Supporting Information

Ag-Containing All Carbon 1,3-Dipoles: Generation and Formal Cycloaddition for Furo[3,2-*b*]-β/γ-lactams

Zhiguo Zhang, Qian Zhang,* Zhikun Ni, and Qun Liu,*

Department of Chemistry, Northeast Normal University, Changchun, 130024, China Email: <u>zhangq651@nenu.edu.cn</u> and <u>liuqun@nenu.edu.cn</u>

Table of Contents

I. General remarks	2
II. Typical procedure	2
III. Analytical data of compounds 2, 4 and 6	3-7
IV. H-H COSY spectra copies of compound 4a	8
V. ¹ H NMR and ¹³ C NMR spectra copies of synthesized compounds	9-26

I. General Remarks:

All reagents were purchased from commercial sources and used without further treatment, unless otherwise indicated. ¹H NMR and ¹³C NMR spectra were recorded at 25°C on a 500 MHz and 125 MHz or 400 MHz and 100 MHz, respectively, and TMS as internal standard. IR spectra (KBr) were recorded on in the range of 400~4000 cm⁻¹. Melting points are uncorrected. All reactions were monitored by TLC with GF254 silica gel coated plates. Flash column chromatography was carried out using 300-400 mesh silica gel at increased pressure.

II. Typical Procedure:

(I) For 1 (1a as an example):

$$\begin{array}{c} O \\ H \\ H \\ 3a \end{array} + Br \\ \hline NaH / DMF \\ r.t. \\ \hline Ia \\ 1a \end{array}$$

To the well stirred solution of anhydrous DMF (25 mL), cooling by ice-water, added 1-acetyl-*N*-phenylcyclopropanecarboxamide^[1] (2.03 g, 0.01 mol), NaH^[2] (70%) (0.41 g, 0.012 mol) and 3-bromoprop-1-yne (0.95 mL, 0.011 mol) The reaction mixture was stirred at room temperature for 24 h (monitored by TLC) before it was slowly poured into water (80 mL). Extracted with CH_2Cl_2 (8 mL×5), then the organic phase washed with water (20 mL×3), the solvent was removed under reduced pressure, and the residue was purified by a short flash silica gel column chromatography (eluent: diethyl ether/petroleum ether = 1/9), then the crude compound was recrystallized (diethyl ether/petroleum ether = 1/9) to gain **1a** (1.78g, 74%) as yellow crystal.

(II) For 2 (2a as an example):

The mixture of 1-acetyl-*N*-phenyl-*N*-(prop-2-ynyl)cyclopropanecarboxamide **1a** (0.24 g, 1.0 mmol), Ag₂O (0.116 g, 0.5 mmol) and KOH (0.112 g, 1.0 mmol) was well stirred for 24 h at room temperature in CH₃CN (4 mL), then to the mixture was added water (10 mL) and NH₄Cl (0.1g, 2.0 mmol), extracted with CH₂Cl₂ (6 mL×4). The solvent was removed under reduced pressure, and the residue was purified by a short flash silica gel column chromatography to give compound **2a** (0.18 g, 75%) as a yellow solid (eluent: diethyl ether/petroleum ether = 1/14) and **3a** (0.026 mg, 13%) (eluent: diethyl ether/petroleum ether = 1/9).

(III) For 5 (5b as an example):

N,*N*⁻methanediylidenedicyclohexanamine (DCC) (2.47 g, 0.012 mol) was added after the solution of 2-oxo-2-phenylacetic acid (1.50 g, 0.01 mol), 4-methyl-*N*-(prop-2-ynyl)aniline (1.45 g, 0.01 mol) in CH₂Cl₂ (30 mL) was stirred for 10 min at -60 °C. The mixture was stirred for further 4.0 h (monitored by TLC) before it was filtrated. The solvent was removed under reduced pressure, and the residue was purified by a short flash silica gel column chromatography to give compound **5b** (2.19 g, 79 %) as colorless oil (eluent: diethyl ether/petroleum ether = 1/5)

Reference:

[1] The NMR data of 3, please see Angew. Chem. Int. Ed. 2007, 46, 1726.

[2] Although there is no adverse reaction found in our experiment, the caution was also mentioned: the thermal runaway reaction involving sodium and DMF: G. DeWall, *Chem. Eng. News* **1982**, *60* (37), p.5 and p.43.

III. Analytical data of compounds 2, 4 and 6:

6-ethynyl-7-hydroxy-7-methyl-5-phenyl-5-azaspiro[2.4]heptan-4-one (trans-4a)

Yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 0.91-0.97 (m, 1H), 1.02-1.07 (m, 1H), 1.21-1.22 (m, 2H), 1.33 (s, 3H), 2.47 (s, 1H), 2.51 (s, 1H), 4.76 (s, 1H), 7.16-7.19 (m, 1H), 7.33-7.40 (m, 2H), 7.64-7.66 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 7.80, 14.10, 20.85, 33.99, 62.48, 74.96, 76.13, 79.16, 121.62, 125.21, 128.83, 133.20, 173.79.

cis-6a'-methyl-4'-phenyl-3a',4'-dihydrospiro[cyclopropane-1,6'-furo[3,2-b]pyrrol]-5'(6a'H)-one (2a)

Yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 1.10-1.13 (m, 1H), 1.17-1.25 (m, 2H), 1.33-1.38 (m, 4H), 4.98 (s, 1H), 5.19 (t, J = 2.5 Hz, 1H), 6.46 (d, J = 2.5 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 7.34-7.38 (m, 2H), 7.59-7.60 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 12.01, 13.43, 22.01, 32.19, 70.24, 86.70, 98.37, 120.91, 124.75, 128.94, 138.04, 150.03, 173.75; MS: calcd *m*/*z* 241.1, found 242.1 [(M+1)]⁺; IR (KBr, neat): v 3381, 3007, 2969, 2926, 1696, 1604, 1496, 1384, 1318, 1179, 1100, 1059, 974, 815cm⁻¹; Anal. Calcd for C₁₅H₁₅NO₂: C, 74.67; H, 6.27; N, 5.81. Found: C, 74.50; H, 6.14; N, 5.98.

cis-6a'-methyl-4'-p-tolyl-3a',4'-dihydrospiro[cyclopropane-1,6'-furo[3,2-b]pyrrol]-5'(6a'H)-one (2b)

White solid; mp: 73-74°C; ¹H NMR (500 MHz, CDCl₃): δ 1.10-1.38 (m, 7H), 2.33 (s, 3H), 4.96 (d, J = 2.5 Hz, 1H), 5.18 (t, J = 2.5 Hz, 1H), 6.47 (d, J = 2.5 Hz, 1H), 7.18 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 11.88, 13.28, 20.89, 22.04, 32.16, 70.43, 86.80, 99.51, 121.22, 129.53, 134.58, 135.54, 149.97, 173.58; IR (KBr, neat): v 3098, 2972, 2924, 1694, 1612, 1514, 1384, 1317, 1094, 1056, 976, 815 cm⁻¹; Anal. Calcd for C₁₆H₁₇NO₂: C, 75.27; H, 6.71; N, 5.49. Found: C, 75.20; H, 6.90; N, 5.38.

cis-4'-(4-methoxyphenyl)-6a'-methyl-3a',4'-dihydrospiro[cyclopropane-1,6'-furo[3,2-*b*]pyrrol]-5'(6a'*H*)-one (2c)

White crystal; mp: 111-114°C; ¹H NMR (500 MHz, CDCl₃): δ 1.09-1.12 (m, 1H), 1.15-1.23 (m, 2H), 1.31-1.34 (m, 4H), 3.80 (s, 3H), 4.90 (s, 1H), 5.14 (t, *J* = 2.5 Hz, 1H), 6.46 (d, *J* = 2.5 Hz, 1H), 6.90 (d, *J* = 9.0 Hz, 2H), 7.45 (d, *J* = 9.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 11.61, 13.00, 21.87, 31.88, 55.31, 70.69, 86.80, 99.42, 114.10, 123.24, 131.06, 149.83, 156.84, 173.35; IR (KBr, neat): v 2965, 2931, 2840, 1689, 1606, 1515, 1446, 1380, 1253,

1170, 1135, 1028, 969, 830 cm⁻¹; Anal. Calcd for $C_{16}H_{17}NO_3$: C, 70.83; H, 6.32; N, 5.16. Found: C, 70.80; H, 6.43; N, 5.26.

Mixture of *cis*-6a'-methyl-4'-*m*-tolyl-3a',4'-dihydrospiro[cyclopropane-1,6'-furo[3,2-b]pyrrol]-5'(6a'H)-one (2d) and 1-acetyl-*N*-*m*-tolylcyclopropanecarboxamide (3d) (¹H NMR, ¹³C NMR, Anal. Calcd. and IR database see SI of *Angew. Chem. Int. Ed.* 2007, *46*, 1726.)

¹H NMR (400 MHz, CDCl₃): δ 1.12-1.26 (m, 3H), 1.33 (m, 4H), 2.19 (s, 3H), 4.71(s, 1H), 4.96 (s, 1H), 6.49 (s, 1H), 7.07-7.23 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 11.26, 12.68, 17.94, 21.94, 31.38, 72.03, 87.88, 99.81, 126.51, 126.65, 127.98, 131.05, 136.12, 149.76, 173.54.

cis-4'-(4-chlorophenyl)-6a'-methyl-3a',4'-dihydrospiro[cyclopropane-1,6'-furo[3,2-*b*]pyrrol]-5'(6a'*H*)-one (2e) White crystal; mp: 89-91°C; ¹H NMR (500 MHz, CDCl₃): δ 1.13-1.15 (m, 1H), 1.19-1.24 (m, 2H), 1.33-1.35 (m, 4H), 4.95 (s, 1H), 5.17 (s, 1H), 6.47 (s, 1H), 7.32 (d, *J* = 9.0 Hz, 2H), 7.57 (d, *J* = 9.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 12.02, 13.43, 21.84, 32.02, 70.07, 86.53, 98.83, 121.78, 128.80, 129.64, 136.56, 150.16, 173.66; IR (KBr, neat): v 3209, 2982, 2928, 1688, 1606, 1495, 1377, 1343, 1173, 1087, 1054, 972, 810 cm⁻¹; Anal. Calcd for C₁₅H₁₄ClNO₂: C, 65.34; H, 5.12; N, 5.08. Found: C, 65.47; H, 5.05; N, 5.00.

cis-6a'-methyl-4'-p-tolyl-3a',4'-dihydrospiro[cyclopentane-1,6'-furo[3,2-b]pyrrol]-5'(6a'H)-one (2f)

White solid; mp: 86-88°C; ¹H NMR (500 MHz, CDCl₃): δ 1.42 (s, 3H), 1.65-1.69 (m, 1H), 1.76-1.81 (m, 2H), 1.84-1.96 (m, 3H), 1.98-2.04 (m, 1H), 2.09-2.13 (m, 1H), 4.68 (d, J = 2.5 Hz, 1H), 5.13 (t, J = 2.5 Hz, 1H), 6.43 (d, J = 2.5 Hz, 1H), 7.16 (d, J = 8.5 Hz, 2H), 7.42 (d, J = 8.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 18.64, 20.88, 25.95, 26.21, 30.79, 36.34, 57.93, 68.34, 91.17, 100.45, 109.73, 121.62, 129.40, 134.60, 135.38, 150.24, 177.37; MS: calcd *m*/*z* 283.1, found 284.1 [(M+1)]⁺; IR (KBr, neat): v 2956, 2925, 2868, 1898, 1688, 1608, 1514, 1384, 1367, 1294, 1266, 1138, 1057, 903, 838 cm⁻¹; Anal. Calcd for C₁₈H₂₁NO₂: C, 76.29; H, 7.47; N, 4.94. Found: C, 76.22; H, 7.33; N, 4.88.

cis-6,6,6a-trimethyl-4-*p*-tolyl-6,6a-dihydro-3a*H*-furo[3,2-*b*]pyrrol-5(4*H*)-one (2g) Yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 1.22 (s, 3H), 1.32 (s, 3H), 1.38 (s, 3H), 2.32 (s, 3H), 4.71 (d, *J* = 2.5 Hz, 1H), 5.13 (t, J = 2.5 Hz, 1H), 6.44 (d, J = 2.5 Hz, 1H), 7.16 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 17.93, 18.60, 20.86, 24.60, 47.49, 67.72, 91.21, 99.93, 121.80, 129.40, 134.76, 135.20, 150.37, 176.74; MS: calcd *m*/*z* 257.1, found 258.1 [(M+1)]⁺; IR (KBr, neat): v 2995, 2977, 2934, 1677, 1606, 1520, 1399, 1313, 1177, 1133, 1071, 897, 802 cm⁻¹; Anal. Calcd for C₁₆H₁₉NO₂: C, 74.68; H, 7.44; N, 5.44. Found: C, 74.40; H, 7.45; N, 5.53.

cis-6a'-ethyl-4'-p-tolyl-3a',4'-dihydrospiro[cyclopropane-1,6'-furo[3,2-b]pyrrol]-5'(6a'H)-one (2h)

Yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 0.97 (t, J = 7.5 Hz, 3H), 1.09-1.32 (m, 4H), 1.60-1.72 (m, 2H), 2.33 (s, 3H), 5.11 (s, 1H), 5.18 (s, 1H), 6.48 (d, J = 2.5 Hz, 1H), 7.18 (d, J = 8.5 Hz, 2H), 7.51 (d, J = 8.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 6.76, 12.23, 12.48, 20.61, 28.58, 31.71, 67.95, 88.24, 99.88, 120.83, 129.28, 134.26, 135.57, 149.58, 173.60; IR (KBr, neat): v 3008, 2967, 2923, 1697, 1615, 1558, 1514, 1388, 1311, 1177, 1056, 999, 814 cm⁻¹; Anal. Calcd for C₁₇H₁₉NO₂: C, 75.81; H, 7.11; N, 5.20. Found: C, 75.90; H, 7.10; N, 5.03.

cis-(*E*)-4'-(4-chlorophenyl)-6a'-(3-methoxystyryl)-3a',4'-dihydrospiro[cyclopropane-1,6'-furo[3,2-*b*]pyrrol]-5' (6a'*H*)-one (2i)

White solid; mp:140-141°C; ¹H NMR (500 MHz, CDCl₃): δ 1.11-1.15 (m, 1H), 1.20-1.24 (m, 1H), 1.30-1.34 (m, 1H), 1.37-1.41 (m, 1H), 3.82 (s, 3H), 5.17 (s, 1H), 5.23 (s, 1H), 6.09 (d, *J* = 15.5 Hz, 1H), 6.65 (d, *J* = 2.5 Hz, 1H), 6.69 (d, *J* = 15.5 Hz, 1H), 6.83-6.85 (m, 1H), 6.93 (s, 1H), 7.00 (d, *J* = 8.0 Hz, 1H), 7.25-7.28 (m, 1H), 7.35 (d, *J* = 8.5 Hz, 2H), 7.59 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 11.65, 15.10, 32.37, 55.26, 70.03, 88.64, 99.23, 112.10, 113.83, 119.28, 122.03, 126.82, 129.08, 129.74, 130.01, 136.61, 137.08, 150.75, 159.88, 173.49; IR (KBr, neat): v 2921, 2852, 1691, 1593, 1494, 1417, 1377, 1290, 1237, 1173, 1086, 975, 826 cm⁻¹; Anal. Calcd for C₂₃H₂₀ClNO₃: C, 70.14; H, 5.12; N, 3.56. Found: C, 70.20; H, 5.08; N, 3.60.

cis-6a'-(4-methoxyphenyl)-4'-*p*-tolyl-3a',4'-dihydrospiro[cyclopropane-1,6'-furo[3,2-*b*]pyrrol]-5'(6a'*H*)-one (2j)

White solid; mp: 123-125°C; ¹H NMR (500 MHz, CDCl₃): δ 0.53-0.57 (m, 1H), 1.19-1.23 (m, 1H), 1.28-1.32 (m, 1H), 1.35-1.39 (m, 1H), 2.34 (s, 3H), 3.81 (s, 3H), 5.22 (t, *J* = 2.5 Hz, 1H), 5.28 (s, 1H), 6.64 (d, *J* = 2.5 Hz, 1H), 6.89-6.92 (m, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.31-7.33 (m, 2H), 7.51 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 13.01, 15.62, 20.89, 34.66, 55.28, 73.03, 90.23, 100.03, 113.72, 121.20, 126.32, 129.57, 132.78, 134.71, 135.56, 149.88, 159.13, 173.38; MS: calcd *m/z* 347.2, found 348.2 [(M+1)]⁺; IR (KBr, neat): v 2923, 2850, 1739, 1694, 1647, 1538, 1514, 1368, 1170, 1058, 953, 792 cm⁻¹; Anal. Calcd for C₂₂H₂₁NO₃: C, 76.06; H, 6.09; N, 4.03. Found: C, 76.03; H, 5.96; N, 4.01.

Mixture of *cis*-6a'-methyl-4'-*o*-tolyl-3a',4'-dihydrospiro[cyclopropane-1,6'-furo[3,2-*b*]pyrrol]-5'(6a'*H*)-one (2k) and 1-acetyl-*N*-*o*-tolylcyclopropanecarboxamide (3k) (¹H NMR, ¹³C NMR, Anal. Calcd. and IR database see SI of *Angew. Chem. Int. Ed.* 2007, *46*, 1726.)

¹H NMR (500 MHz, CDCl₃): δ 1.14-1.25 (m, 3H), 1.32-1.38 (m, 4H), 2.21 (s, 3H), 4.73 (s, 1H), 4.97 (s, 1H), 6.51 (d, J = 2.5 Hz, 1H), 7.15 (t, $J_I = 6.5$ Hz, $J_2 = 2.5$ Hz, 1H), 7.22-7.29 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): (mixture with **3k**) δ 11.20, 12.69, 15.22, 17.90, 20.14, 21.85, 25.10, 31.31, 63.56, 71.93, 87.83, 99.70, 103.87, 121.68, 124.18, 126.44, 126.59, 127.93, 130.20, 130.98, 135.98, 136.51, 149.72, 173.47.

cis-4'-(2-chlorophenyl)-6a'-methyl-3a',4'-dihydrospiro[cyclopropane-1,6'-furo[3,2-*b*]pyrrol]-5'(6a'*H*)-one (2l) Colourless oil; ¹H NMR (500 MHz, CDCl₃): δ 1.13-1.35 (m, 7H), 4.88 (s, 1H), 4.92 (t, *J* = 2.5 Hz, 1H), 6.50 (d, *J* = 2.5 Hz, 1H), 7.23-7.31 (m, 3H), 7.45-7.47 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 11.40, 13.02, 21.78, 31.20, 70.81, 87.98, 99.50, 127.56, 129.20, 130.27, 130.75, 132.50, 134.78, 149.88, 174.33; IR (KBr, neat): v 3007, 2971, 2925, 1704, 1610, 1481, 1343, 1184, 1058, 909, 817 cm⁻¹; Anal. Calcd for C₁₅H₁₄ClNO₂: C, 65.34; H, 5.12; N, 5.08. Found: C, 65.50; H, 5.17; N, 5.16.

cis-6a'-(4-methoxyphenyl)-4'-methyl-3a',4'-dihydrospiro[cyclopropane-1,6'-furo[3,2-*b*]pyrrol]-5'(6a'*H*)-one (2m)

¹H NMR (400 MHz, CDCl₃): δ 0.40-0.46 (m, 1H), 1.06-1.12 (m, 1H), 1.13-1.18 (m, 1H), 1.20-1.22 (m, 1H), 2.93(s, 3H), 3.79 (s, 3H), 4.63 (s, 1H), 5.22 (s, 1H), 6.63 (d, *J* = 2.4 Hz, 1H), 6.87 (d, *J* = 8.8 Hz, 2H), 7.24 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): (mixture with **3k**) δ 11.69, 14.49, 14.64, 26.97, 28.03, 33.86, 34.77, 55.27, 55.51, 73.30, 91.17, 98.96, 113.67, 113.89, 126.22, 128.76, 131.53, 132.85, 149.97, 159.08, 163.91, 170.42, 173.93, 195.79.

1-(4-methoxybenzoyl)-N-methylcyclopropanecarboxamide (3m)

¹H NMR (400 MHz, CDCl₃): δ 1.28-1.31 (m, 2H), 1.55-1.57 (m, 2H), 2.72 (d, J = 4.4 Hz, 3H), 3.86 (s, 3H), 5.85 (s, 1H), 6.92 (d, J = 8.8 Hz, 2H), 7.96 (d, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): (mixture with **2k**) δ 11.69, 14.49, 14.64, 26.97, 28.03, 33.86, 34.77, 55.27, 55.51, 73.30, 91.17, 98.96, 113.67, 113.89, 126.22, 128.76, 131.53, 132.85, 149.97, 159.08, 163.91, 170.42, 173.93, 195.79.

cis-1-methyl-6-p-tolyl-2-oxa-6-azabicyclo[3.2.0]hept-3-en-7-one (6a)

Yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 1.76 (s, 3H), 2.34 (s, 3H), 4.80 (s, 1H), 5.51 (s, 1H), 6.69 (s, 1H), 7.17 (d, *J* = 7.0 Hz, 2H), 7.30 (d, *J* = 7.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 15.89, 20.88, 66.23, 94.55, 101.55, 116.85, 129.67, 134.11, 134.23, 153.88, 163.95; MS: calcd *m*/*z* 215.1, found 216.1 [(M+1)]⁺; IR (KBr, neat): v 3035, 2924, 2855, 2735, 2588, 1891, 1748, 1650, 1597, 1511, 1456, 1373, 1170, 1144, 1101, 1042, 986, 900, 837 cm⁻¹; Anal. Calcd for C₁₃H₁₃NO₂: C, 72.54; H, 6.09; N, 6.51. Found: C, 72.73; H, 6.23; N, 6.26.

cis-1-phenyl-6-p-tolyl-2-oxa-6-azabicyclo[3.2.0]hept-3-en-7-one (6b)

White solid; mp: 104-106°C; ¹H NMR (500 MHz, CDCl₃): δ 2.32 (s, 3H), 5.04 (s, 1H), 5.60 (t, J = 2.5 Hz, 1H), 6.86 (d, J = 2.5 Hz, 1H), 7.16 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.40-7.42 (m, 2H), 7.57 (d, J = 7.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 20.91, 68.08, 97.51, 101.64, 117.04, 125.93, 128.79, 129.31, 129.74, 133.29, 134.11, 134.41, 154.46, 162.57; MS: calcd *m*/*z* 277.1, found 278.1 [(M+1)]⁺; IR (KBr, neat): *v* 1733, 1599, 1515, 1451, 1384, 1340, 1156, 1044, 986, 841, 806 cm⁻¹; Anal. Calcd for C₁₈H₁₅NO₂: C, 77.96; H, 5.45; N, 5.05. Found: C, 77.99; H, 5.40; N, 5.12.

cis-6-(4-chlorophenyl)-1-phenyl-2-oxa-6-azabicyclo[3.2.0]hept-3-en-7-one (6c)

White solid; mp: 130-132°C; ¹H NMR (500 MHz, CDCl₃): δ 5.07 (d, J = 2.5 Hz, 1H), 5.60 (t, J = 2.5 Hz, 1H), 6.89 (d, J = 2.5 Hz, 1H), 7.33 (d, J = 9.0 Hz, 2H), 7.38-7.44 (m, 5H), 7.55-7.57 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 68.30, 97.84, 101.22, 118.29, 125.94, 128.88, 129.38, 129.52, 129.77, 132.91, 135.01, 154.78, 162.75; IR (KBr, neat): v 1740, 1599, 1497, 1418, 1376, 1157, 1043, 822, 716 cm⁻¹; Anal. Calcd for C₁₇H₁₂ClNO₂: C, 68.58; H, 4.06; N, 4.70. Found: C, 68.50; H, 4.11; N, 4.62.

IV. ¹H-¹H COSY spectra copies of compound **4a**

The relative stereochemistry of compound **4a** was determined by ¹H NMR NOE analysis as shown below.

V. ¹H NMR and ¹³C NMR spectra copies

Compound 4a

Compound 2a

Compound 2b

Compound 2c

Compound 2d

Compound 2e

Compound 2f

Compound 2g

Compound 2h

Compound 2i

Compound 2j

Compound 2k

Compound 21

Compound 2m

Compound 6a

Compound 6b

Compound 6c

