### Carbon nanotube-supported gold nanoparticles as efficient catalysts for selective oxidation of cellobiose into gluconic acid in water medium

Xuesong Tan, Weiping Deng, Mi Liu, Qinghong Zhang\* and Ye Wang\*

State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

#### **Electronic Supplementary Information**

#### 1. Experimental details

#### (1) Catalyst preparation

Multi-walled carbon nanotubes (CNTs) with outer diameter of 20-80 nm and inner diameter of 3-5 nm were prepared by an established method. The CNTs were typically pretreated in concentrated HNO<sub>3</sub> (68 wt%) at 110 °C under refluxing conditions to remove the remaining Ni catalyst and the amorphous carbon. For comparison, HNO<sub>3</sub> with different concentrations and concentrated HCl (37 wt%) were also applied for CNT pretreatment. Our ICP analysis showed that no Ni remained in the CNT after treatment with HNO<sub>3</sub> or HCl.

Au catalysts on various supports were typically prepared by impregnating the supports with an aqueous solution of  $AuCl_3$ , followed by drying at 100 °C. Then, the catalysts were subjected to  $H_2$  reduction at 350 or 250 °C for 2 h.

#### (2) Catalyst characterization

 $N_2$  sorption, TEM, XPS and NH<sub>3</sub>-TPD were used to characterize the structures and the physicochemical properties of catalysts.  $N_2$  sorption at 77 K was carried out with a Micromeritics Tristar 3000 surface and porosimetry analyzer, and the surface area was evaluated using the BET method. TEM measurements were performed on a Tecnai F30 electron microscope (Phillips Analytical) operated at an acceleration voltage of 300 kV. Samples for TEM measurements were suspended in ethanol and dispersed ultrasonically. Drops of the suspensions were applied on a copper grid coated with carbon. XPS measurements were carried out with a Quantum 2000 Scanning ESCA Microprob instrument (Physical Electronics) using Al- $K_{\alpha}$  radiation. NH<sub>3</sub>-TPD measurements were performed using a Micromeritics AutoChem II 2920 instrument connected to a ThermoStar GSD 301 T2 mass spectrometer.

#### (3) Catalytic reaction

The conversion of cellobiose was performed in a 75 mL Teflon-lined stainless-steel autoclave. Cellobiose purchased from Alfa Aesar (0.30 mmol) and the catalyst (typically, 0.05

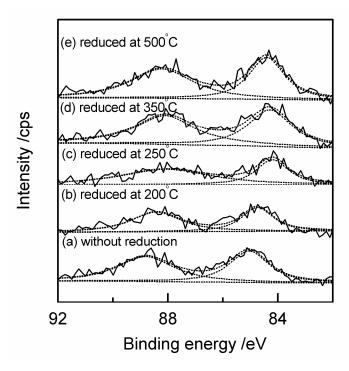
g) were added into the autoclave pre-charged with  $H_2O$  (20 mL). After the introduction of  $O_2$  with a certain pressure (typically, 0.5 MPa), the reaction was started by heating the mixture up to a reaction temperature (typically, 145 °C). After the reaction, the liquid products were analyzed by HPLC (Shimazu LC-20A) equipped with a RI detector and a TransgenomicTM CARBONSep CHO-620 column (10 $\mu$ m, 6.5×300 mm) using  $H_2O$  as a mobile phase.

#### 2. Conversion of gluconic acid over different supports

Table S1 Oxidation of gluconic acid over different supports<sup>a</sup>

| Catalyst         | Gluconic acid conversion /% |  |
|------------------|-----------------------------|--|
| SiO <sub>2</sub> | 5.7                         |  |
| $Al_2O_3$        | 67                          |  |
| MCM-41           | 20                          |  |
| H-ZSM-5          | 16                          |  |
| MgO              | 97                          |  |
| AC               | 10                          |  |
| Graphite         | 24                          |  |
| XC-72            | 28                          |  |
| CNT              | 14                          |  |

<sup>&</sup>lt;sup>a</sup>Reaction conditions: Gluconic acid, 0.060 mmol;  $H_2O$ , 10 mL;  $O_2$  pressure, 0.5 MPa; catalyst, 0.05 g; T = 145 °C; time, 1 h.


## 3. Oxidation of cellobiose catalysed by CNT-supported some transition metal catalysts

**Table S2** Oxidation of cellobiose by  $O_2$  over CNT-supported some transition metal catalysts (metal loading, 0.5 wt%)<sup>a</sup>

| Catalyst            | Cellobiose    | Selectivity <sup>b</sup> /% |               | Gluconic acid |
|---------------------|---------------|-----------------------------|---------------|---------------|
|                     | conversion /% | Glucose                     | Gluconic acid | yield /%      |
| Pd/CNT              | 41            | 73                          | 7.0           | 2.9           |
| Pt/CNT              | 53            | 53                          | 23            | 12            |
| Rh/CNT              | 20            | 50                          | 20            | 4.0           |
| Cu/CNT              | 73            | 56                          | 0             | 0             |
| Ag/CNT              | 17            | 59                          | 6.0           | 1.0           |
| Au/CNT <sup>c</sup> | 91            | 0                           | 60            | 55            |
| $Au/CNT^d$          | 81            | 4.0                         | 84            | 68            |

<sup>&</sup>lt;sup>a</sup>Reaction conditions: cellobiose, 0.30 mmol;  $H_2O$ , 20 mL;  $O_2$  pressure, 0.5 MPa; catalyst, 0.05 g; T = 145 °C; time, 3 h. <sup>b</sup>Other products include acetic acid, glycolic acid, oxalic acid and succinic acid. <sup>c</sup>Reduced at 350 °C. <sup>d</sup>Reduced at 250 °C.

## 4. Au 4f XPS spectra of the 0.5 wt% Au/CNT catalysts reduced at different temperatures



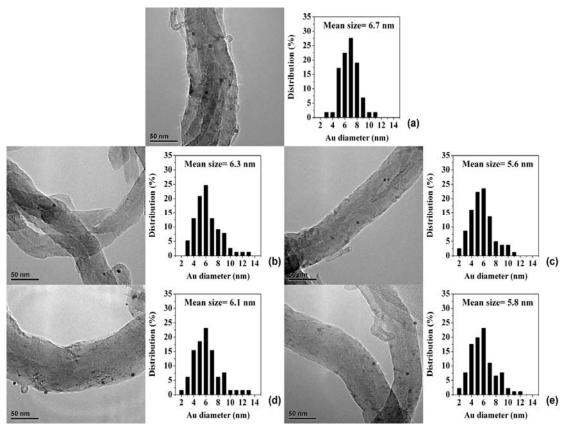
**Fig. S1** Au 4f XPS spectra of the 0.5 wt% Au/CNT catalysts reduced at different temperatures. The dotted lines are the curve-fitting results.

## 5. Conversion of gluconic acid over the $0.5~\rm wt\%$ Au/CNT catalysts reduced at different temperatures

**Table S3** Oxidation of gluconic acid over the 0.5 wt% Au/CNT catalysts reduced at different temperatures<sup>a</sup>

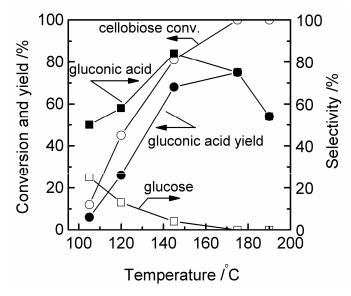
| Reduction temperature | Gluconic acid conversion /% |  |  |
|-----------------------|-----------------------------|--|--|
| /°C                   |                             |  |  |
| 200                   | 3.7                         |  |  |
| 250                   | 2.6                         |  |  |
| 350                   | 9.7                         |  |  |
| 500                   | 11                          |  |  |

<sup>&</sup>lt;sup>a</sup>Reaction conditions: Gluconic acid, 0.12 mmol;  $H_2O$ , 20 mL;  $O_2$  pressure, 0.5 MPa; catalyst, 0.05 g; T = 145 °C; time, 1 h.


## 6. Conversion of gluconic acid over the 0.5 wt% Au/CNT catalysts with CNT pretreated by different concentration HNO<sub>3</sub> or by HCl

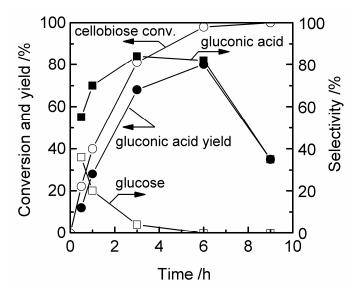
**Table S4** Oxidation of gluconic acid over the 0.5 wt% Au/CNT catalysts with CNT pretreated by different concentration HNO<sub>3</sub> or by HCl<sup>a</sup>

| CNT pretreatment        | Gluconic acid conversion /% |
|-------------------------|-----------------------------|
| 37 wt% HCl              | 24                          |
| 5 wt% HNO <sub>3</sub>  | 10                          |
| 22 wt% HNO <sub>3</sub> | 5.5                         |
| 37 wt% HNO <sub>3</sub> | 4.8                         |
| 68 wt% HNO <sub>3</sub> | 2.6                         |


<sup>&</sup>lt;sup>a</sup>Reaction conditions: Gluconic acid, 0.12 mmol;  $H_2O$ , 20 mL;  $O_2$  pressure, 0.5 MPa; catalyst, 0.05 g; T = 145 °C; time, 1 h.

# 7. TEM micrographs and Au particle size distributions for the 0.5 wt% Au/CNT catalysts with CNT pretreated by different concentration HNO<sub>3</sub> or by HCl




**Fig. S2** TEM micrographs and Au particle size distributions for the 0.5 wt% Au/CNT catalysts with CNT pretreated by different concentration HNO<sub>3</sub> or by HCl. (a) by 37 wt% HCl; (b)-(e) by HNO<sub>3</sub> with concentrations of 5 wt%, 22 wt%, 37 wt% and 68 wt%, respectively.

## 8. Effect of reaction temperature on catalytic performances of the 0.5 wt% Au/CNT catalyst (reduced at 250 $^{\circ}$ C) for selective oxidation of cellobiose



**Fig. S3** Effect of reaction temperature on catalytic performances of the 0.5 wt% Au/CNT catalyst (reduced at 250 °C) for selective oxidation of cellobiose. Reaction conditions: cellobiose, 0.30 mmol; H<sub>2</sub>O, 20 mL; O<sub>2</sub> pressure, 0.5 MPa; catalyst, 0.05 g; time, 3 h.

## 9. Time course for cellobiose conversion over the 0.5 wt% Au/CNT catalyst (reduced at 250 $^{\circ}\text{C})$



**Fig. S4** Time course for cellobiose conversion over the 0.5 wt% Au/CNT catalyst (reduced at 250 °C). Reaction conditions: catalyst, 0.050 g; T = 145 °C; cellobiose, 0.30 mmol; H<sub>2</sub>O, 20 mL; O<sub>2</sub> pressure, 0.5 MPa.

#### References

P. Chen, H. B. Zhang, G. D. Lin, Q. Hong and K. R. Tsai, *Carbon*, 1997, **35**, 1495.