# Supporting Information

# Tandem Nazarov cyclization-halovinylation of divinyl ketones under Vilsmeier conditions: synthesis of highly substituted cyclopentadienes

Mang Wang,\* Feng Han, Hongjuan Yuan, Qun liu\*

Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

wangm452@nenu.edu.cn

# Table of contents

| I. General information                                                             | S2       |  |  |  |  |  |
|------------------------------------------------------------------------------------|----------|--|--|--|--|--|
| II. Synthetic procedures/analytical data of compounds 1                            |          |  |  |  |  |  |
| III. Synthetic procedures/analytical data of compounds 2 and III                   | S9       |  |  |  |  |  |
| VI. Synthesis of polyaryles 3: $[4 + 2]$ cycloaddition of 2 with                   | dimethyl |  |  |  |  |  |
| 2-butynedioate                                                                     | S17      |  |  |  |  |  |
| V. Crystal data and ORTEP drawing of compound <b>2f</b>                            | S18      |  |  |  |  |  |
| VI. References                                                                     | S19      |  |  |  |  |  |
| VII. Copies of <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of new compounds | S20      |  |  |  |  |  |

#### I. General information

All reagents were commercial and used without further purification, unless otherwise indicated. Chromatography was carried on flash silica gel (300-400 mesh). All reactions were monitored by TLC, which was performed on precoated aluminum sheets of silica gel 60 (F254). Melting points were uncorrected. The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were determined at 25°C on a 500 MHz and 125 MHz, respectively, and TMS as internal standard. All shifts are given in ppm. IR (KBr) spectra were recorded on in the range of 400–4000 cm<sup>-1</sup>. Mass spectra were obtained using the ESI method. Elemental analyses were measured on a GmbH VarioEL analyzer (Elementar Analysensysteme). The compound **2f** with dimension  $0.40 \times 0.30 \times 0.25$  mm, was glued on a glass fiber. Data were collected at 273K using graphite-monochromated Mo K $\alpha$  radiation ( $\lambda = 0.71073$ Å) and Bruker APEX CCD area-detector in the range  $1.70^{\circ} < \theta < 26.07^{\circ}$ . Absorption corrections were applied using multi-scan technique. The structure was solved by Direct Method of SHELXS-97<sup>1</sup> and refined by full-matrix least-squares techniques using the SHELXL-97 program<sup>2</sup> within WINGX.<sup>3</sup> Non-hydrogen atoms were refined with anisotropic temperature parameters except C7, C8, C7' and C8'. The disordered atoms C7 and C8 have been refined using C atoms split over two sites, with a total occupancy of 1. The hydrogen atoms of the organic ligands were refined as rigid groups. Substrates 1 were prepared following the procedure described in our previous work.<sup>4</sup> D, 1m and  $1n^{4a}$  are known compounds.

#### II. Synthetic procedures/analytical data of compounds 1.



General procedure for the synthesis of 1a-g, 1k and 1l (taking 1a as an example): To a well-stirred suspension of 1-(4-methoxyphenyl)propan-2-one (3.28 g, 20 mmol), anhydrous K<sub>2</sub>CO<sub>3</sub> (6.90 g, 50 mmol) and anhydrous DMF (50 mL) was added CS<sub>2</sub> (1.46 mL, 24 mmol) at 0 °C. After the reaction mixture was stirred at 0 °C for 0.5 h, 1,2-dibromoethane (1.74 mL, 20 mmol) was added dropwise within 15 min. The resulting mixture was stirred for 10 h at room temperature. Then, the mixture was poured into 200 mL of saturated aqueous NH<sub>4</sub>Cl and extracted with CH<sub>2</sub>Cl<sub>2</sub> (50 mL  $\times$  3). The combined organic phase was washed with water (50 mL  $\times$  3), dried over anhydrous MgSO<sub>4</sub>, filtered and concentrated in vacuo. The crude product was purified by flash chromatography (silica gel, petroleum ether/diethvl ether: 10/1) to give 1-(1,3-dithiolan-2-ylidene)-1-(4-methoxyphenyl) propan-2-one A (4.69 g, 88%) as a yellow crystal. Then, to a stirred solution of A (266 mg, 1.0 mmol) and benzaldehyde (0.11 mL, 1.1 mmol) in EtOH (5.0 mL) was added NaOH (60 mg, 1.5 mmol) in one portion at room temperature. After A was consumed as indicated by TLC, the resulting mixture was quenched by ice-water (20 mL) under stirring and neutralized with dilute hydrochloric acid. The precipitate was collected by filtration, washed with water (15 mL  $\times$  3) and dried at ambience to give **1a** (326 mg, 92%) as a yellow crystal.

**General procedure for the synthesis of 1h–j (taking 1h as an example):** To a well-stirred suspension of anhydrous *t*-BuOK (4.94 g, 44 mmol) and 1-(2-methoxyphenyl)propan-2-one (3.12 mL, 20 mmol) in 50 mL of anhydrous DMF were added CS<sub>2</sub> (1.32 mL, 20 mmol) at 0 °C. After the

reaction mixture was stirred at 0 °C for 0.5 h, 1,2-dibromoethane (1.74 mL, 20 mmol) was added dropwise within 30 min. The mixture was allowed to warm to room temperature and stirred for 10 h, and then poured into saturated aqueous NH<sub>4</sub>Cl (200 mL) under stirring. The resulting mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (50 mL × 3). The combined organic phase was washed with water (50 mL × 3), dried over anhydrous MgSO<sub>4</sub>, filtered and concentrated in vacuo. The crude product was purified by flash chromatography (silica gel, petroleum ether/diethyl ether: 2/1) to give 1-(1,3-dithiolan-2-ylidene)-1-(2-methoxyphenyl) propan-2-one **B** (3.46 g, 65%) as a yellow crystal. Then, to a solution of **B** (266 mg, 1.0 mmol) in *t*-BuOH (5 mL) was added *t*-BuOK (168 mg, 1.5 mmol) and benzaldehyde (0.11 mL, 1.1 mmol) under stirring. The reaction mixture was stirred at 30 °C for 5.0 h. After the starting material **B** was consumed as indicated by TLC, the resulting mixture was poured into water and neutralized with dilute hydrochloric acid. The resulting precipitate was collected by filtration, washed with water (10 mL × 3) and dried at ambience to give **1h** (304 mg, 86%) as a yellow crystal.

**Synthesis of 1m:** To a well-stirred suspension of anhydrous *t*-BuOK (4.94 g, 44 mmol) and 2-butanone (1.8 mL, 20 mmol) in 50 mL of anhydrous DMF were added CS<sub>2</sub> (1.32 mL, 20 mmol) at 0 °C. After the reaction mixture was stirred at 0 °C for 1.5 h, 1,2-dibromoethane (1.74 mL, 20 mmol) was added dropwise within 30 min. The mixture was allowed to warm to room temperature and stirred for 10 h, and then poured into saturated aqueous NH<sub>4</sub>Cl (200 mL) under stirring. The resulting mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (50 mL × 3). The combined organic phase was washed with water (50 mL × 3), dried over anhydrous MgSO<sub>4</sub>, filtered and concentrated in vacuo. The crude product was purified by flash chromatography (silica gel, petroleum ether/diethyl ether: 2/1) to give 3-(1,3-dithiolan-2-ylidene)butan-2-one **D** (695 mg, 20%) as a white solid. Then, to a stirred solution of **D** (174 mg, 1.0 mmol) and benzaldehyde (0.11 mL, 1.1 mmol) in EtOH (5.0 mL) was added NaOH (60 mg, 1.5 mmol) in one portion at room temperature. After **C** was consumed as indicated by TLC, the resulting mixture was quenched by ice-water (20 mL) under stirring and neutralized with dilute hydrochloric acid. The precipitate was collected by filtration, washed with water (15 mL × 3) and dried at ambience to give **1m** (212 mg, 81%) as a yellow crystal.

General procedure for the synthesis of 1'a–c (taking 1'a as an example): A solution of 1-(4-methoxyphenyl)propan-2-one (1.64 g, 10 mmol), benzaldehyde (4.0 ml, 40 mmol), piperidine (4.0 ml, 4.0 mmol), and acetic acid (0.6 ml, 6.0 mmol) in benzene (25 mL) was heated under reflux for 24 h with azotropic removal of water using a Dean–Stark trap. The reaction mixture was diluted with EtOAc (200 mL), washed with H<sub>2</sub>O (100 mL  $\times$  3), saturated aqueous NaHCO<sub>3</sub> (100 mL  $\times$  3), dried (MgSO<sub>4</sub>), and concentrated in vacuo. The residue was chromatographed over silica gel (elute, petroleum ether/diethyl ether: 6/1) to give 1'a (1.74 g, 51%).

# 1-(1,3-Dithiolan-2-ylidene)-1-(4-methoxyphenyl)propan-2-one (A)



Yellow crystal; mp 80–82 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 1.98$  (s, 3H), 3.21 (t, J = 6.5 Hz, 2H), 3.46 (t, J = 6.0 Hz, 2H), 3.85 (s, 3H), 6.96 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 194.1$ , 164.7, 159.4, 133.2, 131.1 (2C), 126.6, 114.5 (2C), 55.5, 40.1, 35.9, 28.7. IR (KBr): 3061, 2926, 2837, 1634, 1513, 1468, 1281 cm<sup>-1</sup>. MS (ESI): m/z = 267.0 [(M+1)]<sup>+</sup>. Anal. Calcd for C<sub>13</sub>H<sub>14</sub>O<sub>2</sub>S<sub>2</sub>: C, 58.62; H, 5.30; Found: C, 58.83; H, 5.21.

# 1-(1,3-Dithiolan-2-ylidene)-1-(2-methoxyphenyl)propan-2-one (B)



Yellow crystal; mp 118–120 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 1.94$  (s, 3H), 3.20 (t, J = 6.5 Hz, 2H), 3.43–3.47 (m, 2H), 3.79 (s, 3H), 6.96–7.01 (m, 2H), 7.20–7.21 (m, 1H), 7.35–7.38 (m, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 193.8$ , 163.0, 156.67, 131.2, 129.7, 129.0, 122.8, 120.7, 111.0, 55.3, 39.5, 35.3, 27.4. IR (KBr): 3059, 2996, 1643, 1474, 1466, 1303, 1264 cm<sup>-1</sup>. MS (ESI):  $m/z = 267.0 [(M+1)]^+$ . Anal. Calcd for C<sub>13</sub>H<sub>14</sub>O<sub>2</sub>S<sub>2</sub>: C, 58.62; H, 5.30; Found: C, 58.90; H, 5.13.

#### 1-(1,3-Dithiolan-2-ylidene)-1-(4-fluorophenyl)propan-2-one (C)



Yellow crystal; mp 126–127°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 1.97$  (s, 3H), 3.22 (t, J = 6.5 Hz, 2H), 3.45 (t, J = 6.5 Hz, 2H), 7.12–7.14 (m, 2H), 7.21–7.23 (m, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz):  $\delta = 193.2$ . 164.9, 162.3 (d, J = 246.0 Hz, 1C), 136.5, 131.5, 131.4, 125.7, 116.0 (d, J = 21.5 Hz, 2C), 39.7, 35.7, 28.4. IR (KBr): 3056, 1626, 1509, 1548, 1253, 1236 cm<sup>-1</sup>. MS (ESI): m/z = 255.0 [(M + 1)]<sup>+</sup>. Anal. Calcd for C<sub>12</sub>H<sub>11</sub>FOS<sub>2</sub>: C, 56.67; H, 4.36; Found: C, 56.41; H, 4.50.

#### 3-(1,3-Dithiolan-2-ylidene)butan-2-one (D)



White crystal; mp 56–58 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 2.19$  (s, 3H), 2.27 (s, 3H), 3.31–3.41 (m, 4H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 194.5$ , 159.3, 119.5, 39.5, 35.7, 27.7, 19.9. IR (KBr): 3024, 2967, 1510, 1239, 829 cm<sup>-1</sup>. MS (ESI):  $m/z = 175.0 [(M+1)]^+$ . Anal. Calcd for C<sub>7</sub>H<sub>10</sub>OS<sub>2</sub>: C, 48.24; H, 5.78; Found: C, 48.01; H, 5.64.

#### (E)-1-(1,3-Dithiolan-2-ylidene)-1-(4-methoxyphenyl)-4-phenylbut-3-en-2-one (1a)



Light yellow crystal; mp 136–138 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.25$  (t, J = 6.0 Hz, 2H), 3.49 (t, J = 6.0 Hz, 2H), 3.88 (s, 3H), 6.65 (d, J = 16.0 Hz, 1H), 6.99 (d, J = 9.0 Hz, 2H), 7.24 (t, J = 8.5 Hz, 2H), 7.26–7.29 (m, 3H), 7.35 (t, J = 7.5 Hz, 2H), 7.67 (d, J = 16.0 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 184.6$ , 167.0, 159.5, 142.6, 135.6, 132.2, 131.6 (2C), 130.1, 128.9 (2C), 128.5 (2C), 127.3, 123.9, 114.5 (2C), 55.5, 40.1, 35.9. IR (KBr): 3047, 2915, 1636, 1571, 1452, 1241 cm<sup>-1</sup>. MS (ESI): m/z = 355.0 [(M+1)]<sup>+</sup>. Anal. Calcd for C<sub>20</sub>H<sub>18</sub>O<sub>2</sub>S<sub>2</sub>: C, 67.76; H, 5.12; Found: C, 67.99; H, 5.04.

#### (E)-1-(1,3-Dithiolan-2-ylidene)-1,4-bis(4-methoxyphenyl)but-3-en-2-one (1b)



Light yellow crystal; mp 208–210 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.24$  (t, J = 5.5 Hz, 2H), 3.47–3.49 (m, 2H), 3.79 (s, 3H), 3.88 (s, 3H), 6.51 (d, J = 15.5 Hz, 1H), 6.81 (t, J = 7.0 Hz, 2H), 6.98 (t, J = 7.0 Hz, 2H), 7.22(t, J = 7.0 Hz, 2H), 7.30 (t, J = 7.0 Hz, 2H), 7.63 (d, J = 15.5 Hz, 1H), <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 184.8$ , 161.3, 159.5, 142.4, 132.4, 131.6 (2C), 130.2 (2C), 128.4, 127.4, 121.7 (2C), 114.4 (4C), 55.6, 55.5, 40.1, 35.9. IR (KBr): 3069, 2919, 1604, 1565, 1511, 1458, 1243 cm<sup>-1</sup>. MS (ESI): m/z = 385.0 [(M+1)]<sup>+</sup>. Anal. Calcd for C<sub>21</sub>H<sub>20</sub>O<sub>3</sub>S<sub>2</sub>: C, 65.60; H, 5.24; Found: C, 67.81; H, 5.16.

#### (E)-4-(biphenyl-4-yl)-1-(1,3-dithiolan-2-ylidene)-1-(4-methoxyphenyl)but-3-en-2-one (1c)



Yellow crystal; mp 208–210 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  = 3.23 (t, *J* = 6.0 Hz, 2H), 3.47 (t, *J* = 6.0 Hz, 2H), 3.88 (s, 3H), 6.66 (d, *J* = 15.5 Hz, 1H), 7.00 (d, *J* = 8.5 Hz, 2H), 7.23 (d, *J* = 8.5 Hz, 2H), 7.41–7.43 (m, 4H), 7.51–7.56 (m, 5H), 7.69 (d, *J* = 15.5 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  = 184.2, 166.6, 159.2, 142.5, 141.8, 140.1, 134.3, 131.9, 131.3, 130.9, 128.8 (2C), 128.7 (2C), 127.6, 127.3, 127.0, 126.9 (2C), 126.1, 123.5, 114.5, 114.2, 55.2, 39.8, 35.6. IR (KBr): 3064, 2920, 1635, 1407, 1239, 664 cm<sup>-1</sup>. MS (ESI): *m/z* = 431.1 [(M+1)]<sup>+</sup>. Anal. Calcd for C<sub>26</sub>H<sub>22</sub>O<sub>2</sub>S<sub>2</sub>: C, 72.52; H, 5.15; Found: C, 72.21; H, 5.20.

#### (E)-1-(1,3-Dithiolan-2-ylidene)-4-(4-fluorophenyl)-1-(4-methoxyphenyl)but-3-en-2-one (1d)



Light yellow crystal; mp 142–144 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.26$  (t, J = 6.0 Hz, 2H), 3.51 (t, J = 6.0 Hz, 2H), 3.89 (s, 3H), 6.56 (d, J = 15.5 Hz, 1H), 6.96–7.00 (m, 4H), 7.23 (d, J = 8.0 Hz, 2H), 7.33–7.34 (m, 2H), 7.62 (d, J = 15.5 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 184.4$ , 167.1, 161.5, 159.6, 141.3, 132.2, 131.6 (2C), 130.3 (2C), 130.2, 127.2, 123.5, 116.1 (d, J = 22.0 Hz, 2C), 114.5 (2C), 55.5, 40.1, 35.9. IR (KBr): 3063, 2918, 1601, 1571, 1509, 1453, 1241, 1157 cm<sup>-1</sup>. MS (ESI): m/z = 373.0 [(M+1)]<sup>+</sup>. Anal. Calcd for C<sub>20</sub>H<sub>17</sub>FO<sub>2</sub>S<sub>2</sub>: C, 64.49; H, 4.60; Found: C, 64.80; H, 4.41.

#### (E)-4-(4-Chlorophenyl)-1-(1,3-dithiolan-2-ylidene)-1-(4-methoxyphenyl)but-3-en-2-one (1e)



Light yellow crystal; mp 152–154 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.26$  (t, J = 6.5 Hz, 2H), 3.50 (t, J = 6.5 Hz, 2H), 3.88 (s, 3H), 6.60 (d, J = 15.5 Hz, 1H), 6.99 (d, J = 9.0 Hz, 2H), 7.22 (d, J = 8.5 Hz, 2H), 7.25 (t, J = 8.5 Hz, 4H), 7.60 (d, J = 15.5 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 184.3$ , 167.5, 159.6, 141.17, 135.8, 134.1, 132.1, 131.6 (2C), 129.6 (2C), 129.2 (2C), 127.2, 124.3, 114.5 (2C), 55.5, 40.1, 36.0. IR (KBr): 3055, 2920, 1637, 1578, 1453, 1242 cm<sup>-1</sup>. MS (ESI): m/z =

389.0 [(M+1)]<sup>+</sup>. Anal. Calcd for C<sub>20</sub>H<sub>17</sub>ClO<sub>2</sub>S<sub>2</sub>: C, 61.76; H, 4.41; Found: C, 61.94; H, 4.30.

#### (*E*)-1-(1,3-Dithiolan-2-ylidene)-1-(4-methoxyphenyl)-4-(4-nitrophenyl)but-3-en-2-one (1f) MeO



Yellow crystal; mp 168–170 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.27$  (t, J = 6.0 Hz, 2H), 3.51 (t, J = 6.0 Hz, 2H), 3.87 (s, 3H), 6.72 (d, J = 16.0 Hz, 1H), 6.98 (d, J = 8.5 Hz, 2H), 7.21 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 7.63 (d, J = 15.5 Hz, 1H), 8.12 (d, J = 8.5 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 183.5$ , 169.2, 159.7, 148.2, 141.9, 139.3, 131.7, 131.6, 128.9 (2C), 127.7, 127.0, 126.7, 124.2, 123.8, 114.6 (2C), 55.5, 40.2, 36.1. IR (KBr): 3044, 2833, 1582, 1510, 1443, 1334, 1281, 1243 cm<sup>-1</sup>. MS (ESI):  $m/z = 400.0 [(M+1)]^+$ . Anal. Calcd for C<sub>20</sub>H<sub>17</sub>NO<sub>4</sub>S<sub>2</sub>: C, 60.13; H, 4.29; N, 3.51; Found: C, 60.33; H, 4.20; N, 3.56.

(E)-1-(1,3-Dithiolan-2-ylidene)-1-(4-methoxyphenyl)-5,5-dimethylhex-3-en-2-one (1g)



MeO

Light yellow crystal; mp 140–142 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 0.93$  (s, 9H), 3.23 (t, J = 6.5 Hz, 2H), 3.47 (t, J = 6.5 Hz, 2H), 3.86 (s, 3H), 5.91 (d, J = 15.5 Hz, 1H), 6.91 (d, J = 15.5 Hz, 1H), 6.95 (d, J = 8.5 Hz, 2H), 7.17 (d, J = 8.5 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 185.3$ , 165.6, 159.1, 157.0, 132.1, 131.2 (2C), 126.8, 121.8, 114.1 (2C), 55.2, 39.7, 35.5, 33.7, 28.6 (3C). IR (KBr): 3038, 2965, 1642, 1585, 1513, 1445, 1324, 1247 cm<sup>-1</sup>. MS (ESI): m/z = 335.0 [(M+1)]+. Anal. Calcd for C<sub>18</sub>H<sub>22</sub>O<sub>2</sub>S<sub>2</sub>: C, 64.63; H, 6.63; Found: C, 64.90; H, 6.52.

# (E)-1-(1,3-Dithiolan-2-ylidene)-1-(2-methoxyphenyl)-4-phenylbut-3-en-2-one (1h)



Light yellow crystal; mp 102–104 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.24$  (t, J = 6.0 Hz, 2H), 3.48 (t, J = 6.0 Hz, 2H), 3.75 (s, 3H), 6.57 (d, J = 15.5 Hz, 1H), 7.00 (d, J = 8.5 Hz, 1H), 7.04 (t, J = 7.0 Hz, 1H), 7.27 (t, J = 7.0 Hz, 4H), 7.32 (t, J = 7.0 Hz, 2H), 7.40–7.44 (m, 1H), 7.67 (d, J = 15.5 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 184.4$ , 165.6, 157.2, 141.8, 135.5, 131.8 (2C), 130.0, 129.6, 128.6 (2C), 128.3, 128.0 (2C), 123.5, 120.9, 111.3, 55.6, 39.7, 35.5. IR (KBr): 3025, 2900, 1639, 1584, 1445, 1332, 1245 cm<sup>-1</sup>. MS (ESI):  $m/z = 355.0 [(M+1)]^+$ . Anal. Calcd for C<sub>20</sub>H<sub>18</sub>O<sub>2</sub>S<sub>2</sub>: C, 67.76; H, 5.12; Found: C, 67.96; H, 5.03.

(E)-1-(1,3-Dithiolan-2-ylidene)-1-(2-methoxyphenyl)-4-(4-methoxyphenyl)but-3-en-2-one (1i)



Light yellow crystal; mp 150–152 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.20-3.23$  (m, 2H), 3.46–3.48 (m, 2H), 3.74 (s, 3H), 3.76 (s, 3H), 6.45 (d, J = 15.5 Hz, 1H), 6.79 (d, J = 6.5 Hz, 2H), 7.00–7.05 (m, 2H), 7.24–7.28 (m, 3H), 7.40–7.42 (m, 1H), 7.64 (d, J = 15.5 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 184.4$ , 164.8, 160.8, 141.5, 131.7 (2C), 129.9, 129.6 (2C), 128.4, 128.1, 123.5, 121.2, 120.8, 114.0 (2C), 111.2, 55.6, 55.2, 39.6, 35.4. IR (KBr): 3054, 2932, 2832, 1637, 1573, 1460, 1244, 1140 cm<sup>-1</sup>. MS (ESI):  $m/z = 385.0 [(M+1)]^+$ . Anal. Calcd for C<sub>21</sub>H<sub>20</sub>O<sub>3</sub>S<sub>2</sub>: C, 65.60; H, 5.24; Found: C, 67.81; H, 5.15.

(E)-4-(4-Chlorophenyl)-1-(1,3-dithiolan-2-ylidene)-1-(2-methoxyphenyl)but-3-en-2-one (1j)



Light yellow crystal; mp 117–119 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.25$  (t, J = 6.0 Hz, 2H), 3.49 (t, J = 6.0 Hz, 2H), 3.75 (s, 3H), 6.53 (d, J = 16.0 Hz, 1H), 7.00 (d, J = 8.0 Hz, 1H), 7.04 (t, J = 7.5 Hz, 1H), 7.23–7.26 (m, 5H), 7.43 (t, J = 7.5 Hz, 1H), 7.60 (d, J = 16.0 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 184.0$ , 166.1, 157.1, 140.3, 135.3, 134.0, 131.8, 130.1, 129.1 (2C), 128.8 (2C), 128.1, 124.0, 123.4, 120.9, 111.3, 55.6, 39.7, 35.5. IR (KBr): 3063, 2938, 1639, 1584, 1445, 1245 cm<sup>-1</sup>. MS (ESI): m/z = 389.0 [(M+1)]<sup>+</sup>. Anal. Calcd for C<sub>20</sub>H<sub>17</sub>ClO<sub>2</sub>S<sub>2</sub>: C, 61.76; H, 4.41; Found: C, 62.02; H, 4.33.

(E)-1-(1,3-Dithiolan-2-ylidene)-1-(4-fluorophenyl)-4-phenylbut-3-en-2-one (1k)



Yellow crystal; mp 174–175°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.25$  (t, J = 6.5 Hz, 2H), 3.48 (t, J = 6.5 Hz, 2H), 6.55 (d, J = 15.5 Hz, 1H), 7.14 (t, J = 8.5 Hz, 2H), 7.29–7.33 (m, 7H), 7.66 (d, J = 15.5 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz):  $\delta = 183.8$ , 167.2, 162.4 (d, J = 247.0 Hz, 1C), 142.6, 135.5, 135.1, 132.0, 131.9, 129.9, 128.7 (2C), 128.1 (2C), 126.2, 123.2, 116.0 (d, J = 20.2 Hz, 2C), 39.7, 35.7. IR (KBr): 3052, 2913, 1637, 1574, 1445, 1246, 1161 cm<sup>-1</sup>. MS (ESI): m/z = 343.1 [(M + 1)]<sup>+</sup>. Anal. Calcd for C<sub>19</sub>H<sub>15</sub>FOS<sub>2</sub>: C, 66.64; H, 4.41; Found: C, 66.82; H, 4.30.

#### (E)-4-(4-Chlorophenyl)-1-(1,3-dithiolan-2-ylidene)-1-(4-fluorophenyl)but-3-en-2-one (11)



Yellow crystal; mp 180–181°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.27$  (t, J = 6.0 Hz, 2H), 3.49 (t, J = 6.0 Hz, 2H), 6.51 (d, J = 15.5 Hz, 1H), 7.14 (t, J = 8.5 Hz, 2H), 7.28–7.29 (m, 6H), 7.59 (d, J = 15.5 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz):  $\delta = 183.5$ , 167.7, 162.4 (d, J = 247.0 Hz, 1C), 141.1, 135.7, 135.4, 133.7, 132.0, 131.9, 129.3 (2C), 128.9 (2C), 126.1, 123.6, 116.3 (d, J = 20.5 Hz, 2C), 39.7, 35.8. IR (KBr): 3055, 1597, 1445, 1336, 1161, 734 cm<sup>-1</sup>. MS (ESI): m/z = 377.0 [(M + 1)]<sup>+</sup>. Anal. Calcd for C<sub>19</sub>H<sub>14</sub>CIFOS<sub>2</sub>: C, 60.55; H, 3.74; Found: C, 60.33; H, 3.91.

#### (*E*)-4-(1,3-Dithiolan-2-ylidene)-1-phenylpent-1-en-3-one (1m)



Yellow crystal; mp 98–100 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  = 2.34 (s, 3H), 3.35–3.43 (m, 4H), 7.23 (d, *J* = 15.5 Hz, 1H), 7.37–7.40 (m, 3H), 7.57–7.59 (m, 2H), 7.72 (d, *J* = 15.5 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  = 185.5, 161.5, 143.1, 135.4, 129.9, 128.8 (2C), 128.2 (2C), 122.2, 119.9, 39.4, 35.8, 19.4. IR (KBr): 3061, 2930, 1643, 1577, 1479, 1230, 675 cm<sup>-1</sup>. MS (ESI): *m/z* = 263.0 [(M+1)]<sup>+</sup>. Anal. Calcd for: C<sub>14</sub>H<sub>14</sub>OS<sub>2</sub>: C, 64.08; H, 5.83; Found: C, 64.22; H, 5.76.

(1Z,4E)-2-(4-Methoxyphenyl)-1,5-diphenylpenta-1,4-dien-3-one (1'a)



Yellow crystal; mp 136–138 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  = 3.87 (s, 3H), 6.94 (d, *J* = 7.0 Hz, 2H), 6.97 (s, 1H), 7.13–7.23 (m, 7H), 7.34–7.35 (m, 3H), 7.45–7.47 (m, 2H), 7.69 (s, 1H), 7.72 (d, *J* = 15.5 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  = 191.3, 159.3, 143.6, 140.8, 138.3, 135.1, 134.9, 131.0 (2C), 130.8 (2C), 130.3, 129.0 (2C), 128.8 (2C), 128.4 (2C), 128.2 (2C), 123.3, 114.5 (2C), 55.2. IR (KBr): 3064, 2921, 1658, 1610, 1408, 1246, 690 cm<sup>-1</sup>. MS (ESI): *m/z* = 341.0 [(M+1)]<sup>+</sup>. Anal. Calcd for: C<sub>24</sub>H<sub>20</sub>O<sub>2</sub>: C, 84.68; H, 5.92; Found: C, 84.80; H, 5.78.

(1Z,4E)-1,2,5-Tris(4-methoxyphenyl)penta-1,4-dien-3-one (1'b)



Yellow crystal; mp 38–40 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  = 3.76 (s, 3H), 3.81 (s, 3H), 3.88 (s, 3H), 6.70 (d, *J* = 9.0 Hz, 2H), 6.79 (d, *J* = 15.5 Hz, 1H), 6.84 (d, *J* = 8.5 Hz, 2H), 6.97 (d, *J* = 8.5 Hz, 2H), 7.07 (d, *J* = 8.5 Hz, 2H), 7.16 (d, *J* = 8.5 Hz, 2H), 7.40 (d, *J* = 8.5 Hz, 2H), 7.68 (t, *J* = 11.0 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  = 190.9, 161.3, 160.1, 159.2, 143.1, 138.9, 138.0, 132.6 (2C), 131.1 (2C), 131.2, 130.1 (2C), 129.5, 127.9, 121.2, 114.6 (2C), 114.2 (2C), 113.7 (2C), 55.3, 55.2 (2C). IR (KBr): 3065, 2935, 2837, 1649, 1510, 1304, 1175, 831 cm<sup>-1</sup>. MS (ESI): *m/z* = 401.0 [(M+1)]<sup>+</sup>. Anal. Calcd for: C<sub>26</sub>H<sub>24</sub>O<sub>4</sub>: C, 77.98; H, 6.04; Found: C, 78.09; H, 6.09.

(1Z,4E)-1,5-Bis(4-fluorophenyl)-2-(4-methoxyphenyl)penta-1,4-dien-3-one (1'c)



Yellow crystal; mp 108–110 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  = 3.88 (s, 3H), 6.82 (d, *J* = 15.5 Hz, 1H), 6.88 (t, *J* = 9.0 Hz, 2H), 6.97 (d, *J* = 8.5 Hz, 2H), 7.03 (t, *J* = 9.0 Hz, 2H), 7.09–7.16 (m, 4H), 7.42–7.45 (m, 2H), 7.65 (s, 1H), 7.69 (d, *J* = 15.5 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  = 190.8, 163.0 (d, *J* = 150 Hz, 1C), 162.0 (d, *J* = 150 Hz, 1C), 159.5, 142.4, 140.5, 137.1, 132.8, 132.7, 131.2, 131.0 (2C), 130.3 (2C), 130.2, 128.5, 122.9, 115.0 (d, *J* = 21.5 Hz, 2C), 115.3 (d, *J* = 21.5 Hz, 2C), 114.8 (2C), 55.3. IR (KBr): 3016, 2965, 1611, 1506, 1175, 832 cm<sup>-1</sup>. MS (ESI): *m/z* = 377.0 [(M+1)]<sup>+</sup>. Anal. Calcd for: C<sub>24</sub>H<sub>18</sub>F<sub>2</sub>O<sub>2</sub>: C, 76.58; H, 4.82; Found: C, 76.42; H, 5.01.

## III. Synthetic procedures/analytical data of compounds 2 and III. Optimization of the reaction conditions.

| $\frac{O}{C_{6}H_{4}OMe-4} \xrightarrow{POCl_{3}/DMF} C_{6}H_{4}OMe-4$ $Ph S S Ph S Ph S Ph S Ph S Ph S Ph S Ph$ |          |                           |       |                |                 |  |
|------------------------------------------------------------------------------------------------------------------|----------|---------------------------|-------|----------------|-----------------|--|
|                                                                                                                  |          | 1a                        |       |                | 2a              |  |
| Entry <sup>a</sup>                                                                                               | DMF (mL) | POCl <sub>3</sub> (equiv) | t (h) | $T(^{\circ}C)$ | Yield $(\%)^b$  |  |
| 1                                                                                                                | 10       | 1.0                       | 12    | rt             | NR <sup>c</sup> |  |
| 2                                                                                                                | 10       | 2.0                       | 12    | rt             | $10^d$          |  |
| 3                                                                                                                | 10       | 2.0                       | 5.0   | 60             | 47              |  |
| 4                                                                                                                | 5.0      | 2.0                       | 4.0   | 60             | 61              |  |
| 5                                                                                                                | 5.0      | 2.0                       | 3.0   | 90             | 83              |  |
| 6                                                                                                                | 5.0      | 2.5                       | 2.0   | 90             | 86              |  |
| 7                                                                                                                | 5.0      | 3.0                       | 2.0   | 90             | 78              |  |
| 8                                                                                                                | 5.0      | 2.5                       | 2.0   | 100            | 74              |  |

<sup>*a*</sup> Reagent: **1a** (1.0 mmol). <sup>*b*</sup> Isolated yield. <sup>*c*</sup> No reaction. <sup>*d*</sup> **1a** was recovered in 81% yield.



General procedure for the preparation of cyclopentadienes 2 and III'd (taking 2a as an example): To a well-stirred solution of 1a (354 mg, 1.0 mmol) in DMF (5.0 mL) was added POCl<sub>3</sub> (0.23 mL, 2.5 mmol) in one portion at room temperature. Then, the reaction mixture was heated to 90°C and stirred for 2.5 h. After 1a was consumed (monitored by TLC), the reaction mixture was poured into water (30 mL), neutralized with saturated aqueous NaHCO<sub>3</sub> to pH 7, and extracted with  $CH_2Cl_2$  (15 mL × 3). The combined organic extracts were washed with water (15 mL × 3), dried over anhydrous MgSO<sub>4</sub>, filtered and concentrated under reduced pressure to yield the crude product, which was purified by silica gel chromatography (eluent, petroleum ether/diethyl ether: 75/1, v/v) to give 2a (320 mg, 86%) as a light yellow crystal.

**Procedure for the detection of IIIa**: The reaction of **1a** (340 mg, 1.0 mmol) and POCl<sub>3</sub> (0.23 mL, 2.5 mmol) in DMF (5.0 mL) was allowed at room temperature for 1.0 h. Then, the reaction mixture was poured into water (30 mL), neutralized with saturated aqueous NaHCO<sub>3</sub> to pH 7, and extracted with CH<sub>2</sub>Cl<sub>2</sub> (15 mL × 3). The combined organic extracts were washed with water (15 mL × 3), dried over anhydrous MgSO<sub>4</sub>, filtered and concentrated under reduced pressure. The residue was purified by silica gel chromatography (eluent, petroleum ether/diethyl ether: 75/1, v/v) to give a mixture of **2a** and **IIIa** in 21% yield with the ratio of 1 to 2 based on <sup>1</sup>H NMR (**2a** and **IIIa** has the same polarity on silica gel chromatography).

General procedure for the preparation of cyclopentadienes 2' and 2" (taking 2'a and 2"a as example): To a well-stirred solution of 1'a (340 mg, 1.0 mmol) in DMF (5.0 mL) was added POCl<sub>3</sub> (0.23 mL, 2.5 mmol) in one portion at room temperature. Then, the reaction mixture was stirred at room temperature for 7.0 h. After 1'a was consumed (monitored by TLC), the reaction mixture was poured into water (30 mL), neutralized with saturated aqueous NaHCO<sub>3</sub> to pH 7, and extracted with  $CH_2Cl_2$  (15 mL × 3). The combined organic extracts were washed with water (15 mL × 3), dried over anhydrous MgSO<sub>4</sub>, filtered and concentrated under reduced pressure to yield the crude product, which was purified by silica gel chromatography (eluent, petroleum ether/diethyl ether: 100/1, v/v)

to give 2'a (272 mg, 76%) and 2"a (18 mg, 5.0%), respectively.

Synthesis of cyclopentenone III'a and its chlorovinylation under Vilsmeier conditions: A solution of 1'a (340 mg, 1.0 mmol), concentrated HCl (0.25 mL, M = 12 mol L<sup>-1</sup>, 3.0 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5.0 mL) was stirred at room temperature for 4.0 h. The reaction mixture was diluted with water (30 mL), neutralized with saturated aqueous NaHCO<sub>3</sub> to pH 7, and extracted with CH<sub>2</sub>Cl<sub>2</sub> (10 mL × 3). The combined organic extracts were washed with water (15 mL), dried over anhydrous MgSO<sub>4</sub>, filtered and concentrated under reduced pressure to yield the crude product, which was purified by silica gel chromatography (eluent, petroleum ether/diethyl ether: 10/1, v/v) to give III'a (265 mg, 78%) as a white crystal. Then, to a well-stirred solution of III'a (170 mg, 0.5 mmol) in DMF (2.5 mL) was added POCl<sub>3</sub> (0.12 mL, 1.3 mmol) in one portion at room temperature. After the reaction mixture was stirred at room temperature for 1.5 h monitored by TLC, water (15 mL) was added. The resulting aqueous mixture was neutralized with saturated aqueous NaHCO<sub>3</sub> to PH 7 and extracted with CH<sub>2</sub>Cl<sub>2</sub> (10 mL × 3). The combined organic extracts were washed with saturated aqueous NaHCO<sub>3</sub> to PH 7 and extracted with CH<sub>2</sub>Cl<sub>2</sub> (10 mL × 3). The combined organic extracts were washed with water (15 mL) was added. The resulting aqueous mixture was neutralized with saturated aqueous NaHCO<sub>3</sub> to PH 7 and extracted with CH<sub>2</sub>Cl<sub>2</sub> (10 mL × 3). The combined organic extracts were washed with water (15 mL × 3), dried over anhydrous MgSO<sub>4</sub>, filtered and concentrated under reduced pressure to yield the crude product, which was purified by silica gel chromatography (eluent, petroleum ether/diethyl ether: 100/1, v/v) to give **2'a** (70 mg, 39%) and **2''a** (72 mg, 40%), respectively.

#### 7-Chloro-6-(4-methoxyphenyl)-9-phenyl-1,4-dithiaspiro[4.4]nona-6,8-diene (2a)



Light yellow crystal; mp 134–136 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.05-3.10$  (m, 2H), 3.27–3.32 (m, 2H), 3.86 (s, 3H), 6.60 (s, 1H), 6.94 (d, J = 8.5 Hz, 2H), 7.31–7.39 (m, 3H), 7.56 (d, J = 8.5 Hz, 2H), 7.81 (d, J = 7.5 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 159.5$ , 148.1, 147.0, 133.4, 131.8 (2C), 128.9, 128.2, 128.1 (2C), 127.8 (2C), 127.7, 125.4, 113.5 (2C), 74.6, 55.2, 41.6 (2C). IR (KBr): 3059, 2960, 1597, 1501, 1246, 1173 cm<sup>-1</sup>. MS (ESI): m/z = 373.0 [(M+1)]<sup>+</sup>. Anal. Calcd for C<sub>20</sub>H<sub>17</sub>ClOS<sub>2</sub>: C, 64.41; H, 4.59; Found: C, 64.68; H, 4.48.

#### 7-Chloro-6,9-bis(4-methoxyphenyl)-1,4-dithiaspiro[4.4]nona-6,8-diene (2b)



Light yellow crystal; mp 144–146 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.06-3.10$  (m, J = 5.0 Hz, 2H), 3.30–3.36 (m, 2H), 3.85 (s, 3H), 3.86 (s, 3H), 6.54 (s, 1H), 6.93 (d, J = 8.5 Hz, 2H), 6.96 (d, J = 8.0 Hz, 2H), 7.57 (d, J = 8.0 Hz, 2H ), 7.79 (d, J = 8.5 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 159.7$ , 159.7, 147.8, 146.5, 132.1 (2C), 129.2 (2C), 128.1, 127.7, 126.3, 125.7, 113.7 (2C), 113.6 (2C), 74.8, 55.5, 55.4, 41.8 (2C). IR (KBr): 3004, 2956, 2833, 1601, 1504, 1245, 1175 cm<sup>-1</sup>. MS (ESI):  $m/z = 403.0 [(M+1)]^+$ . Anal. Calcd for C<sub>21</sub>H<sub>19</sub>ClO<sub>2</sub>S<sub>2</sub>: C, 62.59; H, 4.75; Found: C, 62.79; H, 4.64.

9-(Biphenyl-4-yl)-7-chloro-6-(4-methoxyphenyl)-1,4-dithiaspiro[4.4]nona-6,8-diene (2c)



Yellow crystal; mp 173–174 °C; <sup>1</sup>H NMR (DMSO, 500 MHz)  $\delta$  = 3.08 (t, *J* = 5.0 Hz, 2H), 3.52 (t, *J* 

= 5.0 Hz, 2H), 3.80 (s, 3H), 7.01 (d, J = 8.5 Hz, 2H), 7.13 (s, 1H), 7.38 (m, 2H), 7.46–7.49 (m, 3H), 7.69–7.71 (m, 4H), 7.98 (d, J = 8.0 Hz, 2H). <sup>13</sup>C NMR (DMSO, 125 MHz)  $\delta$  = 164.4, 153.6, 151.5, 144.7, 144.6, 136.8 (2C), 136.4, 134.2 (2C), 133.9, 132.9 (2C), 132.8, 131.8 (2C), 131.7, 131.4 (2C), 129.8, 118.7 (2C), 78.7, 60.3, 46.7 (2C). IR (KBr): 3062, 2919, 1647, 1407, 1172, 720 cm<sup>-1</sup>. MS (ESI): m/z = 449.0 [(M+1)]<sup>+</sup>. Anal. Calcd for C<sub>26</sub>H<sub>21</sub>ClOS<sub>2</sub>: C, 69.55; H, 4.71; Found: C, 69.35; H, 4.80.

7-Chloro-9-(4-fluorophenyl)-6-(4-methoxyphenyl)-1,4-dithiaspiro[4.4]nona-6,8-diene (2d)



Light yellow crystal; mp 146–148 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.05-3.10$  (m, 2H), 3.27–3.32 (m, 2H), 3.85 (s, 3H), 6.55 (s, 1H), 6.95 (d, J = 8.5 Hz, 2H), 7.06 (t, J = 8.5 Hz, 2H), 7.56 (d, J = 9.0 Hz, 2H), 7.78–7.81 (m, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 162.6$  (d, J = 247.0 Hz, 1C), 159.5, 147.0, 146.7, 131.7 (2C), 129.6 (2C), 129.5, 128.8, 127.6, 125.2, 115.0 (d, J = 20.9 Hz, 2C), 113.4 (2C), 74.7, 55.1, 41.4 (2C). IR (KBr): 3065, 2833, 1617, 1502, 1292, 1246 cm<sup>-1</sup>. MS (ESI): m/z = 391.0 [(M+1)]<sup>+</sup>. Anal. Calcd for C<sub>20</sub>H<sub>16</sub>ClFOS<sub>2</sub>: C, 61.45; H, 4.13; Found: C, 61.66; H, 4.02.

# 7-Chloro-9-(4-chlorophenyl)-6-(4-methoxyphenyl)-1,4-dithiaspiro[4.4]nona-6,8-diene (2e)



MeC

MeO

Light yellow crystal; mp 145–147 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.05-3.09$  (m, 2H), 3.30–3.34 (m, 2H), 3.86 (s, 3H), 6.62 (s, 1H), 6.96 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.56 (t, J = 8.5 Hz, 2H), 7.77 (d, J = 8.5 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 159.8$ , 147.7, 146.8, 134.2, 132.0 (2C), 130.1, 129.6, 129.2 (2C), 128.9, 128.5 (2C), 125.4, 113.7 (2C), 74.8, 55.5, 41.8 (2C). IR (KBr): 3038, 2956, 1598, 1502, 1245, 1230 cm<sup>-1</sup>. MS (ESI): m/z = 407.0 [(M+1)]<sup>+</sup>. Anal. Calcd for C<sub>20</sub>H<sub>16</sub>Cl<sub>2</sub>OS<sub>2</sub>: C, 58.97; H, 3.96; Found: C, 59.19; H, 3.87.

7-Chloro-6-(4-methoxyphenyl)-9-(4-nitrophenyl)-1,4-dithiaspiro[4.4]nona-6,8-diene (2f)



Yellow crystal; mp 193–195 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.07-3.12$  (m, 2H), 3.35–3.41 (m, 2H), 3.86 (s, 3H), 6.88 (s, 1H), 6.97 (d, J = 8.5 Hz, 2H), 7.54 (d, J = 8.5 Hz, 2H), 8.00 (d, J = 8.5 Hz, 2H), 8.23 (d, J = 8.5 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 160.1$ , 150.4, 147.1, 145.0, 139.4, 132.8, 131.9 (2C), 128.2 (2C), 127.8, 124.9, 123.5 (2C), 113.8 (2C), 74.5, 55.5, 41.8 (2C). IR (KBr): 3062, 2834, 1592, 1505, 1343, 1241 cm<sup>-1</sup>. MS (ESI): m/z = 418.0 [(M+1)]<sup>+</sup>. Anal. Calcd for C<sub>20</sub>H<sub>16</sub>ClNO<sub>3</sub>S<sub>2</sub>: C, 57.48; H, 3.86; N, 3.35; Found: C, 57.68; H, 3.75; N, 3.40.

# 7-Chloro-6-(2-methoxyphenyl)-9-phenyl-1,4-dithiaspiro[4.4]nona-6,8-diene (2g)



Light yellow crystal; mp 122–124 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.04-3.08$  (m, 2H), 3.30 (s, broad, 2H), 3.84 (s, 3H), 6.59 (s, 1H), 7.00 (t, J = 7.0 Hz, 2H), 7.33 (t, J = 7.0 Hz, 1H), 7.38–7.41 (m, 3H), 7.71 (d, J = 7.0 Hz, 1H), 7.82 (d, J = 7.5 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 158.3$ , 149.2, 143.2, 133.8, 131.4, 129.8, 129.5, 128.8, 128.7, 128.0 (2C), 127.8, 127.7, 122.0, 120.0, 111.4, 74.9, 55.9, 41.6 (2C). IR (KBr): 3057, 3009, 2921, 2834, 1487, 1258, 1022 cm<sup>-1</sup>. MS (ESI): m/z = 373.0 [(M+1)]<sup>+</sup>. Anal. Calcd for C<sub>20</sub>H<sub>17</sub>ClOS<sub>2</sub>: C, 64.41; H, 4.59; Found: C, 64.65; H, 4.50.

7-Chloro-6-(2-methoxyphenyl)-9-(4-methoxyphenyl)-1,4-dithiaspiro[4.4]nona-6,8-diene (2h)



Light yellow crystal; mp 153–155 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.03-3.07$  (m, 2H), 3.29 (s, broad, 2H), 3.83 (s, 6H), 6.50 (s, 1H), 6.90 (t, J = 9.0 Hz, 2H), 6.98 (t, J = 8.0 Hz, 2H), 7.35–7.38 (m, 1H), 7.69–7.71 (m, 1H), 7.77 (d, J = 9.0 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 159.4$ , 158.3, 148.6, 142.5, 131.5, 129.8, 129.5 (2C), 128.9, 127.3, 126.4, 122.1, 120.0, 113.4 (2C), 111.4, 74.9, 56.0, 55.2, 41.5 (2C). IR (KBr): 3063, 2957, 2930, 2832, 1597, 1504, 1252 cm<sup>-1</sup>. MS (ESI):  $m/z = 403.0 [(M+1)]^+$ . Anal. Calcd for C<sub>21</sub>H<sub>19</sub>ClO<sub>2</sub>S<sub>2</sub>: C, 62.59; H, 4.75; Found: C, 62.88; H, 4.70.

7-Chloro-9-(4-chlorophenyl)-6-(2-methoxyphenyl)-1,4-dithiaspiro[4.4]nona-6,8-diene (2i)



Light yellow crystal; mp 104–106 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.03-3.08$  (m, 2H), 3.29 (s, broad, 2H), 3.83 (s, 3H), 6.59 (s, 1H), 6.99 (d, J = 7.5 Hz, 2H), 7.34 (d, J = 9.0 Hz, 2H), 7.37 (dd, J = 2.0, 8.0 Hz, 1H), 7.69 (dd, J = 1.5, 7.5 Hz, 1H), 7.76 (d, J = 9.0 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 158.2, 147.6, 143.8, 133.8, 132.1, 131.3, 129.9, 129.4, 129.2, 128.9$  (2C), 128.2 (2C), 121.8, 120.0, 111.4, 74.8, 55.9, 41.6 (2C). IR (KBr): 3053, 3006, 2964, 2927, 2868, 2831, 1487, 1255 cm<sup>-1</sup>. MS (ESI): m/z = 407.0 [(M+1)]<sup>+</sup>. Anal. Calcd for C<sub>20</sub>H<sub>16</sub>Cl<sub>2</sub>OS<sub>2</sub>: C, 58.97; H, 3.96; Found: C, 59.26; H, 3.85.

#### 7-Chloro-6-(4-fluorophenyl)-9-phenyl-1,4-dithiaspiro[4.4]nona-6,8-diene (2j)



Yellow crystal; mp 121–122°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.02-3.06$  (m, 2H), 3.30–3.34 (m, 2H), 6.59 (s, 1H), 7.09 (t, J = 8.5 Hz, 2H), 7.34–7.40 (m, 3H), 7.59–7.62 (m, 2H), 7.81 (d, J = 7.0 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz):  $\delta = 162.7$  (d, J = 247.0 Hz, 1C), 148.7, 145.9, 138.3, 133.3, 132.5, 131.8, 129.0, 128.9, 128.7, 128.2, 128.1, 127.7, 127.6, 115.0 (d, J = 20.0 Hz, 2C), 74.6, 41.6 (2C). IR (KBr): 3056, 2957, 1770, 1501, 1261, 1183, 835 cm<sup>-1</sup>. MS (ESI): m/z = 361.0 [(M + 1)]<sup>+</sup>. Anal. Calcd for C<sub>19</sub>H<sub>14</sub>ClFS<sub>2</sub>: C, 63.23; H, 3.91; Found: C, 63.04; H, 3.79.

## 7-Chloro-9-(4-chlorophenyl)-6-(4-fluorophenyl)-1,4-dithiaspiro[4.4]nona-6,8-diene (2k)



Yellow crystal; mp 210–211°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.01-3.05$  (m, 2H), 3.29–3.33 (m, 2H), 6.59 (s, 1H), 7.09 (t, J = 9.0 Hz, 2H), 7.34 (d, J = 8.5 Hz, 2H), 7.57–7.59 (m, 2H), 7.75 (d, J = 8.5 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz):  $\delta = 162.8$  (d, J = 247.0 Hz, 1C), 147.2, 146.5, 134.1, 132.5, 132.4, 131.6, 129.2, 128.9, 128.8, 128.3 (2C), 128.2 (2C), 115.1 (d, J = 20.5 Hz, 2C), 74.5, 41.5 (2C). IR (KBr): 3065, 2962, 1697, 1500, 1292, 1091, 825 cm<sup>-1</sup>. MS (ESI): m/z = 395.0 [(M + 1)]<sup>+</sup>. Anal. Calcd for C<sub>19</sub>H<sub>13</sub>Cl<sub>2</sub>FS<sub>2</sub>: C, 57.72; H, 3.31; Found: C, 58.02; H, 3.45.

7-Chloro-6-methyl-9-phenyl-1,4-dithiaspiro[4.4]nona-6,8-diene (21)



MeC

White crystal; mp 96–98 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  = 2.06 (s, 3H), 3.44–3.46 (m, 2H), 3.53–3.55 (m, 2H), 6.39 (s, 1H), 7.31–7.35 (m, 3H), 7.73–7.75 (m, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  = 149.6, 144.0, 134.1, 128.5, 128.0, 127.9 (2C), 127.6 (2C), 125.5, 73.8, 42.0 (2C), 10.3. IR (KBr): 3058, 2959, 2916, 1693, 1516, 760 cm<sup>-1</sup>. MS (ESI): *m*/*z* = 281.0 [(M+1)]<sup>+</sup>. Anal. Calcd for C<sub>14</sub>H<sub>13</sub>ClS<sub>2</sub>: C, 59.87; H, 4.67; Found: C, 59.71; H, 4.80.

# 7-Bromo-6-(4-methoxyphenyl)-9-phenyl-1,4-dithiaspiro[4.4]nona-6,8-diene (2m)



Light yellow crystal; mp 132–134 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.01-3.05$  (m, 2H), 3.30–3.33 (m, 2H), 3.85 (s, 3H), 6.68 (s, 1H), 6.94 (d, J = 7.5 Hz, 2H), 7.32–7.39 (m, 3H), 7.53 (d, J = 7.0 Hz, 2H), 7.82 (d, J = 8.0 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 159.3$ , 150.8, 147.8, 133.1, 131.6 (2C), 130.5, 128.2 (2C), 127.9 (2C), 127.5, 126.2, 116.8, 113.2 (2C), 74.8, 55.0, 41.3 (2C). IR (KBr): 3056, 2925, 1601, 1501, 1288, 1247, 1173 cm<sup>-1</sup>. MS (ESI): m/z = 417.0 [(M+1)]<sup>+</sup>. Anal. Calcd for C<sub>20</sub>H<sub>17</sub>BrOS<sub>2</sub>: C, 57.55; H, 4.11; Found: C, 57.76; H, 4.02.

7-Bromo-6,9-bis(4-methoxyphenyl)-1,4-dithiaspiro[4.4]nona-6,8-diene (2n)



Light yellow crystal; mp 154–156 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.00-3.03$  (m, 2H), 3.30–3.33 (m, 2H), 3.83 (s, 3H), 3.84 (s, 3H), 6.59 (s, 1H), 6.91 (d, J = 8.5 Hz, 2H), 6.94 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 8.5 Hz, 2H), 7.77 (d, J = 8.5 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 159.3$ , 159.3, 150.1, 147.2, 131.7 (2C), 129.0, 128.7 (2C), 126.3, 125.7, 117.0, 113.3 (2C), 113.2 (2C), 74.7, 55.1, 55.0, 41.2 (2C). IR (KBr): 3060, 2925, 1604, 1503, 1243, 1176 cm<sup>-1</sup>. MS (ESI):  $m/z = 447.1 [(M+1)]^+$ . Anal. Calcd for C<sub>21</sub>H<sub>19</sub>BrO<sub>2</sub>S<sub>2</sub>: C, 56.37; H, 4.28; Found: C, 56.59; H, 4.19.

# 7-Bromo-9-(4-fluorophenyl)-6-(4-methoxyphenyl)-1,4-dithiaspiro[4.4]nona-6,8-diene (20)

MeO



Light yellow crystal; mp 128–130 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.00-3.04$  (m, 2H), 3.27–3.30 (m, 2H), 3.85 (s, 3H), 6.61 (s, 1H), 6.95 (d, J = 9.0 Hz, 2H), 7.05 (t, J = 8.5 Hz, 2H), 7.51 (d, J = 8.5 Hz, 2H), 7.78–7.81 (m, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 162.5$  (d, J = 247 Hz, 1C), 159.5, 150.8, 146.7, 131.7 (2C), 130.5, 129.4 (2C), 129.3, 126.1, 116.9, 115.0 (d, J = 21.5 Hz, 2C), 113.3 (2C), 74.8, 55.1, 41.4 (2C). IR (KBr): 3064, 2915, 1594, 1501, 1242, 1167 cm<sup>-1</sup>. MS (ESI): m/z = 436.1 [(M+1)]<sup>+</sup>. Anal. Calcd for C<sub>20</sub>H<sub>16</sub>BrFOS<sub>2</sub>: C, 55.17; H, 3.70; Found: C, 55.38; H, 3.59.

7-Bromo-6-(4-methoxyphenyl)-9-(4-nitrophenyl)-1,4-dithiaspiro[4.4]nona-6,8-diene (2p)



Yellow crystal; mp 198–200 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.03-3.06$  (m, 2H), 3.35–3.39 (m, 2H), 3.86 (s, 3H), 6.93 (s, 1H), 6.96 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 8.00 (d, J = 8.0 Hz, 2H), 8.23 (d, J = 8.5 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 159.6$ , 153.8, 146.7, 144.6, 138.9, 134.3, 131.5 (2C), 127.7 (2C), 125.5, 123.1 (2C), 117.8, 113.3 (2C), 74.5, 55.0, 41.2 (2C). IR (KBr): 3048, 2925, 1590, 1505, 1341, 1282, 1242 cm<sup>-1</sup>. MS (ESI): m/z = 462.0 [(M+1)]<sup>+</sup>. Anal. Calcd for C<sub>20</sub>H<sub>16</sub>BrNO<sub>3</sub>S<sub>2</sub>: C, 51.95; H, 3.49; N, 3.03; Found: C, 52.18; H, 3.40; N, 3.07.

7-Bromo-6-(2-methoxyphenyl)-9-phenyl-1,4-dithiaspiro[4.4]nona-6,8-diene (2q)



Light yellow crystal; mp 130–132 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta = 3.03-3.06$  (m, 2H), 3.29 (s, broad, 2H), 3.84 (s, 3H), 6.65 (s, 1H), 6.99 (t, J = 7.5 Hz, 2H), 7.32 (t, J = 7.5 Hz, 1H), 7.38 (t, J = 7.5 Hz, 3H), 7.68 (d, J = 7.5 Hz, 1H), 7.82 (d, J = 7.5 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 158.0, 149.1, 147.2, 133.7, 131.4, 130.4, 129.8$  (2C), 128.0 (2C), 127.7 (2C), 122.9, 120.0, 118.9, 111.4, 75.4, 55.9, 41.5 (2C). IR (KBr): 3051, 3006, 2921, 1485, 1430, 1258, 1118 cm<sup>-1</sup>. MS (ESI):  $m/z = 417.1 [(M+1)]^+$ . Anal. Calcd for C<sub>20</sub>H<sub>17</sub>BrOS<sub>2</sub>: C, 57.55; H, 4.11; Found: C, 57.86; H, 4.01.

7-Bromo-6-methyl-9-phenyl-1,4-dithiaspiro[4.4]nona-6,8-diene (2r)



Yellow crystal; mp 58–60 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  = 2.07 (s, 3H), 3.45–3.47 (m, 2H), 3.53–3.56 (m, 2H), 6.44 (s, 1H), 7.33–7.36 (m, 3H), 7.73 (d, *J* = 7.5 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  = 149.8, 147.7, 134.1, 130.1, 128.0, 127.9 (2C), 127.7 (2C), 114.6, 74.1, 42.0 (2C), 12.0. IR (KBr): 3058, 2969, 1646, 1513, 1426, 676 cm<sup>-1</sup>. MS (ESI): *m/z* = 325.0 [(M+1)]<sup>+</sup>. Anal. Calcd for C<sub>14</sub>H<sub>13</sub>BrS<sub>2</sub>: C, 51.69; H, 4.03; Found: C, 51.41; H, 4.20.

# (4-Chloro-5-(4-methoxyphenyl)cyclopenta-2,4-diene-1,2-diyl)dibenzene (2'a)



White crystal; mp 94–96 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  = 3.77 (s, 3H), 5.04 (s, 1H), 6.81–6.83 (m, 3H), 7.13–7.14 (m, 1H), 7.16–7.17 (m, 5H), 7.22–7.25 (m, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 9.0 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  = 158.6, 149.7, 143.3, 137.5, 133.9, 130.1, 129.3 (2C), 128.7 (2C), 128.4 (2C), 128.0 (2C), 127.4, 127.0, 126.8, 126.0, 125.8 (2C), 113.5 (2C), 59.0, 55.1. IR (KBr): 3064, 1647, 1407, 1174, 638 cm<sup>-1</sup>. MS (ESI): *m/z* = 359.0 [(M+1)]<sup>+</sup>. Anal. Calcd for: C<sub>24</sub>H<sub>19</sub>ClO: C, 80.33; H, 5.34; Found: C, 80.09; H, 5.22.

#### (4-Chloro-3-(4-methoxyphenyl)cyclopenta-1,3-diene-1,2-diyl)dibenzene (2"a)



White crystal; mp 145–146 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  = 3.76 (s, 3H), 3.77 (s, 2H), 6.76 (t, J = 6.5 Hz, 2H), 6.96–7.00 (m, 4H), 7.09–7.19 (m, 8H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  = 158.6, 142.5, 142.4, 138.0, 135.9, 130.7 (2C), 129.8 (3C), 128.7, 128.2 (2C), 128.1 (2C), 127.8 (2C), 127.0, 126.6, 125.6, 113.2 (2C), 55.1, 47.9. IR (KBr): 3050, 2962, 1504, 1246, 1176, 780 cm<sup>-1</sup>. MS (ESI): m/z = 359.0 [(M+1)]<sup>+</sup>. Anal. Calcd for: C<sub>24</sub>H<sub>19</sub>ClO: C, 80.33; H, 5.34; Found: C, 80.20; H, 5.49.

4,4',4''-(4-Chlorocyclopenta-3,5-diene-1,2,3-triyl)tris(methoxybenzene) (2'b)



Colorless oil; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  = 3.67 (s, 3H), 3.75 (s, 3H), 3.76 (s, 3H), 4.92 (s, 1H), 6.65 (d, *J* = 7.5 Hz, 3H), 6.75 (d, *J* = 9.0 Hz, 2H), 6.79 (d, *J* = 9.0 Hz, 2H), 7.00 (d, *J* = 8.5 Hz, 2H), 7.31 (d, *J* = 9.0 Hz, 2H), 7.44 (d, *J* = 8.5 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  = 159.0, 158.5, 158.1, 142.6, 142.3, 130.9, 129.6, 129.3, 129.0, 128.8, 128.0, 127.2, 127.0 (2C), 126.9, 126.2, 114.1 (2C), 113.9 (2C), 113.5 (2C), 58.4, 55.2, 55.1, 55.0. IR (KBr): 3064, 2955, 1716, 1508, 1249, 1175, 1072 cm<sup>-1</sup>. MS (ESI): *m/z* = 419.0 [(M+1)]<sup>+</sup>. Anal. Calcd for: C<sub>26</sub>H<sub>23</sub>ClO<sub>3</sub>: C, 74.55; H, 5.53; Found: C, 74.20; H, 5.69.

#### 4,4',4''-(4-Chlorocyclopenta-1,3-diene-1,2,3-triyl)tris(methoxybenzene) (2"b)



Colorless oil; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  = 3.71 (s, 2H), 3.76 (s, 3H), 3.77 (s, 3H), 3.78 (s, 3H), 6.71 (d, *J* = 9.0 Hz, 2H), 6.72 (d, *J* = 8.5 Hz, 2H), 6.76 (d, *J* = 9.0 Hz, 2H), 6.87 (d, *J* = 8.5 Hz, 2H), 7.00 (d, *J* = 9.0 Hz, 2H), 7.06 (d, *J* = 9.0 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  = 158.5,

158.4, 158.2, 142.5, 140.6, 137.2, 131.0 (2C), 130.7 (2C), 130.5, 128.9 (2C), 128.4, 127.7, 125.9, 113.6 (4C), 113.1 (2C), 55.1 (3C), 47.8. IR (KBr): 3062, 2955, 2918, 1509, 1251, 1175, 831 cm<sup>-1</sup>. MS (ESI):  $m/z = 419.0 [(M+1)]^+$ . Anal. Calcd for: C<sub>26</sub>H<sub>23</sub>ClO<sub>3</sub>: C, 74.55; H, 5.53; Found: C, 74.32; H, 5.69.

## 4,4'-(4Chloro-5-(4-methoxyphenyl)cyclopenta-2,4-diene-1,2-diyl)bis(fluorobenzene) (2'c)



Colorless oil; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  = 3.75 (s, 3H), 4.95 (s, 1H), 6.72 (s, 1H), 6.79–6.82 (m, 4H), 6.92 (t, *J* = 8.5 Hz, 2H), 7.04 (dd, *J* = 5.5, 8.5 Hz, 2H), 7.31 (dd, *J* = 5.5, 8.5 Hz, 2H), 7.44 (d, *J* = 8.5 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  = 162.1 (d, *J* = 234.0 Hz, 1C), 161.4 (d, *J* = 244.1 Hz, 1C), 158.8, 148.6, 143.1, 133.0, 130.1, 129.9, 129.5, 129.4, 129.3 (2C), 127.5, 127.4, 127.0, 125.7, 115.6 (d, *J* = 22.0 Hz, 2C), 115.5 (d, *J* = 22.4 Hz, 2C), 113.7 (2C), 58.3, 55.1. IR (KBr): 3043, 2957, 2917, 1508, 1232, 1179, 834 cm<sup>-1</sup>. MS (ESI): *m/z* = 395.0 [(M+1)]<sup>+</sup>. Anal. Calcd for: C<sub>24</sub>H<sub>17</sub>ClF<sub>2</sub>O: C, 73.01; H, 4.34; Found: C, 73.22; H, 4.20.

4,4'-(4-Chloro-3-(4-methoxyphenyl)cyclopenta-1,3-diene-1,2-diyl)bis(fluorobenzene) (2"c)



White crystal; mp 122–124 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  = 3.73 (s, 2H), 3.78 (s, 3H), 6.78 (d, J = 8.5 Hz, 2H), 6.85–6.91 (m, 6H), 6.98 (d, J = 6.5 Hz, 2H), 7.05 (dd, J = 5.5, 9.0 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  = 161.3 (d, J = 245.5 Hz, 1C), 159.4 (d, J = 276.1 Hz, 1C), 158.5, 142.0, 140.9, 137.0, 131.6, 131.2 (2C), 130.4 (2C), 129.2, 129.1 (2C), 128.5, 125.1, 115.1 (d, J = 21.0 Hz, 2C), 115.0 (d, J = 21.0 Hz, 2C), 113.0 (2C), 54.8, 47.7. IR (KBr): 3044, 2997, 2927, 1505, 1247, 1176, 1158, 831 cm<sup>-1</sup>. MS (ESI): m/z = 395.0 [(M+1)]<sup>+</sup>. Anal. Calcd for: C<sub>24</sub>H<sub>17</sub>ClF<sub>2</sub>O: C, 73.01; H, 4.34; Found: C, 73.30; H, 4.51.

#### 6-(4-Methoxyphenyl)-9-phenyl-1,4-dithiaspiro[4.4]non-8-en-7-one (IIIa)



<sup>1</sup>H NMR of a mixture of **IIIa** and **2a** (CDCl<sub>3</sub>, 500 MHz)  $\delta = 2.78-2.80$  (m, 2H), 3.04–3.08 (m, 2H), 3.82 (s, 3H), 3.84 (s, 1H), 6.72 (s, 1H), 6.91 (d, J = 8.5 Hz, 2H), 7.43–7.46 (m, 5H), 7.65 (d, J = 8.5 Hz, 2H) for **IIIa** and  $\delta = 3.02-3.09$  (m, 2H), 3.30–3.32 (m, 2H), 3.86 (s, 3H), 6.59 (s, 1H), 6.93 (d, J = 8.5 Hz, 2H), 7.36–7.39 (m, 3H), 7.56 (d, J = 8.5 Hz, 2H), 7.81 (d, J = 7.0 Hz, 2H) for **2a**.

# 2-(4-Methoxyphenyl)-3,4-diphenylcyclopent-2-enone (III'a)

White crystal; mp 102–104 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  = 2.62 (dd, *J* = 2.0, 19.0 Hz, 1H), 3.22 (dd, *J* = 7.5, 19.0 Hz, 1H), 3.80 (s, 3H), 4.54 (dd, *J* = 2.0, 7.5 Hz, 1H), 6.86 (d, *J* = 8.5 Hz, 2H), 7.13–7.18 (m, 8H), 7.21–7.25 (m, 4H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  = 207.0, 169.2, 159.3, 142.3, 140.2, 135.1, 130.9 (2C), 129.1, 128.9 (2C), 128.7 (2C), 128.2 (2C), 127.4 (2C), 126.8, 123.9, 113.9 (2C), 55.2, 47.2, 45.9. IR (KBr): 3051, 2945, 2871, 1695, 1509, 1247, 1057, 732 cm<sup>-1</sup>. MS (ESI): *m/z* = 341.0 [(M+1)]<sup>+</sup>. Anal. Calcd for: C<sub>24</sub>H<sub>20</sub>O<sub>2</sub>: C, 84.68; H, 5.92; Found : C, 83.84; H, 6.10.

#### 2,5-Dimethyl-3,4-diphenylcyclopent-2-enone (III'd)



White crystal; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta = 1.35$  (d, J = 7.5, 3H), 2.02 (s, 3H), 2.38–2.41 (m, 1H), 3.96–3.97 (m, 1H), 7.06 (d, J = 7.0, 2H), 7.12 (t, J = 7.0, 1H), 7.20 (t, J = 7.5, 2H), 7.24–7.32 (m, 5H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 211.0$ , 167.0, 142.0, 136.7, 135.1, 128.9, 128.7 (2C), 128.3 (2C), 128.2 (2C), 127.5 (2C), 126.6, 56.3, 51.2, 15.2, 10.1.

# IV. Synthesis of polyaryls 3: [4 + 2] cycloaddition of 2 with dimethyl 2-butynedioate.



General procedure for the preparation of aryl halides 3 (taking 3a as an example): To a well-stirred solution of 2a (372 mg, 1.0 mmol) in toluene (5.0 mL) was added dimethyl 2-butynedioate (0.61 mL, 5.0 mmol) in one portion at room temperature. Then, the reaction mixture was refluxed for 8.0 h. After 2a was consumed (monitored by TLC), the reaction mixture was poured into water (20 mL) and extracted with  $CH_2Cl_2$  (10 mL × 3). The combined organic extracts were dried over anhydrous MgSO<sub>4</sub>, filtered and concentrated under reduced pressure to yield the crude product, which was purified by silica gel chromatography (eluent, petroleum ether/diethyl ether: 10/1, v/v) to give 3a (357 mg, 87%) as a white crystal.

# 4-Methoxyl-2',3'-dimethoxycarbonyl-6'-chloro *p*-terphenyl (3a)



White crystal; mp 126–128 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  = 3.54 (s, 3H), 3.58 (s, 3H), 3.86 (s, 3H), 6.96 (d, *J* = 8.5 Hz, 2H), 7.22 (d, *J* = 8.5 Hz, 2H), 7.35–7.36 (m, 2H), 7.39–7.44 (m, 3H), 7.59

(s, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  = 167.9, 167.6, 159.3, 141.3, 138.6, 137.4, 136.1, 135.5, 132.1, 130.4 (2C), 129.6, 128.4 (2C), 128.2 (2C), 128.0 (2C), 113.6, 113.4, 55.1, 52.4, 52.3. IR (KBr): 3065, 2946, 1743, 1718, 1251, 1020, 833 cm<sup>-1</sup>. MS (ESI): m/z = 411.0 [(M+1)]<sup>+</sup>. Anal. Calcd for: C<sub>23</sub>H<sub>19</sub>ClO<sub>5</sub>: C, 67.24; H, 4.66; Found: C, 67.01, H, 4.52.

#### 4-Methoxyl -2',3'-dimethoxycarbonyl-6'-chloro p-quaterphenyl (3b)



White crystal; mp 193–194 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  = 3.55 (s, 3H), 3.62 (s, 3H), 3.86 (s, 3H), 6.96 (d, *J* = 9.0 Hz, 2H), 7.23–7.26 (m, 2H), 7.42–7.44 (m, 1H), 7.45–7.48 (m, 4H), 7.64–7.68 (m, 5H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  = 168.0, 167.4, 159.4, 141.0, 140.9, 140.2, 137.6, 136.3, 135.7, 132.2, 130.5 (2C), 129.6, 128.9 (2C), 128.5 (2C), 128.3, 127.6 (2C), 127.2 (2C), 127.1 (2C), 113.5 (2C), 55.2, 52.2, 52.5. IR (KBr): 3062, 1742, 1647, 1242, cm<sup>-1</sup>. MS (ESI): *m/z* = 487.0 [(M+1)]<sup>+</sup>. Anal. Calcd for: C<sub>29</sub>H<sub>23</sub>ClO<sub>5</sub>: C, 71.53; H, 4.76; Found: C, 72.41; H, 4.82.

#### 4-Methoxyl-2',3'-dimethoxycarbonyl-6'-chloro-4''-chloro p-terphenyl (3c)



White crystal; mp 132–134 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta = 3.54$  (s, 3H), 3.61 (s, 3H), 3.85 (s, 3H), 6.95 (d, J = 8.5 Hz, 2H), 7.21 (d, J = 8.5 Hz, 2H), 7.28 (d, J = 8.5 Hz, 2H), 7.39 (d, J = 8.5 Hz, 2H), 7.55 (s, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta = 167.7$ , 167.5, 159.5, 140.1, 137.9, 137.1, 136.4, 135.8, 134.4, 132.0, 130.4, 129.5 (2C), 129.4 (2C), 128.7 (2C), 128.1, 113.5 (2C), 55.2, 52.6, 52.5. IR (KBr): 3059, 2955, 1751, 1518, 1306, 1028, 842 cm<sup>-1</sup>. MS (ESI): m/z = 445.0 [(M+1)]<sup>+</sup>. Anal. Calcd for: C<sub>23</sub>H<sub>18</sub>Cl<sub>2</sub>O<sub>5</sub>: C, 62.04; H, 4.07; Found: C, 62.21; H, 4.12.

#### V. Crystal data and ORTEP drawing of compound 2f.

C<sub>20</sub>H<sub>16</sub>ClNO<sub>3</sub>S<sub>2</sub>, yellow, M = 417.91, monoclinic, space group P21/c, a = 6.808(2), b = 16.045(5), c = 18.120(6) Å, V = 1967.4(11) Å<sup>3</sup>,  $\alpha = 90.00$ ,  $\beta = 96.286(6)$ ,  $\gamma = 90.00$ , Z = 4, T = 273(2) K, F000 = 864, 10854 reflections collected, 3885 unique with R(int) = 0.0338,  $R_1 = 0.0603$ ,  $wR_2 = 0.1416$  ( $I > 2\sigma(I)$ ).



**Fig. 1** (a) and (b) ORTEP diagram of **2f** (30% probability displacement ellipsoids and all hydrogen atoms are omitted, distorted C7' and C8' showing in (a)).

#### VI. References

1 Sheldrick, G. M. SHELXS-97, Programs for X-ray Crystal Structure Solution, University of Göttingen: Göttingen, Germany, 1997.

2 Sheldrick, G. M. *SHELXL-97*, Programs for X-ray Crystal Structure Refinement, University of Göttingen: Göttingen, Germany, 1997.

3 Farrugia, L. J. WINGX, A Windows Program for Crystal Structure Analysis; University of Glasgow; Glasgow, UK, 1988.

4 (*a*) Bi, X.; Dong, D.; Liu, Q.; Pan, W.; Zhao, L.; Li, B. *J. Am. Chem. Soc.*, 2005, **127**, 4578; (*b*) Liu, J.; Wang, M.; Li, B.; Liu, Q.; Zhao, Y. *J. Org. Chem.*, 2007, **72**, 4401.

# VII. Copies of <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of new compounds





















and the life of the second sec

And a second second

the state of the second

ppm



















![](_page_38_Figure_1.jpeg)

![](_page_39_Figure_0.jpeg)

![](_page_39_Figure_1.jpeg)

![](_page_40_Figure_1.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_41_Figure_1.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_43_Figure_0.jpeg)

![](_page_44_Figure_0.jpeg)

![](_page_44_Figure_1.jpeg)

![](_page_45_Figure_1.jpeg)

![](_page_46_Figure_1.jpeg)

S47

T

![](_page_47_Figure_1.jpeg)

![](_page_48_Figure_1.jpeg)

![](_page_49_Figure_0.jpeg)

![](_page_50_Figure_0.jpeg)

![](_page_51_Figure_0.jpeg)

![](_page_52_Figure_0.jpeg)

![](_page_53_Figure_0.jpeg)

![](_page_54_Figure_0.jpeg)

![](_page_54_Figure_1.jpeg)

![](_page_55_Figure_0.jpeg)

![](_page_56_Figure_1.jpeg)

![](_page_57_Figure_1.jpeg)

![](_page_58_Figure_1.jpeg)

![](_page_59_Figure_0.jpeg)

![](_page_60_Figure_1.jpeg)

![](_page_61_Figure_1.jpeg)

![](_page_62_Figure_1.jpeg)

![](_page_63_Figure_1.jpeg)

![](_page_64_Figure_0.jpeg)

![](_page_65_Figure_1.jpeg)