Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3+2) dipolar cycloaddition

Marjoke F. Debets, ${ }^{\#}$ Sander S. van Berkel, ${ }^{\#}$ Sanne Schoffelen, Floris P. J. T. Rutjes, Jan C. M. van Hest* and Floris L. van Delft**

Supporting Information

General experimental

Unless stated otherwise all chemicals were obtained from commercial sources and used without further purification. If no further details are given the reaction was performed under ambient atmosphere and temperature. Analytical thin layer chromatography (TLC) was performed on silica gel-coated plates (Merck 60 F254) with the indicated solvent mixture, visualization was done using ultraviolet (UV) irradiation ($\lambda=254 \mathrm{~nm}$) and/or staining with KMnO_{4}. Purification by column chromatography was carried out using Silicycle silica gel ($0.040-0.063 \mathrm{~mm}$, and ca. 6 nm pore diameter). The water used in the enzyme functionalization was deionised using a Labconco Water Pro PS purification system. The PBS-buffer was a 150 mM NaCl and $50 \mathrm{mM} \mathrm{NaH} \mathrm{NO}_{4}$ solution that was adjusted to pH 8 . THF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried over an activated alumina column using an MBraun SPS800 solvent purification system. $\mathrm{Et}_{3} \mathrm{~N}$ was distilled under N_{2}-atmosphere from CaH_{2}.

Infrared Spectroscopy (IR spectroscopy): IR spectra were recorded on an ATI Matson Genesis Series FTIR spectrometer fitted with an ATR cell. The vibrations (v) are given in cm^{-1}.

Nuclear Magnetic Resonance Spectroscopy (NMR spectroscopy): ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a Varian Inova $400(400 \mathrm{MHz})$ for room temperature measurements and a Varian Inova 500 (500 MHz) spectrometer was used for low temperature measurements. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a Bruker DMX300 (75 MHz) spectrometer. Unless stated otherwise all spectra were taken at ambient temperature. ${ }^{1} \mathrm{H}-$ NMR chemical shifts (δ) are reported in parts per million (ppm) relative to a residual proton peak of the solvent, $\delta=3.31$ for $\mathrm{CD}_{3} \mathrm{OD}$ and $\delta=7.26$ for CDCl_{3}. Broad peaks are indicated by the addition of br. Coupling constants are reported as a J-value in $\operatorname{Hertz}(\mathrm{Hz})$. In case of rotamers the spectrum was taken at lower temperature to freeze the compound in its two rotamer states, causing separate peaks for each rotamer. In these cases shifts, coupling constants and integrals are given of each separate peak. ${ }^{13} \mathrm{C}$-NMR chemical shifts (δ) are reported in ppm relative to $\mathrm{CD}_{3} \mathrm{OD}(\delta=49.0)$ or $\mathrm{CDCl}_{3}(\delta=77.0)$. If rotamers are observed in the spectrum, the minor rotamer peaks are labelled with *.

Mass Spectrometry (MS): High Resolution Mass Analyses were performed using Electrospray Ionization on a JEOL AccuToF.

Synthesis

\{2-[(2-Aminophenyl)ethynyl]phenyl\}methanol (1)
2-Iodobenzylalcohol ($4.0 \mathrm{~g}, 17.1 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(239 \mathrm{mg}, 0.34 \mathrm{mmol})$ and $\mathrm{CuI}(32.4 \mathrm{mg}, 0.17 \mathrm{mmol})$ were added to a flame-dried Schlenk flask. The flask was evacuated and refilled with an $\mathrm{N}_{2} / \mathrm{H}_{2}$-mixture (3:2) three times. Dry THF $(40 \mathrm{~mL})$ and dry $\mathrm{Et}_{3} \mathrm{~N}(3.8 \mathrm{~mL}, 27.4 \mathrm{mmol})$ were bubbled through with an $\mathrm{N}_{2} / \mathrm{H}_{2}$-mixture (3:2) for 10 minutes and subsequently added to the mixture. Hereupon 2-ethynylaniline ($2.5 \mathrm{~mL}, 24 \mathrm{mmol}$) was added and the mixture was stirred for 4 hours under an $\mathrm{N}_{2} / \mathrm{H}_{2}$-atmosphere. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (60 $\mathrm{mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The $\mathrm{H}_{2} \mathrm{O}$ layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The organic layers were combined and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$ and subsequently dried over MgSO_{4}. The crude product was purified by gradient column chromatography (EtOAc/n-heptane, 1:4 to 1:2) to obtain the product as a white solid ($3.8 \mathrm{~g}, 99 \%$). $R_{\mathrm{F}}=0.2(\mathrm{EtOAc} / n$-heptane, $1: 4) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.55(\mathrm{dd}$, $J=7.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{ddt}, J=7.4,1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-$ $6.70(\mathrm{~m}, 2 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 148.2,141.8,132.1$, 132.0, 130.0, 128.5, 127.8 (2C), 122.1, 117.8, 114.4, 107.6, 92.1, 91.1, 64.4. FT-IR $v_{\max }$ film: $3412,2993,1735$, 1584, 1523, 1446, 1230, 1148, $763\left(\mathrm{~cm}^{-1}\right)$. HRMS (ESI +) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 224.1075$, found 224.1083.

tert-Butyl (2-\{[2-(hydroxymethyl)phenyl]ethynyl\}phenyl)carbamate (2)
Compound $1(1.12 \mathrm{~g}, 5 \mathrm{mmol})$ was dissolved in THF (5 mL) and $\mathrm{Boc}_{2} \mathrm{O}(1.09 \mathrm{~g}, 5 \mathrm{mmol})$ was added. The reaction was heated to $70{ }^{\circ} \mathrm{C}$ in a sealed tube and stirred for 2 days. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$ and the $\mathrm{H}_{2} \mathrm{O}$ layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. The organic layers were combined and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 60 \mathrm{~mL})$ and brine $(60 \mathrm{~mL})$ and then dried over MgSO_{4}. The crude product was purified by column chromatography (EtOAc / n-heptane, $1: 4$). The product was obtained as a white solid $(1.34 \mathrm{~g}, 83 \%) . R_{\mathrm{F}}=0.3(\mathrm{EtOAc} / n$-heptane, $1: 4) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.88 (br s, 1H), 7.58 (dd, $J=7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.48-7.44 (m, 2H), 7.39-7.31 (m, 3H), 7.01 (dt, $J=7.6,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.92(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 152.6,141.5,140.0$, 132.2, 131.4, 129.8, 128.8, 128.2, 127.9, 122.2, 121.9, 118.0, 111.4, 93.8, 89.4, 81.1, 64.3, 28.3 (3C). FT-IR $v_{\max }$ film $\left(\mathrm{cm}^{-1}\right): 3403,2697,1731,1584,1506,1446,1152,750,603$. HRMS (ESI+) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+} 346.1419$, found 346.1406 .

tert-Butyl (2-\{(Z)-2-[2-(hydroxymethyl)phenyl]ethenyl\}phenyl)carbamate (3)
Compound $2(990 \mathrm{mg}, 3.1 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(25 \mathrm{~mL})$ followed by the addition of $\mathrm{Pd} / \mathrm{BaSO}_{4}(10 \%$, 43 mg) and quinoline ($43 \mu \mathrm{~L}, 0.31 \mathrm{mmol}$). The mixture was placed under an H_{2}-atmosphere for 1.5 hour. After completion of the reaction the mixture was filtered over Celite and the solvents were removed under reduced pressure. The crude product was purified by column chromatography (EtOAc/n-heptane, 1:4) yielding compound 3 as a yellow solid ($940 \mathrm{mg}, 95 \%$). $R_{\mathrm{F}}=0.2(\mathrm{EtOAc} / n$-heptane, $1: 4) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $7.31(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.04-6.94(\mathrm{~m}, 4 \mathrm{H}), 6.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 150.4,138.4,136.1,135.6,134.9$, 131.4, 129.5 (2C), 129.0, 128.6, 128.0, 128.0 (2C), 126.2, 122.8, $80.8,64.1,28.2$ (3C). FT-IR $v_{\max }$ film (cm^{-1}): 3429, 2924, 1735, 1528, 1148, 603. HRMS (ESI +) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 348.1576$, found 348.1557.

tert-Butyl \{2-[(Z)-2-(2-formylphenyl)ethenyl]phenyl\}carbamate (4)

Compound 3 ($940 \mathrm{mg}, 2.9 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and placed under an Ar-atmosphere in a flame-dried flask. Subsequently, Dess-Martin periodinane ($1.51 \mathrm{~g}, 3.5 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(0.80 \mathrm{~g}, 9.5 \mathrm{mmol})$ were added and the mixture was stirred for 40 minutes. The reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(5 \mathrm{~mL})$. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, washed with sat. aq. $\mathrm{NaHCO}_{3}(2 \times 25 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and subsequently with brine $(25 \mathrm{~mL})$. Next, the organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column chromatography (EtOAc/n-heptane, 1:6) to obtain compound 4 as a yellow solid ($847 \mathrm{mg}, 90 \%$). $R_{\mathrm{F}}=0.35(\mathrm{EtOAc} / n$-heptane, $1: 4) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 10.23(\mathrm{~s}, 1 \mathrm{H})$, $7.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dt}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dt}, J=7.7,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{ddd}, J=8.3,7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=7.7$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dt}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 192.1,152.8,152.4^{*}, 138.6,135.7^{*}, 135.5,134.8,133.5,133.4^{*}, 131.7^{*}, 131.1^{*}, 130.8,130.3$, 129.6, 129.3*, 128.4*, 128.2, 128.0, 127.2, 126.8, 126.2*, 122.8, 120.0*, 119.8, 102.1, 80.3, 28.3 (3C). FT-IR $v_{\max }$ film $\left(\mathrm{cm}^{-1}\right): 3382,2958,1731,1684,1515,1450,1243,1139,1057,737$. HRMS (ESI +) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$346.1419, found 346.1406.

5,6-Dihydrodibenzo $[b, f]$ azocine (5)

2 M HCl in EtOAc (25 mL) was added to compound $4(847 \mathrm{mg}, 2.6 \mathrm{mmol})$ and the mixture was stirred for 1 hour. Next, $\mathrm{NaBH}_{4}(295 \mathrm{mg}, 7.6 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(47 \mu \mathrm{~L}, 2.6 \mathrm{mmol})$ were added. After stirring overnight an additional portion of $\mathrm{NaBH}_{4}(295 \mathrm{mg}, 7.6 \mathrm{mmol})$ was added and after stirring for an additional hour the reaction
was quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The $\mathrm{H}_{2} \mathrm{O}$ layer was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$. The organic layers were combined and washed with $0.2 \mathrm{M} \mathrm{NaOH}(2 \times 40 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 40 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$ and subsequently dried over MgSO_{4}. The solvents were evaporated under reduced pressure to afford compound $\mathbf{5}$ as a yellow solid ($540 \mathrm{mg}, 100 \%$). $R_{\mathrm{F}}=0.45(\mathrm{EtOAc} / n$-heptane, $1: 4) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.27-7.23(\mathrm{~m}$, 1 H), 7.20-7.15 (m, 3H), 6.96 (dd, $J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.88 (ddd, $J=8.0,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.60 (ddd, $J=7.7$, $7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48-6.45(\mathrm{~m}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{br} \mathrm{s}$, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 147.0,139.2,138.1,134.7,132.7,130.1,128.8,127.9,127.6,127.4,127.3$, 121.8, 117.9, 117.7, 49.6. FT-IR $v_{\text {max }}$ film $\left(\mathrm{cm}^{-1}\right): 3391,3049,2932,1502,746,620$. HRMS (ESI +) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$208.1126, found 208.1107.

Benzyl dibenzo[b,f]azocine-5(6H)-carboxylate (6)

Compound $6(100 \mathrm{mg}, 0.48 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ after which $\mathrm{Cbz}-\mathrm{Cl}(117.3 \mu \mathrm{~L}, 0.82 \mathrm{mmol})$ was added, followed by a solution of aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{~mL}, 0.29 \mathrm{M})$. After 3 hours the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times$ 20 mL) and brine (20 mL). Next, the organic layer was dried over MgSO_{4} and subsequently concentrated in vacuo. The crude product was purified by column chromatography (EtOAc/n-heptane, 1:9) to obtain compound 6 as a white solid $(140 \mathrm{mg}, 86 \%) . R_{\mathrm{F}}=0.35(\mathrm{EtOAc} / n$-heptane, $1: 4) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, 273 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta$: 7.37-7.27 (m, 5H), 7.25-7.18 (m, 7.45H), 7.11-7.06 (m, 0.55H), $6.71(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 0.72 \mathrm{H}), 6.66(\mathrm{~d}, J=14.0$ $\mathrm{Hz}, 0.28 \mathrm{H}), 6.58(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 0.27 \mathrm{H}), 6.51(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 0.72 \mathrm{H}), 5.10(\mathrm{~s}, 0.68 \mathrm{H}), 5.07(\mathrm{br} \mathrm{s}, 1.27 \mathrm{H}), 4.73$ (br s, 2H). A clear ${ }^{13} \mathrm{C}$-NMR spectrum could not be obtained as a result of a strong rotamer-effect. FT-IR $v_{\text {max }}$ film $\left(\mathrm{cm}^{-1}\right)$: 2967, 1692, 1489, 1403, 1299, 1242, 1035, 612. HRMS (ESI +) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 342.1494, found 342.1477 .

Methyl 5-dibenzo $[b, f]$ azocin-5(6H)-yl-5-oxopentanoate (7)

Compound $5(500 \mathrm{mg}, 2.4 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.67 \mathrm{~mL}, 4.8 \mathrm{mmol})$ was added. The mixture was cooled to $0^{\circ} \mathrm{C}$ whereupon methyl succinylchloride $(0.51 \mathrm{~mL}, 3.6 \mathrm{mmol})$ was added. The reaction was stirred for 1.5 h , after which it was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $2 \mathrm{M} \mathrm{NaOH}(2 \times 40 \mathrm{~mL}), 2 \mathrm{M} \mathrm{HCl}(2 \times 40 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 40 \mathrm{~mL})$ and brine $(40 \mathrm{~mL})$. Next, the organic layer was dried over MgSO_{4} and subsequently concentrated in vacuo. The crude product was purified using column chromatography (EtOAc / n-heptane, 1:2) to obtain compound 7 as a yellow oil ($760 \mathrm{mg}, 94 \%$). $R_{\mathrm{F}}=0.2$ (EtOAc/n-heptane, 1:4). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.29-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.25-$ $7.23(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.78(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.22(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.93-1.77(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta:$ $173.5,171.7,140.9,136.3,135.7,134.7,132.6,132.0,131.1,130.3,129.4,128.1,127.9,127.3,127.1,126.9$,
54.5, 51.3, 33.4, 33.0, 20.4. FT-IR $v_{\max }$ film $\left(\mathrm{cm}^{-1}\right): 3308,2941,1740,1658,1446,1234,599$. HRMS (ESI +) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 336.1600$, found 336.1597.

Benzyl 11,12-dibromo-11,12-dihydrodibenzo $[b, f]$ azocine-5(6H)-carboxylate (8)
Compound $6(140 \mathrm{mg}, 0.41 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and a solution of $\mathrm{Br}_{2}(22 \mu \mathrm{~L}, 0.41 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added drop-wise. The reaction was stirred for 2 hours at $0{ }^{\circ} \mathrm{C}$ and subsequently quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(15 \mathrm{~mL})$. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$, the organic layers were combined and washed once again with sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(2 \times$ $20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$. The combined organic layers were subsequently dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by gradient column chromatography (EtOAc/nheptane, $1: 6$ to 1:1) to obtain compound $\mathbf{8}$ as a brown solid ($136 \mathrm{mg}, 67 \%$). $R_{\mathrm{F}}=0.3$ (EtOAc / n-heptane, $1: 4$). ${ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.74(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.1-6.9(\mathrm{~m}, 5 \mathrm{H}) 6.87$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 0.82 \mathrm{H}), 5.88(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 0.17 \mathrm{H}), 5.65(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 0.8 \mathrm{H}), 5.33-$ $5.28(\mathrm{~m}, 1.37 \mathrm{H}), 5.14(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 0.82 \mathrm{H}), 5.08-5.03(\mathrm{~m}, 1.22 \mathrm{H}), 4.31(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 0.83 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.1,138.3,137.3,136.4,136.2,132.7,130.4,130.1,130.0,129.7,129.5,129.4,129.1,128.8$, 128.7, 128.2, 128.0, 127.7, 127.6, 67.4, 60.9*, 59.8, 56.5, 54.9*, 53.7, 52.9*. FT-IR $v_{\max }$ film $\left(\mathrm{cm}^{-1}\right): 3075$, 2915, 1688, 1502, 1394, 1342, 1282, 1203, 728. HRMS (ESI+) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 499.9861$, found 499.9848.

Methyl 5-(11,12-dibromo-11,12-dihydrodibenzo[b,f]azocin-5(6H)-yl)-5-oxopentanoate (9)

Compound $7(500 \mathrm{mg}, 1.5 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The solution was then cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of $\mathrm{Br}_{2}(77 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added drop-wise. After stirring for 45 minutes at $0{ }^{\circ} \mathrm{C}$ the reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(5 \mathrm{~mL})$. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer was washed with sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(3 \times 10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(15 \mathrm{~mL})$ and subsequently dried over MgSO_{4}. The crude product was purified by column chromatography (EtOAc / n-heptane, 1:3 to $1: 2$) to obtain compound 9 as a white solid ($600 \mathrm{mg}, 81 \%$). A mixture of two stereoisomers was obtained in a ratio of $9: 1$. The major isomer ($R_{\mathrm{F}}=0.25, \mathrm{EtOAc} / n$-heptane, $1: 2$) was separately isolated, the minor isomer $\left(R_{\mathrm{F}}=0.3, \mathrm{EtOAc} / n\right.$-heptane, 1:2). Analytical data of the major isomer are given. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $7.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.92(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62$ $(\mathrm{s}, 3 \mathrm{H}), 2.44-2.81(\mathrm{~m}, 3 \mathrm{H}), 2.23-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.94(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 173.6,172.7$, $138.2,137.1,137.1,132.9,130.7$ (2C), 130.5, 129.6, 129.4, 128.9, 128.9, 128.6, 60.1, 55.6, 52.5, 51.5, 34.8, 33.3, 20.4. FT-IR $v_{\max }$ film $\left(\mathrm{cm}^{-1}\right): 2919,1744,1636,1497,1385,1191,655$. HRMS (ESI+) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 493.9966$, found 493.9960 .

Benzyl 11,12-didehydrodibenzo $[b, f]$ azocine-5(6H)-carboxylate (10)
Compound $\mathbf{8}(110 \mathrm{mg}, 0.22 \mathrm{mmol})$ was placed in a flame-dried flask and dissolved in dry THF (5 mL). Next, a solution of $\mathrm{KO}^{t} \mathrm{Bu}(77 \mathrm{mg}, 0.66 \mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH}(2 \mathrm{~mL})$ was added drop-wise. The mixture was stirred overnight, whereupon an extra portion of $\mathrm{KO}^{t} \mathrm{Bu}(77 \mathrm{mg}, 0.66 \mathrm{mmol})$ was added. The reaction was stirred for an additional hour after which full conversion was observed. The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and subsequently quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The mixture was neutralised with 2 M HCl and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The organic layers were combined and subsequently washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$ and brine (30 mL). After drying over MgSO_{4} and concentrating, the crude product was purified by column chromatography (EtOAc / n-heptane, 1:6) to obtain 10 as a white solid ($65 \mathrm{mg}, 87 \%$). $R_{\mathrm{F}}=0.5(\mathrm{EtOAc} / n$-heptane, 1:4). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, 243 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta: 7.69(\mathrm{dd}, J=7.1,1.6 \mathrm{~Hz}, 0.70 \mathrm{H}), 7.53(\mathrm{dd}, J=8.1,0.8 \mathrm{~Hz}, 0.36 \mathrm{H})$, 7.44-7.30 (m, 9H), 7.26-7.12 (m, 3H), $5.29(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 0.67 \mathrm{H}), 5.10(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 0.32 \mathrm{H}), 5.00(\mathrm{~d}, J=$ $14.2 \mathrm{~Hz}, 0.62 \mathrm{H}), 4.93$ (d, $J=11.8 \mathrm{~Hz}, 0.29 \mathrm{H}), 4.88(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 0.29 \mathrm{H}), 4.78(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 0.64 \mathrm{H}), 3.93$ $(\mathrm{d}, J=14.5 \mathrm{~Hz}, 0.28 \mathrm{H}), 3.80(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 0.67 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 155.6,151.5,147.2,136.3$, 132.0, 129.2, 128.5, 128.3, 128.1, 127.8, 127.7, 127.5, 126.9, 126.6, 125.5, 124.2, 121.2, 113.3, 109.1, 67.7*, 67.2, 55.8, 55.4*. FT-IR $v_{\max }$ film (cm^{-1}): 3002, 2894, 1697, 1290, 1117, 840, 750. HRMS (ESI+) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$362.1157, found 362.1151.

Methyl 5-(11,12-didehydrodibenzo[b,f]azocin-5(6H)-yl)-5-oxopentanoate (11)

Compound 9 ($300 \mathrm{mg}, 0.6 \mathrm{mmol}$) was placed in a flame-dried flask dissolved in dry THF (20 mL) and the solution was cooled to $-40^{\circ} \mathrm{C}$. Hereupon, $1 \mathrm{M} \mathrm{KO}^{t} \mathrm{Bu}$ in THF ($1.2 \mathrm{~mL}, 1.2 \mathrm{mmol}$) was added dropwise and the reaction was stirred at $-40^{\circ} \mathrm{C}$. The reaction was stirred for 1.5 hour at $-40^{\circ} \mathrm{C}$ whereupon another portion of 1 M $\mathrm{KO}^{t} \mathrm{Bu}$ in THF ($0.3 \mathrm{~mL}, 0.3 \mathrm{mmol}$) was added dropwise. After an additional 30 minutes the reaction was completed and the mixture was poured into a large amount of $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$. Next, the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$, the organic layers were combined and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and brine (50 mL) and dried over MgSO_{4}. The product was purified by gradient column chromatography (EtOAc/n-heptane, $1: 3$ to $1: 2$) to obtain 11 as a yellow oil ($170 \mathrm{mg}, 84 \%$) $R_{\mathrm{F}}=0.2$ (EtOAc / n-heptane, $1: 2$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 7.69(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.25(\mathrm{~m}, 7 \mathrm{H}), 5.15(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55$ $(\mathrm{s}, 3 \mathrm{H}), 2.28(\mathrm{ddd}, J=15.5,7.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 173.5,172.5,151.7,148.0,132.3,128.9,128.3,128.3,128.0,127.9,127.7,127.3,127.1,125.5,123.0$, 122.6, 115.1, 107.7,55.3, 51.4, 33.7, 32.8, 20.6. FT-IR $v_{\max }$ film $\left(\mathrm{cm}^{-1}\right): 3274,2924,1727,1666,1390,1243$, 1161, 754. HRMS (ESI +) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 356.1263$, found 356.1265 .

5-(11,12-Didehydrodibenzo $[b, f]$ azocin- $5(6 H)$-yl)-5-oxopentanoic acid (12)

Compound $11(70 \mathrm{mg}, 0.2 \mathrm{mmol})$ was dissolved in THF (3 mL) and a solution of LiOH ($19 \mathrm{mg}, 0.4 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added dropwise. The reaction was stirred for 3 hours whereupon the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and basified to a pH of 14 with 2 M NaOH . The $\mathrm{H}_{2} \mathrm{O}$-layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$ and next acidified to a pH of 2 with 2 M HCl . The $\mathrm{H}_{2} \mathrm{O}$-layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ $\mathrm{mL})$, the organic layers were combined, washed with brine $(40 \mathrm{~mL})$ and dried over MgSO_{4}. The solvents were removed under reduced pressure to obtain compound $12(62 \mathrm{mg}, 92 \%) R_{\mathrm{F}}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.27(\mathrm{~m}, 5 \mathrm{H}) 7.21-7.00(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.68(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8,172.8,151.5,147.9,132.3,128.9,128.4,128.3,128.2,127.8,127.1,125.5$, 122.6, 115.1, 107.7, 97.5, 55.4, 33.5, 32.7, 20.3. FT-IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 2933,1740,1628,1398,1187,785,612$. HRMS (ESI +) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 342.1106$, found 342.1105 .

6 H -isoindolo $[2,1-a]$ indole 1 (13)

Compound $10(10 \mathrm{mg}, 0.03 \mathrm{mmol})$ was dissolved in HBr in $\mathrm{AcOH}(33 \mathrm{wt} \%, 1 \mathrm{~mL})$. The mixture was stirred for 5 minutes whereupon the solvents were removed under reduced pressure. The crude product was purified by column chromatography (EtOAc/n-heptane, 1:6) to obtain (12) as a yellow solid ($6 \mathrm{mg}, 98 \%$). $R_{\mathrm{F}}=0.5$ (EtOAc/n-heptane, 1:4). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=8.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dt}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ $(\mathrm{dt}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dt}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ 143.9, 141.7, 133.9, 133.0, 132.8, 128.1, 127.0, 123.5, 121.7, 121.5, 120.9, 119.6, 109.2, 91.2, 48.4. HRMS (ESI+) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$206.0970, found 209.0963.

5-(11,12-Didehydrodibenzo $[b, f]$ azocin-5(6H)-yl)-N-mPEG ${ }_{2000}$-1-yl-5-oxopentanamide (15)
Compound $\mathbf{1 2}(10 \mathrm{mg}, 0.031 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. Subsequently, $\mathrm{H}_{2} \mathrm{~N}-$ $\mathrm{PEG}_{2000}-\mathrm{OMe}(69 \mathrm{mg}, 0.034 \mathrm{mmol})$, EDC•HCl $(13 \mathrm{mg}, 0.068 \mathrm{mmol})$ and DMAP ($15 \mathrm{mg}, 0.12 \mathrm{mmol}$) were added. The reaction was stirred for 30 minutes at $0{ }^{\circ} \mathrm{C}$, slowly warmed to room temperature and stirred overnight. Since the reaction did not go to completion another 0.2 equivalents of $\mathrm{H}_{2} \mathrm{~N}-\mathrm{PEG}_{2000}-\mathrm{OMe}(12 \mathrm{mg}$, 0.006 mmol) were added and the reaction was stirred for an additional day. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and washed with $2 \mathrm{M} \mathrm{HCl}(3 \times 20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$ and dried over MgSO_{4}.

The crude product was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$ to obtain a mixture of $\mathbf{1 5}$ and $\mathrm{H}_{2} \mathrm{~N}-\mathrm{PEG}_{2000}-\mathrm{OMe}$ in a ratio of $9: 1$, which was determined by comparing the methoxy-signal with the aromatic signals in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta: 7.70(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.42(\mathrm{~m}, 5 \mathrm{H})$, 7.21-7.03 (m, 2H), $5.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 196 \mathrm{H}), 3.60-3.54(\mathrm{~m}, 4 \mathrm{H}), 3.49-3.46(\mathrm{~m}$, $4 \mathrm{H}), 3.38(\mathrm{~s}, 3.3 \mathrm{H}), 2.31-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.83(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 2 \mathrm{H})$.

The ESI-ToF spectrum showed a clear shift of the molecular weight distribution. In the double charge distribution a shift in molecular mass between starting material and product of 150.557 was observed, where a shift of 150.555 was expected.

11,12-Didehydro-5,6-dihydrodibenzo[a,e][8]annulen-5-yl mPEG 2000 $^{-1}$-ylcarbamate (16)

Carbonic acid 7,8-didehydro-1,2:5,6-dibenzocyclooctene-3-yl ester 4-nitrophenyl ester ($4.9 \mathrm{mg}, 0.0127 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mu \mathrm{~L})$ and $\mathrm{Et}_{3} \mathrm{~N}(5.2 \mu \mathrm{~L}, 0.0381 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{~N}-\mathrm{PEG}_{2000}-\mathrm{OMe}(33 \mathrm{mg}$, $0.0165 \mathrm{mmol})$ were added. The reaction was stirred overnight, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and then quenched with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The organic layer was washed with $1 \mathrm{M} \mathrm{HCl}(1 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and brine $(1 \mathrm{~mL})$ and dried over MgSO_{4}. The organic layer was concentrated in vacuo and the crude product was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1 \rightarrow 5: 1\right)$ to obtain a mixture of $\mathbf{1 5}$ and $\mathrm{H}_{2} \mathrm{~N}-\mathrm{PEG}_{2000}-\mathrm{OMe}$ in a ratio of 3:1. The ratio between starting material and product was determined by comparing the integral of the aromatic signals with the integral of the methoxy-peak in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$: 7.53$7.51(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 7 \mathrm{H}), 5.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.69(\mathrm{br} \mathrm{s}, 256 \mathrm{H}), 3.48-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.39$ $(\mathrm{m}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 4 \mathrm{H}), 3.21-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.88(\mathrm{~m}, 1 \mathrm{H})$.

The ESI-ToF spectrum showed a clear shift in the molecular weight distribution. In the double charge distribution a shift in molecular mass between starting material and product of 123.0643 was observed, where a shift of 123.0337 was expected.

Kinetic Experiments:

General procedure for kinetic experiments:
The alkyne ($9.0 \mu \mathrm{~mol}$) was dissolved in $\mathrm{CD}_{3} \mathrm{OD}(250 \mu \mathrm{~L})$. Next, $250 \mu \mathrm{~L}$ of a BnN_{3} solution (36 mM in $\mathrm{CD}_{3} \mathrm{OD}$) was added to reach a final volume of $500 \mu \mathrm{~L}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were taken during $30-45$ minutes at preset timeintervals. The exact ratio between benzyl azide and alkyne was determined by comparison of the integrals of the aromatic signals and the benzylic protons of the alkyne. For the cycloaddition of $\mathbf{1 0}$ with benzyl azide, the kinetics were determined by comparing the decreasing signal of the benzylic protons of benzyl azide and the increasing signal of the same benzylic protons of the product. For the cycloaddition of $\mathbf{1 2}$ with benzyl azide, the decrease of the signal of one of the benzylic protons of $\mathbf{1 2}$ was used for determination of the kinetics, using the aromatic protons as standard. Both reactions gave two regioisomers, which in the kinetic experiments were integrated as a single product. From the conversion plots thus obtained the second order rate plots were calculated, by fitting the data to equation (1).

Herein, $k=2^{\text {nd }}$ order rate constant $\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right), t=$ reaction time $(\mathrm{s}),[A]_{0}=$ the initial concentration of substrate A $(\mathrm{mmol} / \mathrm{mL}),[B]_{0}=$ the initial concentration of substrate $\mathrm{B}(\mathrm{mmol} / \mathrm{mL})$ and $[P]=$ the concentration of the product $(\mathrm{mmol} / \mathrm{mL})$. For compound $\mathbf{1 0}$ this fit is shown in Graph S1 and for compound $\mathbf{1 2}$ the fit is shown in Graph S2. Both experiments were performed in triplicate giving identical plots and results.

The formation of the presumed products was confirmed by mass spectrometry and NMR-spectroscopy.

Graph S1.Logarithmic plot of the reaction of compound $\mathbf{1 0}$ with benzyl azide in $\mathrm{CD}_{3} \mathrm{OD}$. The experiment was performed in triplicate, with identical results (only one experiment shown).

Graph S2. Logarithmic plot of the reaction of compound $\mathbf{1 2}$ with benzyl azide in $\mathrm{CD}_{3} \mathrm{OD}$. The experiment was performed in triplicate with identical results (only one experiment shown).

Procedure for the kinetic experiment in $\mathrm{D}_{2} \mathrm{O}$:
Compound 12 ($2.87 \mathrm{mg}, 0.009 \mathrm{mmol}$) was dissolved in $210 \mu \mathrm{~L} \mathrm{D}_{2} \mathrm{O}$ by the addition of $40 \mu \mathrm{~L} 2 \mathrm{M} \mathrm{NaOH}$. To this a solution of (S)-2-azidopropanoic acid ($0.87 \mathrm{mg}, 0.0076 \mathrm{mmol}$) in $\mathrm{D}_{2} \mathrm{O}(250 \mu \mathrm{~L})$ was added. ${ }^{1} \mathrm{H}$-NMR spectra were taken during 30 minutes at preset time-intervals. Graph S shows the kinetic plot of this reaction, which was made vide supra.

Graph S3. Logarithmic plot of the reaction of compound $\mathbf{1 2}$ with 2-azidopropanoic acid in $\mathrm{D}_{2} \mathrm{O}$ under basic conditions.

Enzyme functionalization

For the functionalization of AHA-CalB, reactions were performed with $8.27 \mu \mathrm{~L}$ of an AHA-CalB solution in PBS $(1.26 \mathrm{mg} / \mathrm{mL}, 10.4 \mu \mathrm{~g})$ which was further diluted with PBS to reach a final concentration of $1 \mu \mathrm{~g} / \mu \mathrm{L}$ after addition of $\mathbf{1 5}$ or $\mathbf{1 6}$. To these solutions, various amounts of $\mathbf{1 5}$ and $\mathbf{1 6}$ (1,2 and 5 equivalents) were added. To this end, 4 different stock-solutions were prepared, namely, $0.55 \mathrm{mg} / \mathrm{mL}$ and $2.2 \mathrm{mg} / \mathrm{mL}$ of compound $\mathbf{1 5}$ and of compound 16, respectively. The PEG-contamination was taken into account in the preparation of the stocksolutions; the weighed amounts of sample were corrected in order to obtain the right concentration of $\mathbf{1 5}$ and $\mathbf{1 6}$. The amounts added of each of these stock-solutions are shown in Table S1. All reactions were shaken for 3 hours, after which the reactions were quenched by the addition of an excess benzyl azide (± 10 equiv) and subsequent shaking for 15 minutes. The conjugation was analysed using a 12% (w/v) polyacrylamide gel followed by Coomassie staining (see Figure 2).

Table S1. Amounts of compound 15 and 16 used in the ligation with AHA-CalB.

Entry	Substrate	Stock $0.55 \mathrm{mg} / \mathrm{mL}$	Stock $2.2 \mathrm{mg} / \mathrm{mL}$
1	$\mathbf{1 5}$ (1 equiv)	$1.1 \mu \mathrm{~L}$	x
2	$\mathbf{1 5}$ (2 equiv)	$2.1 \mu \mathrm{~L}$	x
3	$\mathbf{1 5}$ (5 equiv)	x	$1.3 \mu \mathrm{~L}$
4	$\mathbf{1 6}$ (1 equiv)	$1.1 \mu \mathrm{~L}$	x
5	$\mathbf{1 6}$ (2 equiv)	$2.1 \mu \mathrm{~L}$	x
6	$\mathbf{1 6}$ (5equiv)	x	$1.3 \mu \mathrm{~L}$

For the functionalization of $\mathrm{HRP}_{\mathrm{N}} \mathrm{N}_{3}$, reactions were performed with $6 \mu \mathrm{~L}$ of an HRP- N_{3} solution in $\mathrm{H}_{2} \mathrm{O}$ $(2.5 \mathrm{mg} / \mathrm{mL}, 15 \mu \mathrm{~g})$ which was further diluted with MilliQ water to reach a concentration of $1 \mu \mathrm{~g} / \mu \mathrm{L}$ after addition of $\mathbf{1 5}$ or $\mathbf{1 6}$. To the solutions, various amounts of $\mathbf{1 5}$ and $\mathbf{1 6}$ (1,2 and 5 equivalents) were added. To this end, 4 different stock-solutions were prepared, namely, $0.55 \mathrm{mg} / \mathrm{mL}$ and $2.2 \mathrm{mg} / \mathrm{mL}$ of compound $\mathbf{1 5}$ and of compound 16, respectively. The PEG-contamination was taken into account in the preparation of the stocksolutions; the weighed amounts of sample were corrected in order to obtain the right concentration of $\mathbf{1 5}$ and $\mathbf{1 6}$. The amounts added of each of these stock-solutions are shown in Table S2. All reactions were shaken for 3 hours, after which the reactions were quenched by the addition of an excess benzylazide (± 10 equiv) and subsequent shaking for 15 minutes. The conjugation was analysed using a 12% (w / v) polyacrylamide gel followed by Coomassie staining (see Figure S2).

Table S2. Amounts of compound $\mathbf{1 5}$ and $\mathbf{1 6}$ used in the ligation with HRP-N ${ }_{3}$.

Entry	Substrate	Stock $0.55 \mathrm{mg} / \mathrm{mL}$	Stock $2.2 \mathrm{mg} / \mathrm{mL}$
1	$\mathbf{1 5}$ (1 equiv)	$1.6 \mu \mathrm{~L}$	x
2	$\mathbf{1 5}$ (2 equiv)	x	$0.8 \mu \mathrm{~L}$
3	$\mathbf{1 5}$ (5 equiv)	x	$2 \mu \mathrm{~L}$
4	$\mathbf{1 6}$ (1 equiv)	$1.6 \mu \mathrm{~L}$	x
5	$\mathbf{1 6}$ (2 equiv)	x	$0.8 \mu \mathrm{~L}$
6	$\mathbf{1 6}$ (5 equiv)	x	$2 \mu \mathrm{~L}$

Figure S 1 . The ligation of $\mathrm{HRP}-\mathrm{N}_{3}$ with different equivalents of compound $\mathbf{1 5}$ and $\mathbf{1 6}$ after $\mathbf{3}$ hours.

1 L. A. Crawford, N. C. Clemence, H. McNab,R. G. Tyas, Org. Biomol. Chem., 2008, 6, 2334-2339.

