Asymmetric Organocatalytic Formal Double-Arylation of Azomethines for the Synthesis of Highly Enantiomerically Enriched Isoindolines

Chao Wang, Xiao-Hua Chen, Shi-Ming Zhou, and Liu-Zhu Gong*
Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
E-mail: gonglz@ustc.edu.cn

General Information: NMR spectra were recorded on a Brucker- 400 MHz spectrometer. HRMS (Bio TOF Q) spectra were recorded on P-SIMS-Gly of Bruker Daltonics Inc. Infrared spectra were recorded on a Nicolet MX-1E FT-IR spectromter. Optical rotations were measured on Perkin Elmer Model 343 Polarimeter. HPLC analysis was performed on Waters-Breeze (2487 Dual Absorbance Detector and 1525 Binary HPLC Pump). Chiralpak AD, AS, and OD columns were purchased from Daicel Chemical Industries, LTD. X-ray crystallography analysis was performed on an Oxford Diffraction Gemini S Ultra CCD diffractionmeter equipped with mirror $\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184 \AA)$ radiation at room temperature. All structures were solved by direct methods and refined by full-matrix least-squares methods with SHELXL-97 programs. Elemental analysis was performed using an Elementar Vario EL III instrument. Solvents for the column chromatography were distilled before use. All starting materials commercially available were used directly. Quinones 1c and 1d were prepared according to the methods reported in the literature. ${ }^{1}$ Catalyst $\mathbf{6 e}$ was prepared according to previously described precedures ${ }^{2}$ and was acidified with 4 N HCl before use.

General Procedure for the Asymmetric Organocatalytic Formal Double-Arylation of Azomethines:

To a solution of an aldehyde $2(0.24 \mathrm{mmol})$, the catalyst $\mathbf{6 e}(0.02 \mathrm{mmol})$, and $3 \AA$ molecular sieves (300 $\mathrm{mg})$ in $\mathrm{PhCH}_{3}(2.0 \mathrm{~mL})$ was added the amino ester $(0.2 \mathrm{mmol})$. After the mixture was stirred at $25{ }^{\circ} \mathrm{C}$
for 1 hour, the reaction mixture was cooled down to $0^{\circ} \mathrm{C}$ and quinone $\mathbf{1}$ was added. The reaction mixture was stirred for ca. 12 hours until the reaction was complete (monitored by TLC). The reaction mixture was directly charged to a short column chromatography on silica gel (petroleum ether/EtOAc $=$ $5 / 1$) to remove the quinone, giving the crude $\mathbf{4}$ (when quinone $\mathbf{1 b}$ and $\mathbf{1 d}$ was used, $\mathbf{4}$ was partially isomerized), which was direct transferred to a test tube. The atmosphere was replaced with argon and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added. The test tube was placed in an ice-water bath, and then DMAP (0.2 mmol), $\mathrm{Ac}_{2} \mathrm{O}(1.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.0 \mathrm{mmol})$ were added, sequentially. After the consumption of the starting material (monitored by TLC), the reaction mixture was directly charged to column chromatography on silica gel (petroleum ether/ ethyl acetate $=4 / 1$) to give pure product 5 .

Diethyl 3-(4-nitrophenyl)-4,9-dioxo-2,3,3a,4-tetrahydro-1H-benzo[f]isoindole-1,1(9H,9aH)-dicarb oxylate (4a): Yield: $95 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=-57.3$ (c 1.5, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})$: $1.31-1.40(\mathrm{~m}, 6 \mathrm{H}), 3.31(\mathrm{~s}, 1 \mathrm{H}), 4.25\left(\mathrm{dd}, J_{1}=7.9 \mathrm{~Hz}, J_{2}=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.30-4.48(\mathrm{~m}, 5 \mathrm{H}), 4.98(\mathrm{~d}, J$ $=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.5-7.6(\mathrm{~m}, 3 \mathrm{H}), 7.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.87-7.90(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 14.06,14.10,54.09,54.84,61.29,62.32,62.83,75.04,122.99$, $126.28,126.94,128.59,134.47,134.71,134.86,134.92,146.58,147.24,168.36,170.12,192.72$, 193.55; Enantiomeric excess: 97\%, determined by HPLC (Daicel Chirapak AD-H, hexane/ isopropanol $=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=14.69 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=23.41 \mathrm{~min}$ (major); IR (KBr): $\gamma 3358,2957,2923,2869,2852,2361,2345,1757,1729,1685,1591,1518,1465,1345,1254$, 1097, 855, $749 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8}\right)$ requires $\mathrm{m} / \mathrm{z} 466.1376$, found m / z 466.1376.

Diethyl 4,9-diacetoxy-3-(4-nitrophenyl)-2,3-dihydro-1H-benzo[f]isoindole-1,1-dicarboxylate (5a): Yield: 94\%; m.p. $185-187{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+88.3\left(\mathrm{c} 2.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})$: 1.29-1.33 (m, 6H), $1.93(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 4.13-4.43(\mathrm{~m}, 4 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.56$ $(\mathrm{m}, 4 \mathrm{H}), 7.67-7.74(\mathrm{~m}, 2 \mathrm{H}), 8.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 14.02$, $14.09,20.11,20.94,62.46,63.11,64.96,76.24,121.54,122.92,123.61,126.93,127.08,127.50,128.57$, $128.90,129.62,132.50,139.29,141.43,147.69,149.21,167.40,168.39,168.73,169.57$; Enantiomeric excess: 97%, determined by HPLC (Daicel Chirapak AD-H, hexane/ isopropanol $=70$ / 30, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, 254 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}=7.23 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=21.32 \mathrm{~min}($ major $) ; \operatorname{IR}(\mathrm{KBr}): \gamma 3435,2959$, 2922, 2852, 1755, 1736, 1636, 1608, 1523, 1429, 1348, 1197, 1173, 1093, $860 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{10}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 551.1666$, found $\mathrm{m} / \mathrm{z} 551.1660$; Anal. Calcd for

Diethyl 4,9-diacetoxy-3-(4-bromophenyl)-2,3-dihydro-1H-benzo[f]isoindole-1,1-dicarboxylate(5b): Yield: 98\%; m.p. 187-189 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+77.0\left(\mathrm{c} 2.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})$: 1.26-1.32 (m, 6H), $1.90(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H}), 4.12-4.40(\mathrm{~m}, 4 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=$ 7.1 Hz, 2H), 7.44-7.46 (m, 2H), 7.51-7.53 (m, 2H), $7.71(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta(\mathrm{ppm}): 14.06,14.10,20.08,20.10,62.41,62.96,65.32,76.13,121.64,122.05,122.86,126.87$, $127.31,128.42,129.00,130.47,131.61,132.94,139.27,140.57,141.25,167.54,168.47,168.83$, 169.69; Enantiomeric excess: 95\%, determined by HPLC (Daicel Chirapak AS-H, hexane/ isopropanol $=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30{ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=7.94 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=10.22 \mathrm{~min}$ (minor); IR (KBr): $\gamma 3434,3345,2983,2934,1774,1727,1360,1198,1174,1093,1046,1012,766 \mathrm{~cm}^{-1} ;$ HRMS: exact mass calcd for $\left(\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{BrNO}_{8}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 584.0920$, found $\mathrm{m} / \mathrm{z} 584.0916$; Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{BrNO}_{8}: \mathrm{C}, 57.54 ; \mathrm{H}, 4.48$; N, 2.40. Found: C, 57.65; H, 4.62; N, 2.23.

Diethyl 4,9-diacetoxy-3-(4-chlorophenyl)-2,3-dihydro-1H-benzo[f]isoindole-1,1-dicarboxylate (5c): Yield: 98\%; m.p. $197-199{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+73.3\left(\mathrm{c} 2.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})$: 1.27-1.32 (m, 6H), $1.90(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 1 \mathrm{H}), 4.11-4.41(\mathrm{~m}, 4 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.31$ $(\mathrm{m}, 4 \mathrm{H}), 7.49-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 14.08$, 14.11, 20.10, 21.00, 62.43, 62.97, 65.29, 76.14, 121.65, 122.88, 126.88, 127.32, 128.44, 128.67, 129.02, $130.14,133.02,133.94,139.30,140.07,141.27,167.54,168.48,168.86,169.71$; Enantiomeric excess: 91%, determined by HPLC (Daicel Chirapak AS-H, hexane/ isopropanol $=90 / 10$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \mathrm{T}=30{ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=11.74 \min ($ major $), \mathrm{t}_{\mathrm{R}}=15.28 \mathrm{~min}($ minor $) ; \operatorname{IR}(\mathrm{KBr}): \gamma 3435,3342$, 2984, 2936, 1774, 1727, 1609, 1490, 1431, 1359, 1198, 1174, 1093, 1046, 1016, $767 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{ClNO}_{8}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 540.1425$, found $\mathrm{m} / \mathrm{z} 540.1424$; Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{ClNO}_{8}$: C, 62.28; H, 4.85; N,2.59. Found: C, 62.47; H, 5.02; N, 2.43.

Diethyl 4,9-diacetoxy-3-(4-cyanophenyl)-2,3-dihydro-1H-benzo[f]isoindole-1,1-dicarboxylate (5d): Yield: 95%; m.p. $173-175{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+79.7\left(\mathrm{c} 2.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})$: $1.25-1.33(\mathrm{~m}, 6 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 1 \mathrm{H}), 4.11-4.42(\mathrm{~m}, 4 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.72(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta(\mathrm{ppm}): 14.05,14.11,20.08,20.98,62.47,63.12,65.33,76.23,111.93,118.73,121.59,122.93$, $127.08,127.50,128.57,128.93,129.57,132.28,132.52,139.30,141.41,147.16,167.39,168.42$,
168.74, 169.60; Enantiomeric excess: 93\%, determined by HPLC (Daicel Chirapak AS-H, hexane/ isopropanol $=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=9.38 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=20.82$ \min (minor); IR (KBr): $\gamma 3434,2983,2932,2228,1773,1731,1608,1446,1360,1198,1174,1093$, 1047, 883, $768 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{8}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 531.1767$, found m / z 531.1768; Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{8}$: C, 65.65 ; H, 4.94; N, 5.28. Found: C, 65.34; H, 5.01; N, 5.02.

Diethyl 4,9-diacetoxy-3-(4-(methoxycarbonyl)phenyl)-2,3-dihydro-1H-benzo[f]isoindole-1,1-dicar boxylate (5e): Yield: 91\%; m.p. $174-176{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+77.2$ (c 2.3, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta(\mathrm{ppm}): 1.26-1.33(\mathrm{~m}, 6 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.9(\mathrm{~s}, 1 \mathrm{H}), 4.14-4.41(\mathrm{~m}$, $4 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.73(\mathrm{~m}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 14.06,14.09,20.09,20.98,52.16,62.43,62.98,65.56$, $76.27,121.63,122.88,126.89,127.33,128.46,128.80,128.99,129.82,129.93,132.98,139.30,141.29$, 146.69, 166.86, 167.51, 168.46, 168.84, 169.68; Enantiomeric excess: 95\%, determined by HPLC (Daicel Chirapak AS-H, hexane/ isopropanol $=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=$ $6.65 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=11.52 \mathrm{~min}($ minor $) ;$ IR (KBr): $\gamma 3435,2959$, 2922, 2852, 1769, 1732, 1631, 1442, 1360, 1199, 1175, 1095, $771 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{NO}_{10}+\mathrm{H}\right)^{+}$requires m / z 564.1870, found m/z 564.1868; Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{NO}_{10}$: C, 63.94 ; H,5.19; N, 2.49. Found: C, 63.72; H, 5.30; N, 2.25.

Diethyl 4,9-diacetoxy-3-phenyl-2,3-dihydro-1H-benzo[f]isoindole-1,1-dicarboxylate (5f): Yield: 98%; m.p. $136-138{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+157.7$ (c $0.8, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})$: 1.27-1.32 (m, 6H), 1.82 (s, 3H), $2.43(\mathrm{~s}, 3 \mathrm{H}), 3.9(\mathrm{~s}, 1 \mathrm{H}), 4.13-4.40(\mathrm{~m}, 4 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.34(\mathrm{~m}$, $5 \mathrm{H}), 7.48-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.72(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 14.08,14.10,19.97$, $21.01,62.39,62.87,66.09,76.22,121.70,122.84,126.71,127.16,127.57,128.19,128.35,128.55$, $128.79,129.06,133.43,139.32,141.17,141.27,167.58,168.51,168.92,169.78$; Enantiomeric excess: 83%, determined by HPLC (Daicel Chirapak AD-H, hexane/ isopropanol $=85 / 15$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \mathrm{T}=25{ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=7.73 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=9.79 \mathrm{~min}($ major $) ; \operatorname{IR}(\mathrm{KBr}): \gamma 3335,2982$, $2358,2331,1759,1727,1358,1239,1195,1171,1094,1028,855,772,754 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{NO}_{8}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 506.1815$, found $\mathrm{m} / \mathrm{z} 506.1822$; Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{NO}_{8}$: C, 66.53; H, 5.38; N, 2.77. Found: C, 66.53; H, 5.46; N, 2.55.

Diethyl 4,9-diacetoxy-3-p-tolyl-2,3-dihydro-1H-benzo[f]isoindole-1,1-dicarboxylate (5g): Yield:
95%; m.p. $173-175{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+84.3\left(\mathrm{c} 1.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 1.26-1.32$ $(\mathrm{m}, 6 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.8(\mathrm{~s}, 1 \mathrm{H}), 4.11-4.40(\mathrm{~m}, 4 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.72(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta(\mathrm{ppm}): 14.09,20.04,21.02,21.26,62.38,62.83,65.85,76.20,121.70,122.83,126.67,127.13$, 127.64, 128.32, 128.64, 129.08, 129.21, 133.57, 137.86, 138.26, 139.29, 141.14, 167.62, 168.55, 168.95, 169.82; Enantiomeric excess: 86\%, determined by HPLC (Daicel Chirapak AD-H, hexane/ isopropanol $=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25{ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=7.57 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=11.56 \mathrm{~min}$ (major); IR (KBr): $\gamma 3341,2985,2923,2856,1774,1731,1430,1359,1261,1197,1173,1093,1044$, 1022, $765 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{8}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 520.1971$, found m / z 520.1970; Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{8}$: C, 67.04; H, 5.63; N, 2.70. Found: C, 67.02; H, 5.76; N, 2.45.

Diethyl 4,9-diacetoxy-3-(3-chlorophenyl)-2,3-dihydro-1H-benzo[f]isoindole-1,1-dicarboxylate (5h):

 Yield: 98%; m.p. $180-182{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+57.0\left(\mathrm{c} 2.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})$: 1.26-1.33 (m, 6H), $1.95(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 3.9(\mathrm{~s}, 1 \mathrm{H}), 4.11-4.41(\mathrm{~m}, 4 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.27(\mathrm{~m}$, $3 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.72(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 14.07$, 14.11, 20.08, 20.99, 62.45, 63.00, 65.42, 76.19, 121.66, 122.89, 126.89, 127.19, 127.32, 128.26, 128.46, 128.94, 129.03, 129.82, 132.96, 134.26, 139.35, 141.27, 143.78, 167.56, 168.48, 168.89, 169.72; Enantiomeric excess: 94\%, determined by HPLC (Daicel Chirapak AD-H, hexane/ isopropanol $=85 /$ 15, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30{ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=7.71 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{R}}=9.08 \mathrm{~min}($ major $) ; \mathrm{IR}(\mathrm{KBr})$: $\gamma 3439,3338,2987,2928,1771,1728,1439,1359,1200,1176,1016,767 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{ClNO}_{8}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 540.1425$, found $\mathrm{m} / \mathrm{z} 540.1426$; Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{ClNO}_{8}: \mathrm{C}, 62.28 ; \mathrm{H}, 4.85 ; \mathrm{N}, 2.59$. Found: C, 62.44; H, 4.94; N, 2.44.
Diethyl 4,9-diacetoxy-3-(3-methoxyphenyl)-2,3-dihydro-1H-benzo[f]isoindole-1,1-dicarboxylate

 (5i): Yield: 98%; m.p. $128-130{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+81.6$ (c 2.1, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})$: $1.27-1.32(\mathrm{~m}, 6 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H}), 4.13-4.40(\mathrm{~m}, 4 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H})$, 6.84-6.87 (m, 2H), 6.92-6.94 (m, 1H), 7.22-7.24 (m, 1H), 7.48-7.52 (m, 2H), 7.70-7.72 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 14.09,14.12,20.03,21.02,55.30,62.39,62.90,66.05,76.20$, $113.97,114.10,121.11,121.74,122.86,126.73,127.18,127.52,128.36,129.10,129.46,133.34$, $139.38,141.18,142.91,159.85,167.66,168.54,168.95,169.81$; Enantiomeric excess: 97%, determined by HPLC (Daicel Chirapak AS-H, hexane/ isopropanol $=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=$ $\left.30{ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}=5.61 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=7.24 \mathrm{~min}($ minor $) ; \operatorname{IR}(\mathrm{KBr}): \gamma 3351,2982,2938,1770,1732$,1608, $1360,1240,1198,1173,1044,766 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{9}+\mathrm{H}\right)^{+}$requires m/z 536.1921, found m/z 536.1917; Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{9}$: C, 65.04; H, 5.46; N, 2.62. Found: C, 65.04; H, 5.60; N, 2.40.

Diethyl 4,9-diacetoxy-3-(2,3-dichlorophenyl)-2,3-dihydro-1H-benzo[f]isoindole-1,1- dicarboxylate (5j): Yield: 96%; m.p. $68-70{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=-15.1$ (c 2.2, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})$: 1.27-1.33 (m, 6H), $2.00(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 4.13-4.42(\mathrm{~m}, 4 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.14$ $(\mathrm{m}, 1 \mathrm{H}), 7.12-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.73(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 14.06,14.10,19.94,20.99,61.77,62.39,63.09,76.23$, $121.71,122.99,126.89,127.03,127.39,127.81,128.55,128.98,129.53,129.82,131.75,132.80$, 139.40, 141.45, 167.58, 168.42, 168.84, 169.62; Enantiomeric excess: 91%, determined by HPLC (Daicel Chirapak AS-H, hexane/ isopropanol $=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=$ 7.83 min (major), $\mathrm{t}_{\mathrm{R}}=10.35 \mathrm{~min}$ (minor); IR (KBr): $\gamma 3349,3074,2982,2937,1773,1735,1427,1360$, 1241 1197, 1172, 1094, 1046, $764 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{NO}_{8}+\mathrm{H}\right)^{+}$requires m/z 574.1035, found m/z 574.1042; Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{NO}_{8}$: C, 58.55; H, 4.39; N, 2.44. Found: C, 58.58; H, 4.52; N, 2.17.

Diethyl 4,9-diacetoxy-3-(thiophen-3-yl)-2,3-dihydro-1H-benzo[f]isoindole-1,1-dicarb oxylate (5k): Yield: 96%; m.p. $140-142{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+62.3\left(\mathrm{c} 2.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})$: $1.25-1.31(\mathrm{~m}, 6 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 1 \mathrm{H}), 4.13-4.38(\mathrm{~m}, 4 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 6.93-6.95$ $(\mathrm{m}, 1 \mathrm{H}), 7.24-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.76(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ (ppm): 13.98, 19.94, 20.90, 60.92, 62.35, 62.76, 75.92, 121.61, 122.75, 123.30, 126.24, 126.68, 127.14, $127.23,127.55,128.27,128.95,132.50,139.28,141.13,142.15,167.56,168.42,168.81,169.59$; Enantiomeric excess: 94\%, determined by HPLC (Daicel Chirapak AD-H, hexane/ isopropanol $=70$ / 30 , flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30{ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=5.54 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{R}}=8.13 \mathrm{~min}($ major $) ; \mathrm{IR}(\mathrm{KBr}):$ $\gamma 3436,3343,2980,2924,1773,1731,1610,1429,1359,1241,1198,1174,1094,767 \mathrm{~cm}^{-1} ;$ HRMS: exact mass calcd for $\left(\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{8} \mathrm{~S}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 512.1379$, found $\mathrm{m} / \mathrm{z} 512.1371$; Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{8} \mathrm{~S}: \mathrm{C}, 61.05 ;$ H, 4.93; N, 2.74. Found: C, 61.11; H, 5.04; N, 2.58.

Diethyl 4,9-diacetoxy-3-(furan-2-yl)-2,3-dihydro-1H-benzo[f]isoindole-1,1-dicarboxylate (51):

 Yield: 90%; m.p. $116-118{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+78.1\left(\mathrm{c} 1.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})$: 1.26-1.31 (m, 6H), $2.14(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 1 \mathrm{H}), 4.16-4.37(\mathrm{~m}, 4 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 6.28-6.34$$(\mathrm{m}, 2 \mathrm{H}), 7.36-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.80(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ (ppm): 14.02, 20.27, 20.95, 58.88, 62.53, 62.85, 75.97, 108.35, 110.31, 121.69, 122.86, 126.83, 127.26, 128.50, 128.97, 130.76, 139.36, 141.28, 142.84, 153.16, 167.80, 168.44, 168.71, 169.52; Enantiomeric excess: 90%, determined by HPLC (Daicel Chirapak AD-H, hexane/ isopropanol $=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=8.96 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=11.27 \mathrm{~min}($ major $) ; \operatorname{IR}(\mathrm{KBr}): \gamma 3348,2984$, 2937, 1771, 1732, 1360, 1241, 1198, 1174, 1095, 1045, $767 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{9}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 496.1608$, found $\mathrm{m} / \mathrm{z} 496.1606$; Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{9}$: C, 63.03; H, 5.09; N, 2.83. Found: C, 63.13; H, 5.19; N, 2.63.

Diethyl 4,7-diacetoxy-3-(4-nitrophenyl)isoindoline-1,1-dicarboxylate (5m): Yield: 89\%; m.p. $122-125{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=-50.1\left(\mathrm{c} 1.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 1.27-1.33(\mathrm{~m}, 6 \mathrm{H})$, $1.80(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.39(\mathrm{~m}, 4 \mathrm{H}), 5.70(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.17(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 14.03,14.16,20.30,21.10,62.50,63.12,65.27,76.77,123.67,124.51$, $124.71,129.38$, $130.36,136.73,143.03,144.26,147.71,149.44,167.75,168.45,168.84,169.71$; Enantiomeric excess: 94\%, determined by HPLC (Daicel Chirapak AS-H, hexane/ isopropanol = 70/30, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30{ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=11.15 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=22.60 \mathrm{~min}($ minor $) ; \mathrm{IR}(\mathrm{KBr}):$ $\gamma 3351,2983,2938,1770,1737,1598,1522,1485,1369,1348,1244,1184,1046,1016,938,894,858$, 833, $650 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{10}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 501.1509$, found m / z 501.1504; Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{10}$: C, 57.60 ; H, 4.83; N, 5.60. Found: C, 57.86; H, 4.98; N, 5.26.

Diethyl 4,7-diacetoxy-3-(4-bromophenyl)isoindoline-1,1-dicarboxylate (5n): Yield: 86\%; m.p. $128-130{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=-53.2\left(\mathrm{c} 1.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 1.26-1.31(\mathrm{~m}, 6 \mathrm{H})$, $1.77(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 1 \mathrm{H}), 4.12-4.37(\mathrm{~m}, 4 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.14-7.18 (m, 3H), $7.44(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 14.03,14.12,20.18$, $21.11,62.40,62.91,65.55,76.48,122.00,124.25,124.39,130.14,130.47,131.61,137.32,140.90$, 143.09, 144.15, 167.93, 168.52, 168.95, 169.82; Enantiomeric excess: 94%, determined by HPLC (Daicel Chirapak AD-H, hexane/ isopropanol $=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=$ 7.07 min (minor), $\mathrm{t}_{\mathrm{R}}=12.39 \mathrm{~min}$ (major); IR (KBr): $\gamma 3443,3355,2982,2924,2852,1769,1736,1486$, 1368, 1244, 1184, 1093, 1046, 1013, $892,859,651 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{BrNO}_{8}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 534.0764$, found $\mathrm{m} / \mathrm{z} 534.0757$; Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{BrNO}_{8}$: C, 53.94; H, 4.53; N, 2.62. Found: C, 54.17; H, 4.59; N, 2.45.

Diethyl 4,7-diacetoxy-3-(4-chlorophenyl)isoindoline-1,1-dicarboxylate (5o): Yield: 89\%; m.p. $113-115{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=-52.7\left(\mathrm{c} 1.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 1.26-1.32(\mathrm{~m}, 6 \mathrm{H})$, $1.76(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 1 \mathrm{H}), 4.15-4.34(\mathrm{~m}, 4 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ (ppm): 14.02, 14.11, 20.16, 21.10, 62.38, 62.89, 65.49, 76.47, 124.22, 124.37, 128.64, 129.78, 130.46, $133.85,137.38,140.38,143.09,144.15,167.90,168.50,168.96,169.82$; Enantiomeric excess: 91%, determined by HPLC (Daicel Chirapak AS-H, hexane/ isopropanol $=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=$ $\left.25^{\circ} \mathrm{C}, 254 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}=6.76 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=8.36 \mathrm{~min}($ minor $) ; \mathrm{IR}(\mathrm{KBr}): \gamma 3353,3072,2983,2935,2896$, $1770,1737,1485,1369,1244,1180,1049,1015,841,735,651,593 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{ClNO}_{8}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 490.1269$, found $\mathrm{m} / \mathrm{z} 490.1275$; Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{ClNO}_{8}$: C, 58.84; H, 4.94; N, 2.86. Found: C, 58.82; H, 4.97; N, 2.50.

Diethyl 4,7-diacetoxy-3-(3-methoxyphenyl)isoindoline-1,1-dicarboxylate (5p): Yield: 92\%; m.p. $138-140{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=-49.3\left(\mathrm{c} 1.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 1.26-1.31(\mathrm{~m}, 6 \mathrm{H})$, $1.74(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 1 \mathrm{H}), 4.12-4.37(\mathrm{~m}, 4 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 6.81-6.83(\mathrm{~m}, 2 \mathrm{H})$, 6.85-6.87 (m, 1H), $7.03(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 14.05,14.12,20.11,21.12,55.29,62.35,62.83,66.26,76.55,113.70$, $113.90,120.75,123.99,124.37,129.46,130.55,137.76,143.24,144.11,159.84,168.03,168.56$, 169.08, 169.94; Enantiomeric excess: 94\%, determined by HPLC (Daicel Chirapak AS-H, hexane/ isopropanol $=70 / 30$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, 254 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}=5.84 \min ($ major $), \mathrm{t}_{\mathrm{R}}=7.43$ \min (minor); IR (KBr): $\gamma 3443,3350,3074,2980,2934,2851,1770,1734,1609,1486,1368,1245$, 1210, 1183, 1047, 896, 738, $599 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{9}+\mathrm{H}\right)^{+}$requires m/z 486.1764, found m/z 486.1758; Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{9}$: C, 61.85; H, 5.61; N, 2.89. Found: C, 61.85; H, 5.66; N, 2.64.

Diethyl 4,7-diacetoxy-5,6-dimethyl-3-(4-nitrophenyl)isoindoline-1,1-dicarboxylate (5q): Yield: 89%; m.p. $159-161{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=-14.4$ (c 1.9, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 1.26-1.33$ $(\mathrm{m}, 6 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 1 \mathrm{H}), 4.10-4.40(\mathrm{~m}, 4 \mathrm{H}), 5.65(\mathrm{~s}$, $1 \mathrm{H}), 7.47(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 13.51$, $14.06,14.14,14.35,20.04,20.89,62.37,62.99,65.35,77.30,123.61,127.99,129.45,132.82,133.10$, $134.40,141.90,143.02,147.65,149.85,167.35,167.93,169.11,169.81$; Enantiomeric excess: 94%,
determined by HPLC (Daicel Chirapak IA-H, hexane/ isopropanol $=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=$ $25{ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=6.53 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{R}}=21.54 \mathrm{~min}$ (major); IR (KBr): $\gamma 3434,3367,2982,2926$, 1768, 1736, 1521, 1347, 1189, 1086, 857, 702, $592 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{10}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 529.1822$, found $\mathrm{m} / \mathrm{z} 529.1827$; Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{10}$: C, 59.09; H, 5.34; N, 5.30. Found: C, 59.51; H, 5.52; N, 4.93.

Diethyl 4,7-diacetoxy-5,6-dichloro-3-(4-nitrophenyl)isoindoline-1,1-dicarboxylate (5r): Yield: 78\%; m.p. $124-126{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+5.5\left(\mathrm{c} 1.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 1.29-1.34(\mathrm{~m}$, $6 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.42(\mathrm{~m}, 4 \mathrm{H}), 5.70(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.48(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.18(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 14.03,14.12$, 19.83, 20.64, 62.76, 63.41, 65.42, 77.30, 123.73, 129.19, 129.48, 129.58, 130.12, 136.57, 140.99, $142.43,147.92,148.33,166.17,166.39,168.14,168.93$; Enantiomeric excess: 85%, determined by HPLC (Daicel Chirapak AS-H, hexane/ isopropanol $=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30{ }^{\circ} \mathrm{C}, 254$ $\mathrm{nm}): \mathrm{t}_{\mathrm{R}}=8.53 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=14.53 \mathrm{~min}$ (minor); $\mathrm{IR}(\mathrm{KBr}): \gamma 3435,3357,2983,2925,1782,1735$, 1522, 1429, 1369, 1348, 1170, 1016, $917,861,843,699 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{10}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 569.0730$, found $\mathrm{m} / \mathrm{z} 569.0725$; Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{10}$: C, 50.63; H, 3.89; N, 4.92. Found: C, 50.75; H, 3.97; N, 4.53.

1-(Methoxycarbonyl)-3-(4-nitrophenyl)-1-phenyl-2,3-dihydro-1H-benzo[f]isoindole-4,9-diyldiacet

 ate (5s): Yield: $76 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+82.8\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 1.94(\mathrm{~s}, 3 \mathrm{H})$, $2.19(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.46(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.53-7.57 (m, 2H), 7.69-7.77 (m, 2H), $8.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}):$ $20.13,20.54,53.31,64.89,77.00,121.69,122.59,123.96,127.29,127.52,128.19,128.48,128.83$, $129.35,132.28,132.94,139.38,140.70,140.75,147.80,148.36,167.59,168.63,172.58$; Enantiomeric excess: 89%, determined by HPLC (Daicel Chirapak OD-H, hexane/ isopropanol $=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25{ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=17.56 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=26.96 \mathrm{~min}($ major $) ;$ IR (KBr): $\gamma 3073$, 2950, 2359, 2341, 1770, 1732, 1520, 1348, 1196, 1169, 1030, 858, 765, $698 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{8}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 541.1611$, found $\mathrm{m} / \mathrm{z} 541.1614$.
1-(4-Chlorophenyl)-1-(methoxycarbonyl)-3-(4-nitrophenyl)-2,3-dihydro-1H-benzo[f]isoindole-4,9

 -diyl diacetate (5t): Yield: 80%; $[\alpha]_{\mathrm{D}}{ }^{20}=+108.2\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})$: $1.91(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.47(\mathrm{~d}, J=8.8$$\mathrm{Hz}, 2 \mathrm{H}), 7.54-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.79(\mathrm{~m}, 2 \mathrm{H}), 8.22(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta(\mathrm{ppm}): 20.50,20.58,53.51,64.95,76.38,121.75,122.50,124.01,127.49,127.68,128.57,128.74$, 128.91, 128.97, 129.44, 132.26, 133.00, 134.12, 138.99, 139.36, 140.47, 147.79, 147.89, 167.50, 168.69, 172.07; Enantiomeric excess: 95\%, determined by HPLC (Daicel Chirapak OD-H, hexane/ isopropanol $=85 / 15$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30{ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}=11.80 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=19.34$ $\min ($ major); IR (KBr): $\gamma 3357,3074,2953,2856,2360,2342,1770,1734,1521,1490,1348,1195$, 1168, 1091, 1029, 1013, 829, 769, $591 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{8}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 575.1221$, found m/z 575.1224.

1-(2-Chlorophenyl)-1-(methoxycarbonyl)-3-(4-nitrophenyl)-2,3-dihydro-1H-benzo[f]isoindole-4,9

-diyl diacetate (5u): Yield: 79\%; $[\alpha]_{\mathrm{D}}{ }^{20}=+127.3\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})$: $1.90(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.16(\mathrm{~m}, 1 \mathrm{H})$, 7.26-7.30 (m, 1H), $7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.74-7.79(\mathrm{~m}, 2 \mathrm{H}), 8.23(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 20.10,20.66,53.82,64.87,77.30,121.73,122.48,123.92$, $126.70,127.57,127.88,128.59,128.98,129.11,129.45,129.98,131.03,133.51,133.98,139.57$, 141.02, 147.92, 148.34, 167.48, 172.01; Enantiomeric excess: 85%, determined by HPLC (Daicel Chirapak OD-H, hexane/ isopropanol $=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=13.82$ $\min ($ minor $), \mathrm{t}_{\mathrm{R}}=17.58 \min$ (major); IR (KBr): $\gamma 3353,2972,2922,2355,2330,1770,1732,1520,1348$, 1195, 1169, 1090, 1049, 881, $760 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{8}+\mathrm{H}\right)^{+}$requires m/z 575.1221, found m/z 575.1223.

1-(4-Chlorophenyl)-1-(methoxycarbonyl)-3-(4-nitrophenyl)isoindoline-4,7-diyl diacetate (5v): Yield: 76%; m.p. $177-179{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=-21.3\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})$: $1.81(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.19(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 20.27,20.71,53.35,65.27,76.69,124.00,124.24$, $124.94,128.45,128.59,128.97,134.08,135.26,136.53,139.61,143.30,143.99,147.80,148.40$, 167.83, 168.49, 172.48; Enantiomeric excess: 86%, determined by HPLC (Daicel Chirapak OD-H, hexane/ isopropanol $=70 / 30$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25{ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}=9.04 \mathrm{~min}(\operatorname{minor}), \mathrm{t}_{\mathrm{R}}=$ 11.67 min (major); IR (KBr): $\gamma 3436,2922,2852,1766,1738,1520,1485,1348,1178,1014,872,593$, $567 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{8}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 525.1065$, found m / z 525.1072; Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{8}: \mathrm{C}, 59.49$; H, 4.03; N, 5.34. Found: C, 59.51; H, 4.19; N,

Diethyl 3-(4-chlorophenyl)-4,7-bis(trifluoromethylsulfonyloxy)isoindoline-1,1-dicarboxylate (7):

 $\mathbf{4 p}$ (partially isomerized) was transferred to a test tube. The atmosphere was replaced with argon and pyridine (2 mL) was added. The test tube was placed in an ice-water bath, and then $\mathrm{Tf}_{2} \mathrm{O}(0.30 \mathrm{~mL})$ was added. The reaction mixture was allowed to warm up to room temperature and stirred overnight. The reaction was quenched with water $(10 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with 1 N HCl and saturated NaCl aqueous solution. After removal of the solvent, the residue was purified through column chromatography on a silica gel (eluent: petroleum ether/ethyl acetate $=25 / 1$)to give pure product $7(97.6 \mathrm{mg}, 73 \%) ;[\alpha]_{\mathrm{D}}{ }^{20}=-32.0(\mathrm{c} 1.6$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 1.28-1.33(\mathrm{~m}, 6 \mathrm{H}), 3.93(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.43$ (m, 4H), $5.77(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 13.80,13.83,63.22,63.56,65.58,76.88,118.35\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=319\right.$ $\mathrm{Hz}), 118.40\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=318 \mathrm{~Hz}\right), 122.24,124.41,128.99,129.67,132.70,134.60,138.71,140.28,142.91$, 145.01, 167.93, 168.65; Enantiomeric excess: 93\%, determined by HPLC (Daicel Chirapak AD-H, hexane/ isopropanol $=90 / 10$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}=6.42 \mathrm{~min}(\operatorname{minor}), \mathrm{t}_{\mathrm{R}}=$ 8.80 min (major); IR (KBr): $\gamma 3427,2922,2852,1740,1637,1478,1430,1222,1140,1091,930,880$, $602 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClF}_{6} \mathrm{NO}_{10} \mathrm{~S}_{2}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 670.0043$, found m / z 670.0046.Diethyl 3-(4-chlorophenyl)isoindoline-1,1-dicarboxylate (8): To a dry test tube was added 7 (82.9 $\mathrm{mg}, 0.12 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(9.3 \mathrm{mg}, 0.024 \mathrm{mmol})$ and dppp ($2.7 \mathrm{mg}, 0.012 \mathrm{mmol}$). The atmosphere was replaced with argon and DMF $(1.0 \mathrm{ml})$ was added. The mixture was stirred and was added with $\mathrm{Et}_{3} \mathrm{~N}(167 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ and $\mathrm{HCOOH}(36 \mu \mathrm{~L}, 0.96 \mathrm{mmol})$. The reaction was heated to $90{ }^{\circ} \mathrm{C}$ for 12 hours. Then water $(10 \mathrm{~mL})$ was added to the reaction and extracted with ethyl acetate. The organic phase was combined and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified through column chromatography on a silica gel (eluent: petroleum ether/ethyl acetate $=20 / 1$) to give $8(32.1 \mathrm{mg}, 69 \%) .[\alpha]_{\mathrm{D}}{ }^{20}=-113.3\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})$: 1.26-1.33 (m, 6H), $3.72(\mathrm{~s}, 1 \mathrm{H}), 4.23-4.35(\mathrm{~m}, 4 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.33(\mathrm{~m}$, $6 \mathrm{H}), 7.64(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 14.11,14.13,62.14,62.42,66.12$, $76.91,123.29,125.63,127.73,128.75,129.23,129.37,133.48,135.95,142.23,144.35,169.83,170.72$; Enantiomeric excess: 93\%, determined by HPLC (Daicel Chirapak AS-H, hexane/ isopropanol = 90/ 10,
flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25{ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}=7.43 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=15.26 \min ($ major $) ; \mathrm{IR}(\mathrm{KBr})$: $\gamma 3438,2981,2923,2852,1736,1459,1258,1224,1123,1088,881,748,643,603 \mathrm{~cm}^{-1}$; HRMS: exact mass calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClNO}_{4}+\mathrm{H}\right)^{+}$requires $\mathrm{m} / \mathrm{z} 374.1159$, found $\mathrm{m} / \mathrm{z} 374.1153$.

Reference:

[1]. Ficht, S.; Mulbaier, M.; Giannis, A. Tetrahedron 2001, 57, 4863-4866; Yu, D.; Mattern, D. L. Syn. Соттии. 1999, 29, 821-825.
[2]. Itoh, K.; Fuchibe, K.; Akiyama, T. Angew. Chem. Int. Ed. 2006, 45, 4796-4798.

X-ray single crystal data for 4 j (CCDC 704878)

Reflections collected / unique: $29413 / 7332\left(R_{\text {int }}=0.0201\right)$, number of observations [$\left.I>2 \sigma(I)\right] 6900$, parameters 603. Final R indices $[I>2 \sigma(I)]: R_{I}=0.0571, w R_{2}=0.1429 ; R$ indices (all data): $R_{l}=0.0594$, $w R_{2}=0.1447$.

X-ray single crystal data for 5v (CCDC 742913)

Reflections collected / unique: $14302 / 7313\left(R_{\text {int }}=0.0289\right)$, number of observations [$I>2 \sigma(I)$ 5182, parameters 676. Final R indices $[I>2 \sigma(I)]: R_{I}=0.0425, w R_{2}=0.0868 ; R$ indices (all data): $R_{I}=0.0651$, $w R_{2}=0.0934$.

Selected NMR and HPLC

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009

Report Method: Untitled Printed 11:02:31 PM/15/2009 Page: 10f 1

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009

Report Method: Untitled Printed 11:54:49 PM/15/2009 Page: 1 of 1

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009

Report Method: Untitled Printed 11:36:54 PM/16/2009 Page: 1 of 1

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009

Report Method: Untitled				Printed 11:39:01 PM/16/2009					Page: 1 of 1
USTC Project Name: Reported by User:		hao stem							Breele
SAMPLEINTI INTI									
Sample Name: Sample Type: Vial: Injection \#: Injection Volume: Run Time:		wro90106-1-Ac-AD15\% Unknowen 1 4 20.00 ul 100.00 Minutes			Acquired By: Date Acquired: Acq. Method: Date Processed: Channel Name: Sample Set Name: System 1/8/2009 1:29:16 AM wrchao2 $1 / 8 / 2009$ 1:44:35 AM 2487 Channel 1				
0.30 0.25 0.20 0.15 0. 10 0.05 0.00			4.00	6.00		ses	T0, ∞	12,00	14.00
		$\begin{gathered} \mathrm{RT} \\ \text { (min) } \end{gathered}$	$\begin{gathered} \text { Area } \\ \left(V^{*} \sec \right) \end{gathered}$	\% Area	$\begin{aligned} & \text { Height } \\ & \text { (V) } \end{aligned}$	$\begin{gathered} \% \\ \text { Height } \end{gathered}$			
	1	7.567	721473	7.15	41343	11.15			
	2	11.564	9375272	92.85	329380	88.85			

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009

Report Method: Untitled Printed 12:01:55 AM/16/2009 Page: 1 of 1

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009

Report Method: Untitled Printed 12:06:47 AM/16/2009 Page: 1 of 1

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009

Report Method: Untitled Printed 10:38:38 PM/16/2009 Page: 1 of 1

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009

Report Method: Untitled Printed 10:54:25 PM/16/2009 Page: 1 of 1

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009

Report Method: Untitled Printed 11:19:05 PM/16/2009 Page: 10f 1

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009

Report Method: Untitled Printed 11:23:19 PM/16/2009 Page: 1 of 1

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009

Report Method: Untitled Printed 11:28:57 PM/16/2009 Page: 1 of 1

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009

Report Method: Untitled Printed 11:34:56 PM/16/2009 Page: 1 of 1

