \mathrm{M})$.

Fig. S6. Time dependent fluorescence intensity (at 580 nm) changes of RPd1 ($10 \mu \mathrm{M}$) with 1.0 equiv of Pd^{2+} in ethanol/ $/ \mathrm{H}_{2} \mathrm{O}\left(1: 1, \mathrm{v} / \mathrm{v}\right.$, contained $\left.100 \mu \mathrm{M} \mathrm{PPh} h_{3}, 25^{\circ} \mathrm{C}\right), \lambda_{\mathrm{ex}}=530$ nm .

Fig. S7. Absorption (a) and fluorescence (b) spectral changes of RPd1 ($10 \mu \mathrm{M}$) upon addition of $\mathrm{Pd}^{2+}(0-20 \mu \mathrm{M})$. Inset: a, absorption intensity at $560 \mathrm{~nm}(0-20 \mu \mathrm{M})$; b, fluorescence intensity at $580 \mathrm{~nm}(0-6 \mu \mathrm{M})$. Condition: ethanol/ $\mathrm{H}_{2} \mathrm{O}(1: 1, \mathrm{v} / \mathrm{v}$, contained $100 \mu \mathrm{M} \mathrm{PPh}_{3}, 25^{\circ} \mathrm{C}$) solution, $\lambda_{\mathrm{ex}}=530 \mathrm{~nm}$.

LHL

0904011417 (0.424) AM (Cen,6, 80.00, Ar,5000.0,475.27,0.70,LS 10); Sm (SG, 2x3.00); Sb (1,40.00); Cm (5:37)

Fig. S8. TOF-MS of RPd1.

LHL-1

Fig. S9. TOF-MS of RPd1 $+\mathrm{PdCl}_{2}$: $\left[\mathbf{R P d 1}+\mathrm{Pd}^{2+}-\mathrm{H}^{+}\right]^{+}$.

LHL-1

Fig. S10. TOF-MS of RPd1 $+\mathrm{PdCl}_{2}+\mathrm{PPh}_{3}:\left[\mathbf{R P d} 1+\mathrm{Pd}^{0}+\mathrm{PPh}_{3}+2 \mathrm{H}^{+}\right]^{2+},\left[\mathbf{R P d} 1+\mathrm{Pd}^{0}\right.$ $\left.+\mathrm{PPh}_{3}+\mathrm{H}^{+}\right]^{+},\left[\mathbf{R P d} 1+\mathrm{Pd}^{0}+\mathrm{PPh}_{3}+\mathrm{HCl}+\mathrm{H}^{+}\right]^{+}$.

Fig. S11. TOF-MS of RPd1 $+\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}:\left[\mathbf{R P d} 1+\mathrm{Pd}^{0}+\mathrm{PPh}_{3}+\mathrm{H}^{+}\right]^{+}$.

Fig. S12. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of RPd1.

Fig. S13. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of RPd1.

Fig. S14. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of RPd1.

References:

1. K. G. Casey and E. L. Quitevis, J. Phys. Chem., 1988, 92, 6590.
2. X. F. Yang, X. Q. Guo and Y. B. Zhao, Talanta, 2002, 57, 883.
3. M. Shortreed, R. Kopelman, M. Kuhn and B. Hoyland, Anal. Chem., 1996, 68, 1414.
