Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Electronic Supplementary Information

Synthesis of Hyacinthacine \mathbf{B}_{3} and purported Hyacinthacine \mathbf{B}_{7}

Christopher W. G. Au, ${ }^{a}$ Robert J. Nash ${ }^{b}$ and Stephen G. Pyne* ${ }^{a}$
${ }^{a}$ School of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522, Australia. Fax: +612 42214287; Tel: +612 42213511; E-mail: spyne@uow.edu.au ${ }^{b}$ Phytoquest Limited, IBERS, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, U.K.

TABLE OF CONTENTS

General methods SI-2
Experimental for the Synthesis of Hyacinthacine \mathbf{B}_{3} SI-2 - SI-15
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of hyacinthacine B_{3} SI-16
${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of hyacinthacine B_{3} SI-17
Table 1. Comparison of literature ${ }^{13} \mathrm{C}$ NMR chemical shifts
(125 MHz, $\mathrm{CD}_{3} \mathrm{OD}$) of natural hyacinthacine B_{3} (Lit.)and synthetic 2 (Syn.)SI-17
Experimental for the Synthesis of Purported Hyacinthacine \mathbf{B}_{7} SI-18 - SI-27
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of purported hyacinthacine B_{7} SI-28
${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of purported hyacinthacine B_{7} SI-28
NOESY ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of purported hyacinthacine B_{7} SI-29
Table 2. Comparison of literature ${ }^{1} \mathrm{H}$ NMR chemical shifts ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$)
of natural hyacinthacine B_{7} (Lit.) and synthetic $\mathbf{3}$ (Syn.) SI-30
Table 3. Comparison of literature ${ }^{13} \mathrm{C}$ NMR chemical shifts ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$)
of natural hyacinthacine B_{7} (Lit.) and synthetic 3 (Syn.) SI-30

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

General Methods:

Unless otherwise indicated all ${ }^{1} \mathrm{H}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra were recorded in CDCl_{3} solutions. All signals were relative to TMS or CDCl_{3}, referenced at 0.00 ppm or 77.0 ppm . NMR assignments are based upon COSY, DEPT, HSQC and HMBC experiments. Petrol refers to the hydrocarbon fraction of bp $40-60^{\circ} \mathrm{C}$

Experimental for the Synthesis of hyacinthacine B_{3}

General Method for O-PMB Protection:

1-Methoxy-4-\{[(2S)-pent-4-en-2-yloxy]methyl\}benzene (5a). A solution of (S)-4-penten-2-ol 4a ($1.070 \mathrm{~g}, 12.423 \mathrm{mmol},[\alpha]_{D}^{24}+5.0$ (neat), $>98 \%$ ee, Aldrich), 4methoxybenzyl chloride ($3.15 \mathrm{~mL}, 23.220 \mathrm{mmol}$) and tetrabutylammonium iodide (0.369 $\mathrm{g}, 1.161 \mathrm{mmol}$) in anhydrous THF (40 mL) under a N_{2} atmosphere was cooled to $0{ }^{\circ} \mathrm{C}$, sodium hydride (50% dispersion in mineral oil, $0.836 \mathrm{~g}, 0.418 \mathrm{~g} \mathrm{NaH}, 17.415 \mathrm{mmol}$) was then added, and the reaction mixture was allowed to warm to rt and stirred under nitrogen for 18 h . Quenching with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ gave a cloudy mixture, which was extracted with diethyl ether (30 mL). The aqueous layer was further extracted with diethyl ether (3×30 $\mathrm{mL})$, and the combined ethereal extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give a brown oil. Purification by flash column chromatography (increasing polarity from $0: 100$ to $5: 95 \mathrm{Et}_{2} \mathrm{O}$ /petrol) gave the title compound as a colorless oil (2.309 g, 90\%). $R_{f} 0.43$ (5:95 EtOAc/petrol). $[\alpha]_{D}^{24}+8.0\left(c 1.00, \mathrm{CHCl}_{3}\right) . \delta_{\mathrm{H}}$ (500 MHz): 7.26 ($2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}$), $6.86(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}$), $5.87-5.78(2 \mathrm{H}$, m, H4), $5.07\left(1 \mathrm{H}, \mathrm{d}, J=17.3 \mathrm{~Hz}, \mathrm{H} 5_{\text {trans }}\right), 5.04\left(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}, \mathrm{H} 5_{\text {cis }}\right),(1 \mathrm{H}, \mathrm{d}, J=$

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009
$\left.17.3 \mathrm{~Hz}, \mathrm{H5}_{\text {trans }}\right), 4.48(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}$, OСННРМР $), 4.27(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}$, ОСННРМР), $3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.58-3.52(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 2.36(1 \mathrm{H}, \mathrm{ddd}, J=5.9,6.6$, $13.7 \mathrm{~Hz}, \mathrm{H3}_{\mathrm{A}}$), $2.21\left(1 \mathrm{H}, \mathrm{ddd}, J=6.7,7.1,13.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}\right), 1.17(3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, \mathrm{H} 1)$ $\delta_{\mathrm{C}}(125 \mathrm{MHz}): 159.0(\mathrm{ArC}), 135.0(\mathrm{C} 4), 130.9(\mathrm{ArC}), 129.0(\mathrm{ArC}), 116.6$ (C5), 113.6 (ArC), $74.0(\mathrm{C} 2), 69.9\left(\mathrm{OCH}_{2} \mathrm{PMP}\right), 55.1\left(\mathrm{OCH}_{3}\right), 40.8(\mathrm{C} 3), 19.3(\mathrm{C} 1)$.

General Method for Olefin Cross Metathesis using the Grubb's II Catalyst:

(1E,4S)-4-[(4-Methoxybenzyl)oxy]pent-1-en-1-yl phenyl sulfone (6a). To a nitrogenflushed solution of $\mathbf{5 a}(100 \mathrm{mg}, 0.483 \mathrm{mmol})$ and phenyl vinyl sulfone $(0.163 \mathrm{~g}, 0.966$ mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added the Grubbs II catalyst ($21 \mathrm{mg}, 0.0242$ mmol). The reaction mixture was stirred and irradiated with microwaves in a CEM microwave reactor for 1 h at $90{ }^{\circ} \mathrm{C}$ using a maximum applied power of 200 W . After cooling the reaction mixture was concentrated in vacuo to give a black semi-solid. Purification by flash column chromatography (increasing polarity from 1:10:2 to 1:5:2 $\mathrm{Et} 2 \mathrm{O} /$ petrol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent) gave the title compound ($0.114 \mathrm{~g}, 68 \%$) as a pale yellow oil. $R_{f} 0.52\left(1: 5: 2 \mathrm{Et} 2 \mathrm{O} /\right.$ petrol $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .[\alpha]_{D}^{22}-6.7\left(c 2.90, \mathrm{CHCl}_{3}\right)$. IR $v_{\max }\left(\mathrm{cm}^{-1}\right): \quad 2965$, 2909, 2832, 1613, 1511, 1444, 1305, 1246, 1144, 1085, 1031, $750 . \delta_{\text {H }}(300 \mathrm{MHz}): 7.87-$ $7.84(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.60-7.48(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.20-7.17(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.01(1 \mathrm{H}, \mathrm{dt}, J=$ 7.4, $15.0 \mathrm{~Hz}, \mathrm{H} 2), 6.86-6.83(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.37(1 \mathrm{H}, \mathrm{dt}, J=1.4,15.0 \mathrm{~Hz}, \mathrm{H} 1), 4.48(1 \mathrm{H}$, d, $J=11.2 \mathrm{~Hz}, \mathrm{OCHHAr}), 4.34(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}, \mathrm{OCHHAr}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.65$ (1H, dq, $J=6.2,12.4 \mathrm{~Hz}, \mathrm{H} 4), 2.46-2.39(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 1.20(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{H} 5) . \delta_{\mathrm{C}}$ (75 MHz): 159.1 (ArC), 143.6 (C2), 140.5 (ArC), 133.2 (ArC), 132.0 (C1), 130.2 (ArC),

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009
129.2 (ArC), 127.5 (ArC), 113.8(ArC), $72.5(\mathrm{C} 4), 70.1\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{Ar}\right), 55.2\left(\mathrm{OCH}_{3}\right), 38.5$
(C3), 19.6 (C5). ESIMS m/z 364 (100\%) $\left[\mathrm{MNH}_{4}\right]^{+}$, 369 (12\%) [MNa] ${ }^{+}$, HRESIMS found 369.1151, calc for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{NaS}, 369.1137$ [MNa] ${ }^{+}$.

General Method for the Sharpless Asymmetric Dihydroxylation using DHQD-IND:
To a solution of potassium ferric cyanide ($0.322 \mathrm{~g}, 0.977 \mathrm{mmol}$), potassium carbonate ($0.135 \mathrm{~g}, 0.977 \mathrm{mmol}$), methanesulfonamide $(0.031 \mathrm{~g}, 0.326 \mathrm{mmol})$, potassium osmate dihydrate (1.4 mg, 0.0039 mmol) and DHQD-IND ($2.3 \mathrm{mg}, 0.0049 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(1.5$ mL) was added a solution of $\mathbf{6 a}(0.113 \mathrm{~g}, 0.326 \mathrm{mmol})$ in tert-butanol (1.5 mL). The reaction mixture was agitated with ultrasound waves in a sonicator fitted with a water bath for 6 h , stirred at rt for 12 h and then sonicated again for an additional 6 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with EtOAc (3 x 10 mL). The combined organic layers were dried and concentrated in vacuo to afford a yellow oil, which was used unpurified in the subsequent Petasis reaction.

General Method for the Petasis Reaction

(3S,4R,6S,E)-3-((S)-1-(Benzyloxy)but-3-en-2-ylamino)-6-(4-methoxybenzyloxy)-1-
phenylhept-1-en-4-ol (9a). To a stirred solution of the crude Sharpless ADH product in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ with stirring under a nitrogen atmosphere was added (E)-2-

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009
phenylvinylboronic acid ($0.058 \mathrm{~g}, 0.326 \mathrm{mmol}$) and (2S)-1-(benzyloxy)but-3-en-2-amine ($0.048 \mathrm{~g}, 0.326 \mathrm{mmol}$). The reaction mixture was stirred at rt for 48 h , diluted with EtOAc (10 mL) and washed with 0.5 M aq $\mathrm{NaOH}(3 \times 10 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give a black oil. Purification by flash column chromatography ($2.5: 97.5$ to $5: 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent) gave the title compound ($0.087 \mathrm{~g}, 53 \%$, over 2 steps) as a brown oil. $R_{f} 0.25\left(5: 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. $[\alpha]_{D}^{24}+18.2\left(c 1.00, \mathrm{CHCl}_{3}\right)$. IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3421,3078,3027,2965,2909,2852,1613$, 1512, 1444, 1247, 1085, 1034. δ_{H} (500 MHz): 7.36-7.19 (12H, m, ArH), 6.85-6.79 (2H, m, ArH), $6.43(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H} 1), 6.09(1 \mathrm{H}, \mathrm{dd}, J=8.5,16.0 \mathrm{~Hz}, \mathrm{H} 2), 5.59(1 \mathrm{H}$, ddd, $J=7.7,9.9,17.4 \mathrm{~Hz}, \mathrm{H} 2$ ' $), 5.22-5.15(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$ ' $), 4.55-4.36\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{PMP}\right), 4.02(\mathrm{td}, J=3.8,6.3 \mathrm{~Hz}, \mathrm{H} 4), 3.88-3.78(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 6), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.24(1 \mathrm{H}, \mathrm{dd}, J=3.8,8.5 \mathrm{~Hz}, \mathrm{H} 3), 3.50-3.40(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 1$ ' and H 1 '’), $1.57(2 \mathrm{H}, \mathrm{dd}, J=5.7$, 6.3 Hz, H5), 1.21 (3H, d, $J=6.2 \mathrm{~Hz}, \mathrm{H} 7$). $\delta_{\mathrm{C}}(125 \mathrm{MHz}): 159.1$ (ArC), 138.1 (ArC), 137.8 (C2'), 136.9 (ArC), 135.3 (ArC), 132.9 (C1), 130.9 (ArC), 129.3 (ArC), 128.5 (ArC), 128.4 (ArC), 127.9 (C2), 127.6 (ArC), 127.4 (ArC), 126.4 (ArC), 118.0 (C3'), 113.8 (ArC), 73.3 (C1'’), $73.0\left(\mathrm{OCH}_{2} \mathrm{PMP}\right)$, 72.1 (C6), $70.4\left(\mathrm{OCH}_{2} \mathrm{Bn}\right), 70.2(\mathrm{C} 4), 62.3$ (C3), $58.0\left(\mathrm{C} 1\right.$ '), $55.3\left(\mathrm{OCH}_{3}\right), 40.1$ (C5), 19.7 (C7). ESIMS m/z 502 (100\%) [MH] ${ }^{+}$, HRESIMS found 502.2954, calc for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{NO}_{4}, 502.2957$ [MH] ${ }^{+}$.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

General Method for the Synthesis of Oxazolidinones

(4S,5R)-3-((S)-1-(Benzyloxy)but-3-en-2-yl)-5-((S)-2-(4-methoxybenzyloxy)propyl)-4-styryloxazolidin-2-one (10a). To solution of the 1,2-amino alcohol 9a (0.020 g, 0.040 $\mathrm{mmol})$ and triethylamine $(11 \mu \mathrm{~L}, 0.080 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added triphosgene ($6 \mathrm{mg}, 0.020 \mathrm{mmol}$). The reaction mixture was allowed to warm to rt and was stirred for 18 h and then concentrated in vacuo to give a yellow solid. Purification by flash column chromatography using $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:30) as eluent gave the title compound $(0.017 \mathrm{~g}, 81 \%)$ as a colorless oil. $R_{f} 0.39$ (1:3 EtOAc/petrol). $[\alpha]_{D}^{21}$ $+3.6\left(c 8.30, \mathrm{CHCl}_{3}\right) . \mathrm{IR} v_{\max }\left(\mathrm{cm}^{-1}\right): 2970,2924,2847,1746,1513,1247,1073 . \delta_{\mathrm{H}}(300$ MHz): 7.33-7.24 (12H, m, ArH), 6.88-6.85 (2H, m, ArH), $6.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.2 \mathrm{~Hz}, \mathrm{H} 2$ '’’) 5.82 (1 H, ddd, $J=7.2,10.1,17.6 \mathrm{~Hz}, \mathrm{H} 2$ '), $6.00\left(1 \mathrm{H}, \mathrm{dd}, J=9.3,15.9 \mathrm{~Hz}, \mathrm{H} 1^{\prime \prime}\right.$ ' $), 5.25$ ($1 \mathrm{H}, \mathrm{d}, J=17.2 \mathrm{~Hz}, \mathrm{H}^{\prime}{ }_{\text {trans }}$), $5.18\left(1 \mathrm{H}, \mathrm{dd}, J=10.4 \mathrm{~Hz}, \mathrm{H}^{\prime}{ }_{c i s}\right), 4.86(1 \mathrm{H}, \mathrm{ddd}, J=2.6$, 8.1, $10.7 \mathrm{~Hz}, \mathrm{H} 5), 4.61(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}$, OCHHPh $), 4.52(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}$, ОСННРМР), 4.48 (1H, d, $J=11.7 \mathrm{~Hz}$, OCHHPh), 4.41-4.32 (1H, m, H4), 4.39-4.32 (1H, m, H1'), 4.34 (1H, d, J = 10.7 Hz, OCHHPMP), 3.90-3.76 (1H, m, H2’’), 3.90-3.76 (1H, $\left.\mathrm{m}, \mathrm{H} 4{ }^{\prime}{ }_{\mathrm{A}}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.61\left(1 \mathrm{H}, \mathrm{dd}, J=5.4,10.2 \mathrm{~Hz}, \mathrm{H} 4{ }_{\mathrm{B}}\right.$) , 1.74-1.55 (2H, m, H1'’), 1.19 (3H, d, J = 6.3 Hz, H3'’). $\delta_{\mathrm{C}}(75 \mathrm{MHz}): 159.2$ (ArC), 157.4 (CO), 137.8 (ArC), 135.6 (ArC), 135.0 (C2'’’), 133.6 (C2'), 130.6 (ArC), 128.4 (ArC), 128.6 (ArC),

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009
128.4 (ArC), 128.3 (ArC), 127.9 (ArC), 127.8 (ArC), 126. (ArC), 124.9 (C 1 '’'), 118.4
(C3'), 113.8 (ArC), 74.6 (C5), $73.0\left(\mathrm{OCH}_{2} \mathrm{Ph}\right)$, $71.3(\mathrm{C} 2 ’$ ' $), 70.9\left(\mathrm{OCH}_{2} \mathrm{PMP}\right), 68.9(\mathrm{C} 4$ '), 61.3 (C4), 56.2 (C 1 '), $55.3\left(\mathrm{OCH}_{3}\right)$, 38.7 (C 1 '’), 20.1 (C3'’). ESIMS m/z 550 (80\%) [MNa] ${ }^{+}$, 528 (18\%) [MH] ${ }^{+}$, HRESIMS found 528.2737, calc for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{NO}_{5}, 528.2750$ $[\mathrm{MH}]^{+}$.

General Method for Ring-Closing Metathesis of Oxazolidinones

(1R,5S,7aS)-5-(Benzyloxymethyl)-1-((S)-2-(4-methoxybenzyloxy)propyl)-1,7a-dihydropyrrolo[1,2-c]oxazol-3(5H)-one (11a). To a nitrogen-flushed solution of the oxazolidinone 10a ($0.165 \mathrm{~g}, 0.313 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added Grubbs II catalyst ($13 \mathrm{mg}, 0.0157 \mathrm{mmol}$). The reaction mixture was stirred and irradiated with microwaves in a CEM microwave reactor for 1 h at $90^{\circ} \mathrm{C}$ using a maximum applied power of 200 W . After cooling the reaction mixture was concentrated in vacuo to give a black semi-solid. Purification by flash column chromatography using EtOAc/petrol (3:7) as eluent gave the title compound $(0.100 \mathrm{~g}, 76 \%)$ as a yellow oil. $R_{f} 0.25$ (1:3 EtOAc/petrol). $[\alpha]_{D}^{24}-32.4$ (c 1.00, CHCl_{3}). IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 2970,2929,2858,1752,1513$, 1375 , 1248, 1030. δ_{H} (500 MHz): 7.35-7.24 (7H, m, ArH), 6.92-6.86 (2H, m, ArH), 6.01 (1H, dd, $J=2.3,6.0 \mathrm{~Hz}, \mathrm{H} 7), 5.91(1 \mathrm{H}, \mathrm{dd}, J=1.1,6.1 \mathrm{~Hz}, \mathrm{H} 6), 5.00(1 \mathrm{H}, \mathrm{dt}, J=3.4,8.9$ Hz, H1), 4.82-4.77 (2H, m, H7a and H5), 4.58 (1H, d, $J=12.0 \mathrm{~Hz}$, OCHHPMP), 4.56

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009
(1H, d, $J=10.8 \mathrm{~Hz}$, OCHHPh), $4.54(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}$, OCHHPMP), $4.34(1 \mathrm{H}, \mathrm{d}, J=$ $10.8 \mathrm{~Hz}, \mathrm{OCHHPh}), 3.81-3.76\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2\right.$ '), $3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.54(2 \mathrm{H}, \mathrm{dd}, J=2.1$, $5.0 \mathrm{~Hz}, \mathrm{H} 1$ ' $)$), 1.73 ($1 \mathrm{H}, \mathrm{ddd}, J=3.6,10.3,14.3 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime}{ }_{\mathrm{A}}$), $1.62(1 \mathrm{H}, \mathrm{ddd}, J=2.8,9.7$, $14.3 \mathrm{~Hz}, \mathrm{H}^{\prime}$ ’в), 1.22 ($3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{H} 3$ '). $\delta_{\mathrm{C}}(125 \mathrm{MHz}): 162.4$ (ArC), 159.2 (C3), 137.9 (ArC), 132.8 (C7), 130.5 (ArC), 129.4 (ArC), 128.4 (ArC), 128.4 (C6), 127.6 (ArC), 127.5 (ArC), 113.9 (ArC), 76.3 (C 1), $73.2\left(\mathrm{OCH}_{2} \mathrm{PMP}\right), 71.3$ (C 1 '’), 71.1 (C 2 '), $70.8\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 68.2(\mathrm{C} 5), 66.8(\mathrm{C} 7 \mathrm{a}), 55.1\left(\mathrm{OCH}_{3}\right), 40.0(\mathrm{C} 1 ’), 19.9(\mathrm{C} 3)$. ESIMS m/z 446 (100\%) [MNa] ${ }^{+}$, HRESIMS found 446.1956 calc for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{Na}, 424.2124$ $[\mathrm{MNa}]^{+}$.

General Method for Syn-Dihydroxylation

(1R,5R,6R,7S,7aS)-5-(Benzyloxymethyl)-6,7-dihydroxy-1-((S)-2-(4-methoxy-benzyloxy)propyl)tetrahydropyrrolo[1,2-c]oxazol-3(1H)-one (12a). To a solution of the alkene 11a ($0.600 \mathrm{~g}, 1.420 \mathrm{mmol}$) in $3: 2$ acetone/water (20 mL) was added N -morpholine- N-oxide ($0.333 \mathrm{~g}, 2.840 \mathrm{mmol}$) and potassium osmate dihydrate (26 mg , 0.071 mmol). The reaction mixture was stirred at rt for 18 h , diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford a black oil. Purification by flash column chromatography (increasing polarity from $0: 100$ to $5: 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent) gave

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009
the title compound ($0.572 \mathrm{~g}, 88 \%$) as a brown oil. $R_{f} 0.26$ (1:1 EtOAc/petrol). $[\alpha]_{D}^{24}+2.0$ (c 1.00, CHCl_{3}). IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3421,2934,2909,2863,1727,1513,1247,1123,1061$. $\delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.36-7.21(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 4.86(1 \mathrm{H}, \mathrm{td}, J=$ 3.9, $8.2 \mathrm{~Hz}, \mathrm{H} 1), 4.57\left(2 \mathrm{H}, \mathrm{q}, ~ J=11.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{PMP}\right), 4.54(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}$, OHCHPh), 4.31 (1H, d, $J=10.8 \mathrm{~Hz}$, OHCHPh), 4.30-4.27 (1H, m, H7), 3.97-3.95 (1H, m, H6), 3.80-3.77 (1H, m, H5), $3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.78-3.76(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$ ’), $3.74(1 \mathrm{H}, \mathrm{dd}$, $J=3.8,9.6 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime}{ }_{\text {А }}$), $3.67-3.65(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7 \mathrm{a}), 3.63\left(1 \mathrm{H}, \mathrm{dd}, J=5.3,9.6 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime}{ }^{\text {в }}\right.$), $2.36\left(1 \mathrm{H}, \mathrm{ddd}, J=2.4,8.8,14.6 \mathrm{~Hz}, \mathrm{H} 1{ }^{\mathrm{A}}\right.$), $1.94\left(1 \mathrm{H}, \mathrm{ddd}, J=4.0,10.4,14.6 \mathrm{~Hz}, \mathrm{H}^{\prime}{ }^{\mathrm{B}}\right.$), 1.24 (3H, d, $J=6.0 \mathrm{~Hz}, \mathrm{H} 3$ ’). $\delta_{\mathrm{C}}(125 \mathrm{MHz}): 162.7$ (C3), 159.2 (ArC), 137.8 (ArC), 130.5 (ArC), 129.5 (ArC), 128.4 (ArC), 127.8 (ArC), 127.6 (ArC), 113.8 (ArC), 76.3 (C7), 73.9 (C1), 73.5 (C3'’), 72.3 (C6), 72.1 (C2'), 70.7 (C5'), 70.4 (1''), 65.1 (C7a), 62.3 (C5), $55.3\left(\mathrm{OCH}_{3}\right), 37.5$ (C1'), 19.9 (C3'). ESIMS m/z 480 (100\%) [MNa] ${ }^{+}, 458$ (10\%) $[\mathrm{MH}]^{+}$, HRESIMS found 458.2187, calc for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NO}_{7}, 458.2179[\mathrm{MH}]^{+}$.

General Method for Bisbenzylation of Secondary Diols

(1R,5R,6R,7S,7aR)-6,7-Bis(benzyloxy)-5-(benzyloxymethyl)-1-((S)-2-(4-methoxy-benzyloxy)propyl)tetrahydropyrrolo[1,2-c]oxazol-3(1H)-one (13a). A solution of the diol 12a ($0.018 \mathrm{~g}, 0.0391 \mathrm{mmol}$), benzyl bromide ($0.020 \mathrm{~mL}, 0.157 \mathrm{mmol}$) and tetrabutylammonium iodide ($1 \mathrm{mg}, 0.004 \mathrm{mmol}$) in anhydrous THF (5 mL) was cooled to

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009
$0{ }^{\circ} \mathrm{C}$. To the above solution was added sodium hydride (50\% dispersion in mineral oil, 6 $\mathrm{mg}, 3 \mathrm{mg} \mathrm{NaH}, 0.117 \mathrm{mmol}$), and the reaction mixture was allowed to warm to rt and was stirred for 18 h . Quenching with $\mathrm{H}_{2} \mathrm{O}$ gave a cloudy mixture, which was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 10 mL). The combined ethereal extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give a pale yellow oil. Purification by flash column chromatography (increasing polarity from $1: 9$ to $1: 4 \mathrm{EtOAc} /$ petrol) gave the title compound $(0.025 \mathrm{~g}, 100 \%)$ as a colorless oil. $R_{f} 0.19$ (1:10 EtOAc/petrol). $[\alpha]_{D}^{22}+9.3$ (c 1.23, CHCl_{3}). IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 2929,2858,1750,1516,1239,1096,1067,1028,906 . \delta_{\mathrm{H}}$ (500 MHz): 7.35-7.19 (17H, m, ArH), 6.88-6.84 (2H, m, ArH), 5.01 ($1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}$, OCHHAr), $4.80(1 \mathrm{H}$, ddd, $J=4.8,7.8,8.0 \mathrm{~Hz}, \mathrm{H} 1), 4.63-4.50(3 \mathrm{H}, \mathrm{m}, 3 \times$ OCHHAr), 4.55-4.50 (1H, m, OCHHAr), $4.43(1 \mathrm{H}, \mathrm{d}, J=16.3 \mathrm{~Hz}, \mathrm{OCHHAr}), 4.41(1 \mathrm{H}, \mathrm{d}, J=16.3$ $\mathrm{Hz}, \mathrm{OCHHAr}), 4.26(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}, \mathrm{OCHHAr}), 4.18(1 \mathrm{H}, \mathrm{dd}, J=2.7,8.1 \mathrm{~Hz}, \mathrm{H} 6)$, $3.98(1 \mathrm{H}, \mathrm{dt}, J=3.0,8.1 \mathrm{~Hz}, \mathrm{H} 5), 3.94(1 \mathrm{H}, \mathrm{t}, J=2.7 \mathrm{~Hz}, \mathrm{H} 7), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.78-$ 3.75 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1{ }^{\prime}{ }_{\mathrm{A}}$), 3.70-3.67 (1H, m, H2'), $3.65(1 \mathrm{H}, \mathrm{dd}, J=2.7,7.8 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{a}), 3.59$ (dd, $J=2.9,10.3 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime}{ }_{\mathrm{B}}$), $2.12\left(1 \mathrm{H}, \mathrm{ddd}, J=2.7,8.3,14.7 \mathrm{~Hz}, \mathrm{H}{ }^{\prime}{ }_{\mathrm{A}}\right.$), 1.75 ($1 \mathrm{H}, \mathrm{ddd}$, $J=4.7,10.4,14.7 \mathrm{~Hz}, \mathrm{H}^{\prime}$ в), $1.09\left(3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, \mathrm{H} 3\right.$ '). $\delta_{\text {С }}(125 \mathrm{MHz}): 162.0(\mathrm{C} 3)$, 159.2 (ArC), 138.1 (ArC), 138.0 (ArC), 137.5 (ArC), 130.5 (ArC), 129.5 (ArC), 128.5 (ArC), 128.3 (ArC), 128.2 (ArC), 127.9 (ArC), 127.6 (ArC), 127.6 (ArC), 127.4 (ArC), 127.2 (ArC), 113.8 (ArC), 83.1 (C6), 77.1 (C7), 73.8 (C1), 73.3 (OBn), 73.2 (OBn), 72.8 (OBn), 72.2 (C2), 70.7 (OPMB), 69.2 (C1'’), $64.2(\mathrm{C} 7 a), 60.9(\mathrm{C} 5), 55.2\left(\mathrm{OCH}_{3}\right), 37.3$ (C1'), 19.8 (C3'). ESIMS m/z 660 (70\%) [MNa] ${ }^{+}$, 638 (3\%) [MH] ${ }^{+}$, HRESIMS found 638.3093, calc for $\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{NO}_{7}, 638.3118$ [MH] ${ }^{+}$.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

General Method for PMB Deprotection using DDQ.

(1R,5R,6R,7S,7aR)-6,7-Bis(benzyloxy)-5-(benzyloxymethyl)-1-((S)-2-
hydroxypropyl)-tetrahydropyrrolo[1,2-c]oxazol-3(1H)-one (14a). To a solution of 13a ($0.131 \mathrm{~g}, 0.206 \mathrm{mmol}$) in $8: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(9 \mathrm{~mL})$ was added 2,3-dichloro-5,6dicyanobenzoquinone (DDQ) ($0.103 \mathrm{~g}, 0.453 \mathrm{mmol}$). The reaction mixture was stirred at rt for 4 h , when TLC analysis (EtOAc/petrol (1:1)) showed complete consumption of 13a. Purification by flash column chromatography (increasing polarity from 1:1 to 4:1 $\mathrm{EtOAc} /$ petrol as eluent) gave the title compound $(0.094 \mathrm{~g}, 89 \%)$ as a yellow oil. $R_{f} 0.16$ (1:1 EtOAc/petrol). $[\alpha]_{D}^{24}+19.8$ (c 1.31, CHCl_{3}). IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3436,3057,3021,2924$, 2863, 1747, 1454, 1357, 1203. δ_{H} (500 MHz): 7.37-7.19 (15H, m, ArH), 5.04 (1H, d, $J=$ $11.6 \mathrm{~Hz}, \mathrm{OCHHPh}), 4.79(1 \mathrm{H}, \mathrm{td}, J=4.8,8.0 \mathrm{~Hz}, \mathrm{H} 1), 4.65(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}$, OCHHPh), 4.56 (1H, d, $J=11.5 \mathrm{~Hz}$, OCHHPh), 4.54 (1H, d, $J=14.0 \mathrm{~Hz}, ~ О С Н Н Р h), ~$ $4.51(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}$, OCHHPh), 4.41 ($1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}$, OCHHPh), 4.29 (1H, dd, J $=2.1,7.9 \mathrm{~Hz}, \mathrm{H} 6), 4.05-4.02(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7), 4.00(1 \mathrm{H}, \mathrm{dt}, J=3.1,8.0 \mathrm{~Hz}, \mathrm{H} 5), 3.92(1 \mathrm{H}$, ddd, $J=3.1,6.3,9.5 \mathrm{~Hz}, \mathrm{H} 2$ '), $3.76\left(1 \mathrm{H}, \mathrm{dd}, J=3.2,10.3 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime}{ }_{\mathrm{A}}\right)$, $3.73(1 \mathrm{H}, \mathrm{dd}, J=$ 2.6, 7.6 Hz, H7a), 3.60 (1H, dd, $J=3.0,10.3 \mathrm{~Hz}$, H1' $^{\prime}$ в), 2.10 ($1 \mathrm{H}, \mathrm{ddd}, J=2.9,8.5,14.5$ $\left.\mathrm{Hz}, \mathrm{H} 1{ }^{\prime}{ }_{\mathrm{A}}\right), 1.64\left(1 \mathrm{H}, \mathrm{ddd}, J=4.7,9.9,14.5 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime}{ }_{\mathrm{B}}\right), 1.08(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{H} 3$) $) . \delta_{\mathrm{C}}$ (125 MHz): 162.0 (C3), 138.1 (ArC), 137.9 (ArC), 137.5 (ArC), 128.5 (ArC), 128.3 (ArC), 128.3 (ArC), 127.8 (ArC), 127.6 (ArC), 127.4 (ArC), 127.3 (ArC), 83.2 (C6), 77.0

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009
(C7), $73.8(\mathrm{C} 1), 73.3\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 73.2\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 72.9\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 69.3(\mathrm{C} 1 ’), 65.1(\mathrm{CH})$, 64.2 (C7a), 61.0 (C5), 38.1 (C1’), 24.4 (C3’). ESIMS m/z 540 (100\%) [MNa] ${ }^{+}, 518$ (48\%) $[\mathrm{MH}]^{+}$, HRESIMS found 518.2523, calc for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{NO}_{6}, 518.2543[\mathrm{MH}]^{+}$.

General Method for Hydrolysis of Oxazolidinones

(1R,3S)-1-((2R,3S,4R,5R)-3,4-Bis(benzyloxy)-5-(benzyloxymethyl)pyrrolidin-2-
yl)butane-1,3-diol (15a). To a solution of $\mathbf{1 4 a}(0.270 \mathrm{~g}, 0.521 \mathrm{mmol})$ in ethanol (3 mL) was added sodium hydroxide ($0.042 \mathrm{~g}, 1.042 \mathrm{mmol}$). The reaction mixture was stirred and irradiated with microwaves in a CEM microwave reactor for 1 h at $110{ }^{\circ} \mathrm{C}$ using a maximum applied power of 200 W . After cooling the reaction mixture was concentrated in vacuo to give a yellow semi-solid. Purification by flash column chromatography (increasing polarity from 2.5:97.5 to $7.5: 92.5 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent) gave the title compound ($0.216 \mathrm{~g}, 84 \%$) as a light yellow oil. $R_{f} 0.32$ (7.5:92.5 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). $[\alpha]_{D}^{24}$ +13.6 (c 1.00, CHCl_{3}). IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3359,3088,3062,3032,2955,2893,2858,1147$, 1085 , 1049. $\delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.36-7.23(15 \mathrm{H}, \mathrm{ArH}), 4.86(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{OCHHPh})$, $4.60(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{OCHHPh}), 4.55(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{OCHHPh}), 4.54(1 \mathrm{H}, \mathrm{d}, J$ $=11.4 \mathrm{~Hz}$, OCHHPh $), 4.48(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}$, OCHHPh $), 4.43(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}$, OCHHPh), 4.14 ($1 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz}, \mathrm{H} 3$), 4.13-4.10 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1$ '), 4.01-3.93 (1H, m, H3'), $3.90(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{H} 4), 3.54-3.46(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1$ '’), 3.47-3.44(1H, m, H5), $3.10(1 \mathrm{H}$,

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009
dd, $J=5.0,8.5 \mathrm{~Hz}, \mathrm{H} 2), 1.73-1.60(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$ ’ $), 1.17$ (3H, d, $J=6.3 \mathrm{~Hz}, \mathrm{H} 4$ ’ $). \delta_{\mathrm{C}}(125$
MHz): 137.9 (ArC), 137.8 (ArC), 137.7 (ArC), 128.6 (ArC), 128.4 (ArC), 128.4 (ArC),
128.0 (ArC), 128.0 (ArC), 127.8 (ArC), 127.7 (ArC), 127.7 (ArC), 127.7 (ArC), 80.5
(C4), $79.9(\mathrm{C} 3), 73.3\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 73.2\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 72.6\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 70.5(\mathrm{C} 1 ’), 69.7(\mathrm{C} 1 ’ ’)$, 65.3 (C3'), 63.0 (C2), 60.7 (C5), 44.5 (C2’), 23.8 (C4’). ESIMS m/z 492 (100\%) [MH] ${ }^{+}$, HRESIMS found 492.2758, calc for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{NO}_{5}, 492.2750[\mathrm{MH}]^{+}$.

General Method for Mesylation-Cyclization

(1R,3R,5R,6R,7S,7aR)-6,7-bis(benzyloxy)-5-(benzyloxymethyl)-3-methylhexahydro-
1H-pyrrolizin-1-ol (16). To solution of $\mathbf{1 5 a}(0.130 \mathrm{~g}, 0.264 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added via syringe triethylamine ($20.4 \mu \mathrm{~L}, 0.264 \mathrm{mmol}$) and a 0.11 M solution of $\mathrm{MeSO}_{2} \mathrm{Cl}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2.5 \mathrm{~mL}, 0.264 \mathrm{mmol} \mathrm{MeSO}_{2} \mathrm{Cl}$). The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h and quenched with sat. NaHCO_{3} solution (3 mL), followed by extractions with EtOAc (3 x 15 mL). The combined organic extracts were dried (MgSO_{4}) and concentrated in vacuo to give a yellow oil. Purification by flash column chromatography (increasing polarity from 4:1 to 100:0 EtOAc/petrol as eluent) gave the title compound $(0.079 \mathrm{~g}, 63 \%)$ as a colorless oil. $R_{f} 0.20$ ($4: 1 \mathrm{EtOAc} /$ petrol). $[\alpha]_{D}^{25}+25.0\left(c 1.00, \mathrm{CHCl}_{3}\right)$. IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3380,2955,2919,2858,1362,1127,1096,1055,1024 . \delta_{\mathrm{H}}(500 \mathrm{MHz}):$ 7.36-7.25 (15H, m, ArH), 4.73 (1H, d, $J=11.7 \mathrm{~Hz}, ~ O C H H P h), ~ 4.67-4.63(1 \mathrm{H}, \mathrm{dd}, J=4.4$,

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009
10.5 Hz H7), 4.59-4.50 (5H, m, 5 x OCHHPh), 4.15 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, \mathrm{H} 1$), $3.91(1 \mathrm{H}, \mathrm{t}$, $J=4.5 \mathrm{~Hz}, \mathrm{H} 2), 3.77(1 \mathrm{H}, \mathrm{dq}, J=6.6,15.6 \mathrm{~Hz}, \mathrm{H} 5), 3.66(1 \mathrm{H}, \mathrm{dd}, J=4.7,7.0 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{a})$, $3.48\left(1 \mathrm{H}, \mathrm{dd}, J=4.2,8.5 \mathrm{~Hz}, \mathrm{H8}_{\mathrm{A}}\right), 3.43-3.40(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 3.41-3.37\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H8} \mathrm{~B}_{\mathrm{B}}\right), 1.90-$ $1.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 6_{\mathrm{A}}\right.$ and $\left.\mathrm{H} 6_{\mathrm{B}}\right), 1.19(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{H} 9) . \delta_{\mathrm{C}}(125 \mathrm{MHz}): 138.1(\mathrm{ArC})$, 138.1 (ArC) 137.9 (ArC), 128.4 (ArC), 128.4 (ArC), 128.3 (ArC), 127.8 (ArC), 127.8 (ArC), 127.7 (ArC), 127.7 (ArC), 127.6 (ArC), 127.6 (ArC), 81.0 (C2), 76.2 (C1), 75.7 (C7a), $73.4\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 73.1\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 72.2\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 71.1(\mathrm{C} 7), 71.1(\mathrm{C} 8), 60.1(\mathrm{C} 3)$, 57.1 (C5), 42.3 (C6), 16.0 (C9). ESIMS m/z 474 (100\%) [MH] ${ }^{+}$, HRESIMS found 474.2624, calc for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{NO}_{4}, 474.2644[\mathrm{MH}]^{+}$.

General Method for Hydrogenolysis of Benzyl Ethers

(1S,2R,3R,5R,7R,7aR)-3-(hydroxymethyl)-5-methylhexahydro-1H-pyrrolizine-1,2,7triol (hyacinthacine \mathbf{B}_{3}) (2). To a H_{2} flushed solution of the cyclized product 16 (17 mg , $0.036 \mathrm{mmol})$ in MeOH was added $\mathrm{PdCl}_{2}(7 \mathrm{mg}, 0.039 \mathrm{mmol})$. The reaction mixture was stirred at rt under a H_{2} atmosphere (balloon) for 8 h and then filtered through a pad of celite and the solids were washed with MeOH . The combined filtrates were concentrated in vacuo to give a colorless film, which was dissolved in water (2 mL) and held for 15 min in a column containing Amberlyst A-26 $\left(\mathrm{OH}^{-}\right)$ion-exchange resin $(1 \mathrm{~g})$. Elution with water ($5 \times 5 \mathrm{~mL}$) followed by evaporation in vacuo gave the title compound ($5 \mathrm{mg}, 68 \%$)

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009
as a colorless film. $[\alpha]_{D}^{23}+10.8\left(c 0.33, \mathrm{H}_{2} \mathrm{O}\right)$. [Lit. $[\alpha]_{\mathrm{D}}+3.3\left(c 0.31, \mathrm{H}_{2} \mathrm{O}\right)$, temperature unknown]. IR $v_{\max }\left(\mathrm{cm}^{-1}\right)$: 3317, 2960, 2929, 2878, 1652, 1338, 1133. $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): 4.52(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7), 4.04(1 \mathrm{H}, \mathrm{t}, J=4.4 \mathrm{~Hz}, \mathrm{H} 1), 3.91(1 \mathrm{H}, \mathrm{dd}, J=4.2,7.3 \mathrm{~Hz}$, H2), 3.57 ($\left.1 \mathrm{H}, \mathrm{dd}, J=4.9,11.0 \mathrm{~Hz}, \mathrm{H}_{\beta}\right), 3.53\left(1 \mathrm{H}, \mathrm{dd}, J=4.5,11.1 \mathrm{~Hz}, \mathrm{H} 8_{\alpha}\right), 3.50(1 \mathrm{H}$, m, H5), 3.30 ($1 \mathrm{H}, \mathrm{t}, J=4.6 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{a}$), 3.10 ($1 \mathrm{H}, \mathrm{ddd}, J=4.7,4.97 .3 \mathrm{~Hz}, \mathrm{H} 3$), $1.86-1.82$ (2H, m, H6 α and H_{β}), 1.19 (3H, d, $J=6.9 \mathrm{~Hz}, \mathrm{H} 9$). $\delta_{\mathrm{H}}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 76.5$ (C2), 76.2 (C7a), 71.4 (C1), 70.6 (C7), 64.2 (C8), 63.0 (C3), 56.4 (C5), 43.5 (C6), 16.7 (C9). ESIMS m/z 204 (100\%) [MH] ${ }^{+}$, HRESIMS found 204.1297, calc for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{4}$, $204.1236[\mathrm{MH}]^{+}$.

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of hyacinthacine B_{3}

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of hyacinthacine B_{3}.

Table 1. Comparison of literature ${ }^{13} \mathrm{C}$ NMR chemical shifts ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of natural hyacinthacine B_{3} (Lit.) and synthetic 2 (Syn.)

C	Lit. $^{*} \delta_{\mathrm{C}}$	Syn. δ_{C}	$\Delta \delta_{\mathrm{C}}$
1	72.2	71.3	-0.9
2	77.4	76.5	-0.9
3	63.8	63.0	-0.8
5	57.1	56.4	-0.7
6	44.4	43.5	-0.9
7	71.5	70.6	-0.9
7 a	77.0	76.2	-0.8
8	65.0	64.2	-0.8
9	17.5	16.7	-0.8

* J. Nat. Prod., 2002, 65, 1875

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Experimental for the Synthesis of Purported hyacinthacine \mathbf{B}_{7}

1-Methoxy-4-\{[(2R)-pent-4-en-2-yloxy]methyl\}benzene (5b). Following the general method described for O-PMB protection using (R)-4-penten-2-ol (1.008 g, 11.703 mmol , $[\alpha]_{D}^{24}-5.0$ (neat), > 98\% ee, Aldrich), 4-methoxybenzyl chloride ($3.15 \mathrm{~mL}, 23.242 \mathrm{mmol}$), tetrabutylammonium iodide $(0.369 \mathrm{~g}, 1.161 \mathrm{mmol})$ and sodium hydride $(0.418 \mathrm{~g}, 17.415$ mmol), the title compound was obtained as a colorless oil ($2.062 \mathrm{~g}, 86 \%$). $[\alpha]_{D}^{23}-11.0$ (c 1.00, CHCl_{3}). Spectroscopic data were the same as those of $\mathbf{5 a}$.

(1E,4R)-4-[(4-Methoxybenzyl)oxy]pent-1-en-1-yl phenyl sulfone (6b). Following the general method described for olefin cross metathesis using $\mathbf{5 b}$ ($0.066 \mathrm{~g}, 0.319 \mathrm{mmol}$), phenyl vinyl sulfone ($0.107 \mathrm{~g}, 0.638 \mathrm{mmol}$), Grubbs II catalyst ($14 \mathrm{mg}, 0.160 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL), the vinyl sulfone $\mathbf{6 b}$ ($0.079 \mathrm{~g}, 71 \%$) was obtained as a pale yellow oil. $[\alpha]_{D}^{23}+17.5\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}\right)$. Spectroscopic data were the same as those of $\mathbf{6 a}$.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

(3S,4R,6R,E)-3-((S)-1-(Benzyloxy)but-3-en-2-ylamino)-6-(4-methoxybenzyloxy)-1-
phenylhept-1-en-4-ol (9b). Following the general method described for Sharpless asymmetric dihydroxylation and the Petasis reaction using the vinyl sulfone $\mathbf{6 b}$ (./ $0.849 \mathrm{~g}, 2.451 \mathrm{mmol}$), potassium ferric cyanide ($2.420 \mathrm{~g}, 7.352 \mathrm{mmol}$), potassium carbonate ($1.016 \mathrm{~g}, 7.352 \mathrm{mmol}$), methanesulfonamide ($0.233 \mathrm{~g}, 2.451 \mathrm{mmol}$), potassium osmate dihydrate ($5 \mathrm{mg}, 0.015 \mathrm{mmol}$), DHQD-IND ($17 \mathrm{mg}, 0.0368 \mathrm{mmol}$), $\mathrm{H}_{2} \mathrm{O}(23 \mathrm{~mL})$ and $t-\mathrm{BuOH}(23 \mathrm{~mL})$ in the Sharpless ADH and using (E)-2-phenylvinylboronic acid ($0.363 \mathrm{~g}, 2.451 \mathrm{mmol}$), (2S)-1-(benzyloxy)but-3-en-2-amine ($0.434 \mathrm{~g}, 2.451 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL) in the Petasis reaction gave the title compound ($0.491 \mathrm{~g}, 40 \%, 2$ steps) as a brown oil. $R_{f} 0.24\left(5: 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .[\alpha]_{D}^{23}+10.6\left(c 2.00, \mathrm{CHCl}_{3}\right) . \delta_{\mathrm{H}}(500 \mathrm{MHz})$: 7.36-7.19 (12H, m, ArH), 6.85-6.79 (2H, m, ArH), 6.43 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}, \mathrm{H} 1$), 6.09 (1H, dd, $J=8.5,16.0 \mathrm{~Hz}, \mathrm{H} 2), 5.59(1 \mathrm{H}, \mathrm{ddd}, J=7.7,9.9,17.4 \mathrm{~Hz}, \mathrm{H} 2$ '), $5.22-5.15(2 \mathrm{H}$, m, H3'), 4.55-4.36 (4H, m, $\mathrm{OCH}_{2} \mathrm{Ph}$ and $\mathrm{OCH}_{2} \mathrm{PMP}$), 4.02 (dt, $J=3.8,6.3 \mathrm{~Hz}, \mathrm{H} 4$), 3.88-3.78 (1H, m, H6), $3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.24(1 \mathrm{H}, \mathrm{dd}, J=3.8,8.5 \mathrm{~Hz}, \mathrm{H} 3), 3.50-3.40$ (3H, m, H1' and H1''), 1.57 (2H, dd, $J=5.7,6.3 \mathrm{~Hz}, \mathrm{H} 5), 1.21$ (3H, d, $J=6.2 \mathrm{~Hz}, \mathrm{H} 7$). $\delta_{\mathrm{C}}(125 \mathrm{MHz}): 159.2$ (ArC), 138.1 (ArC), 137.9 (C2’), 136.9 (ArC), 132.8 (C1), 129.4 (ArC), 130.2 (ArC), 128.4 (ArC), 128.3 (ArC), 128.2 (C2), 127.6 (ArC), 127.5 (ArC), 127.4 (ArC), 126.3 (ArC), 117.9 (C3'), 113.9 (ArC), 75.3 (C6), 73.8 (C4), 73.4 (C1’’), $72.9\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 70.0\left(\mathrm{OCH}_{2} \mathrm{PMP}\right), 62.1(\mathrm{C} 3), 57.7(\mathrm{C} 1 ’), 55.2\left(\mathrm{OCH}_{3}\right), 40.3(\mathrm{C} 5), 19.5$

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009 (C7). ESIMS m/z 502 (100\%) [MH] ${ }^{+}$, HRESIMS found 502.2954, calc for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{NO}_{4}$, 502.2957 [MH] ${ }^{+}$.

(4S,5R)-3-((S)-1-(Benzyloxy)but-3-en-2-yl)-5-((R)-2-(4-methoxybenzyloxy)propyl)-4-styryloxazolidin-2-one (10b). Following the general method for the synthesis of oxazolidinones using the 1,2-amino alcohol $9 \mathbf{b}$ ($0.288 \mathrm{~g}, 0.574 \mathrm{mmol}$), triethylamine (160 $\mu \mathrm{L}, 1.148 \mathrm{mmol})$, triphosgene ($0.085 \mathrm{~g}, 0.287 \mathrm{mmol}$) and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, the title compound ($0.163 \mathrm{~g}, 54 \%$) was obtained as a colorless oil. $R_{f} 0.30$ (1:3 EtOAc/petrol). $[\alpha]_{D}^{22}+7.1\left(c 5.20, \mathrm{CHCl}_{3}\right) . \delta_{\mathrm{H}}(300 \mathrm{MHz}): 7.37-7.19(12 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.89-6.82(2 \mathrm{H}, \mathrm{m}$, ArH), 6.23 (1H, d, $J=15.9 \mathrm{~Hz}, \mathrm{H} 2 ’ ’$ '), 5.99 (1H, dd, $J=9.6,15.9 \mathrm{~Hz}, \mathrm{H} 1 ’ ’$ '), 5.79 (1 H , ddd, $\left.J=7.4,10.3,17.5 \mathrm{~Hz}, \mathrm{H} 2{ }^{\prime}\right), 5.25\left(1 \mathrm{H}, \mathrm{d}, J=17.3 \mathrm{~Hz}, \mathrm{H}^{\prime}{ }_{\text {trans }}\right), 5.17(1 \mathrm{H}, \mathrm{d}, J=10.3$ $\left.\mathrm{Hz}, \mathrm{H} 3{ }^{\prime}{ }_{\text {cis }}\right), 4.67(1 \mathrm{H}, \mathrm{dt}, J=5.1,8.7 \mathrm{~Hz}, \mathrm{H} 5), 4.60(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{OCHHPh}), 4.49$ ($1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}$, OCHHPMP), $4.48(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}$, OCHHPh $), 4.35-4.27(1 \mathrm{H}, \mathrm{m}$, H4), $4.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.4 \mathrm{~Hz}$, OCHHPMP), 4.29-4.21 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1$ '), 3.89-3.78 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}^{\prime}{ }_{\mathrm{A}}$), $3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.70-3.63(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$ '’), $3.61(1 \mathrm{H}, \mathrm{dd}, J=5.2,10.2 \mathrm{~Hz}$, Н4' ${ }_{\text {B }}$), $2.02\left(1 \mathrm{H}, \mathrm{ddd}, J=5.7,9.0,14.5 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime}{ }_{\text {A }}\right), 1.66-1.57\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1{ }^{\prime}{ }_{\mathrm{B}}\right), 1.20(3 \mathrm{H}$, d, $J=6.1 \mathrm{~Hz}, \mathrm{H}{ }^{\prime} ’$ '). $\delta_{\mathrm{C}}(75 \mathrm{MHz}): 159.2$ (ArC), 157.2 (ArC), 137.9 (ArC), 135.5 (ArC),

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009
135.1 (C2'’’), 133.7 (C2'), 130.6 (ArC), 129.4 (ArC), 128.7 (ArC), 128.5 (ArC), 128.4 (ArC), 128.0 (ArC), 127.8 (ArC), 126.6 (ArC), 124.7 (C1'’'), 118.5 (C3'), 113.8 (ArC), $74.9(\mathrm{C} 5), 73.0\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 70.8\left(\mathrm{C} 2\right.$ '), $69.9\left(\mathrm{OCH}_{2} \mathrm{PMP}\right), 68.9(\mathrm{C} 4 '), 61.4\left(\mathrm{C}^{\prime}\right), 56.1$ (C4), $55.2\left(\mathrm{OCH}_{3}\right), 37.3$ (C1’’), 19.0 (C3’’). ESIMS m/z 550 (100\%) [MNa] ${ }^{+}, 528$ (10\%) $[\mathrm{MH}]^{+}$, HRESIMS found 528.2845, calc for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{NO}_{5}, 528.2750[\mathrm{MH}]^{+}$.

(1R,5S,7aS)-5-(Benzyloxymethyl)-1-((R)-2-(4-methoxybenzyloxy)propyl)-1,7a-dihydropyrrolo[1,2-c]oxazol-3(5H)-one (11b). Following the general method for the ring-closing metathesis of oxazolidinones using the oxazolidinone $\mathbf{1 0 b}(0.400 \mathrm{~g}, 0.759$ mmol), the Grubbs II catalyst ($32 \mathrm{mg}, 0.038 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL), the title compound ($0.280 \mathrm{~g}, 87 \%$) was obtained as a yellow oil. $R_{f} 0.45$ (1:2 EtOAc/petrol). $[\alpha]_{D}^{24}-87.6\left(c 1.00, \mathrm{CHCl}_{3}\right)$. IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 2960,2929,2858,1752,1512,1247,1030 . \delta_{\mathrm{H}}$ (500 MHz): 7.38-7.22 (7H, m, ArH), 6.89-6.86 (2H, m, ArH), 6.04-6.02 (1H, m, H7), $5.86(1 \mathrm{H}, \mathrm{dd}, J=1.7,6.1 \mathrm{~Hz}, \mathrm{H} 6), 4.87(1 \mathrm{H}, \mathrm{dt}, J=5.5,8.4 \mathrm{~Hz}, \mathrm{H} 1), 4.82-4.79(1 \mathrm{H}, \mathrm{m}$, H5), 4.70 (1H, dd, $J=3.5,11.8 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{a}), 4.57-4.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{PMP}\right), 4.53(1 \mathrm{H}, \mathrm{d}, J$ $=11.3 \mathrm{~Hz}, \mathrm{OCHHPh}), 4.35(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}, \mathrm{OCHHPh}), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.75-$ 3.69 (1H, m, H2'), 3.54 (1H, d, $J=5.1 \mathrm{~Hz}, \mathrm{H} 1 ’$ '), 1.96 ($1 \mathrm{H}, \mathrm{ddd}, J=5.5,8.6,14.1 \mathrm{~Hz}$, $\mathrm{H}_{1}{ }_{\mathrm{A}}$), 1.73-1.67 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1{ }^{\prime}{ }_{\mathrm{B}}$), $1.28\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{H} 3\right.$ '). $\delta_{\mathrm{C}}(125 \mathrm{MHz}): 162.3$ (ArC), 159.2 (ArC), 137.9 (ArC), 133.2 (C7), 130.4 (ArC), 129.2 (ArC), 128.3 (ArC),

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009
127.8 (C6), 127.6 (ArC), 127.4 (ArC), 113.8 (ArC), 75.8 (C 1$), 73.2\left(\mathrm{OCH}_{2} \mathrm{PMP}\right), 71.0$
(C1'’), 70.9 (C2'), $70.1\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 68.2(\mathrm{C} 7 \mathrm{a}), 66.9(\mathrm{C} 5), 55.2\left(\mathrm{OCH}_{3}\right), 38.7(\mathrm{C} 1$ '), 19.0 (C3'). ESIMS m/z 446 (60\%) [MNa] ${ }^{+}$, HRESIMS found 446.1938, calc for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{Na}$ 446.1943 [MNa] ${ }^{+}$.

(1R,5R,6R,7S,7aS)-5-(Benzyloxymethyl)-6,7-dihydroxy-1-((R)-2-(4-methoxy-benzyloxy)propyl)tetrahydropyrrolo[1,2-c]oxazol-3(1H)-one (12b). Following the general method for syn-dihydroxylation using the alkene $\mathbf{1 1 b}$ ($0.203 \mathrm{~g}, 0.480 \mathrm{mmol}$), N -morpholine- N-oxide ($0.113 \mathrm{~g}, 0.961 \mathrm{mmol}$) and potassium osmate dihydrate $(9 \mathrm{mg}, 0.024$ mmol), acetone (4 mL) and $\mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~mL})$, the title compound ($0.196 \mathrm{~g}, 89 \%$) was obtained as a brown oil. $R_{f} 0.13$ (1:1 EtOAc:petrol). $[\alpha]_{D}^{24}-35.2$ (c 1.00, $\left.\mathrm{CHCl}_{3}\right) . \delta_{\mathrm{H}}(500$ $\mathrm{MHz}): 7.39-7.17(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.84(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \operatorname{ArH}), 4.78(1 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}$, H1), $4.56\left(2 \mathrm{H}, \mathrm{q}, ~ J=11.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{PMP}\right), 4.51(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{OCHHPh}), 4.31$ (1H, d, J = 11.4 Hz, OCHHPh), 4.23-4.18 (1H, m, H7), 3.87-3.85 (1H, m, H6), 3.76 (3 H , s, $\left.\mathrm{OCH}_{3}\right), 3.76-3.70(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5), 3.72-3.65\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1{ }^{\prime}{ }_{\mathrm{A}}\right), 3.70-3.66(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$ '), $3.63-3.58(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1$ ’’в), $3.43(1 \mathrm{H}, \mathrm{dd}, J=4.1,6.6 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{a}), 2.35(1 \mathrm{H}, \mathrm{dt}, J=6.9,14.0$ Hz, H1 ${ }_{\text {A }}$), 2.14 (1H, m, H1’в), 1.25 (1H, d, $J=6.1 \mathrm{~Hz}, \mathrm{H} 3$ '). $\delta_{\text {С }}(125 \mathrm{MHz}): 162.7$ (C3), 159.2 (ArC), 137.9 (ArC), 130.4 (ArC), 129.5 (ArC), 128.4 (ArC), 127.8 (ArC), 127.7 (ArC), 113.8 (ArC), 76.3 (C7), 73.5 ($\mathrm{OCH}_{2} \mathrm{PMP}$), 73.4 (C1), 72.1 (C6), 71.0 (C2’) 70.3

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009
$(\mathrm{C} 1 ’ ’), 69.8\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 64.8(\mathrm{C} 7 \mathrm{a}), 62.2(\mathrm{C} 5), 55.3\left(\mathrm{OCH}_{3}\right), 36.2(\mathrm{C} 1 ’), 19.2(\mathrm{C} 3)$. ESIMS m/z 480 (82\%) $[M H]^{+}$, HRESIMS found 480.2035, calc for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{7} \mathrm{Na}$ $480.1998[\mathrm{MNa}]^{+}$.

(1R,5R,6R,7S,7aR)-6,7-Bis(benzyloxy)-5-(benzyloxymethyl)-1-((R)-2-(4-methoxy-benzyloxy)propyl)tetrahydropyrrolo[1,2-c]oxazol-3(1H)-one (13b). Following the general method for bisbenzylation using diol $\mathbf{1 2 b}$ ($0.160 \mathrm{~g}, 0.350 \mathrm{mmol}$), benzyl bromide ($0.170 \mathrm{~mL}, 0.239 \mathrm{mmol}$) and tetrabutylammonium iodide ($13 \mathrm{mg}, 0.035 \mathrm{mmol}$), sodium hydride (50% dispersion in mineral oil, $50 \mathrm{mg}, 25 \mathrm{mg} \mathrm{NaH}, 1.050 \mathrm{mmol}$) and THF (25 mL), the title compound ($0.210 \mathrm{~g}, 94 \%$) was obtained as a colorless oil. $R_{f} 0.72$ (1:1 EtOAc:petrol). $[\alpha]_{D}^{24}+2.4$ (c 1.00, $\left.\mathrm{CHCl}_{3}\right) . \delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.36-7.20(15 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.14$ $(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 6.82(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 5.02(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}$, OCHHAr), $4.74(1 \mathrm{H}, \mathrm{dd}, J=7.3,14.2 \mathrm{~Hz}, \mathrm{H} 1), 4.61-4.37$ ($6 \mathrm{H}, \mathrm{m}, 6 \times$ OCHHAr), 4.19 $(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}, \mathrm{OCHHAr}), 4.16(1 \mathrm{H}, \mathrm{dd}, J=2.8,8.3 \mathrm{~Hz}, \mathrm{H} 6), 3.96(1 \mathrm{H}, \mathrm{dt}, J=3.0$, $8.1 \mathrm{~Hz}, \mathrm{H} 5), 3.82(1 \mathrm{H}, \mathrm{t}, J=2.4 \mathrm{~Hz}, \mathrm{H} 7), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.74(1 \mathrm{H}, \mathrm{dd}, J=2.9,10.2$ $\mathrm{Hz}, \mathrm{H} 1$ ’’ ${ }_{\text {А }}$), $3.60(1 \mathrm{H}, \mathrm{dd}, J=2.9,10.2 \mathrm{~Hz}, \mathrm{H} 1$ '’ в), 3.59-3.56 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$ '), 3.52 ($1 \mathrm{H}, \mathrm{dd}$, $J=2.3,7.5 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{a}), 2.24\left(1 \mathrm{H}, \mathrm{ddd}, J=6.0,7.413 .9 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime}{ }_{\mathrm{A}}\right), 1.90(1 \mathrm{H}, \mathrm{dt}, J=6.2$, $13.9 \mathrm{~Hz}, \mathrm{H}^{\prime}$ 'в), 1.16 ($3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{H} 3$ '). $\delta_{\mathrm{C}}(125 \mathrm{MHz}): 162.0(\mathrm{C} 3), 159.2$ (ArC), 138.2 (ArC), 137.9 (ArC), 137.5 (ArC), 130.5 (ArC), 129.4 (ArC), 128.5 (ArC), 128.3

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009
(ArC), 128.3 (ArC), 128.0 (ArC), 127.7 (ArC), 127.6 (ArC), 127.6 (ArC), 127.3 (ArC), 127.0 (ArC), 113.7 (ArC), $83.3(\mathrm{C} 6), 76.9(\mathrm{C} 7), 73.3\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 73.2\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 72.9$ (C1), $72.7\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 70.8(\mathrm{C} 2), 69.7\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 69.2(\mathrm{C} 1 ’ ’), 64.0(\mathrm{C} 7 \mathrm{a}), 60.8(\mathrm{C} 5), 55.2$ $\left(\mathrm{OCH}_{3}\right), 35.2$ (C1'), 18.9 (C3').

ESIMS m/z 660 (100\%) [MNa] ${ }^{+}$, HRESIMS found 660.2987, calc for $\mathrm{C}_{39} \mathrm{H}_{43} \mathrm{NO}_{7} \mathrm{Na}$, $660.2937[\mathrm{MNa}]^{+}$.

(1R,5R,6R,7S,7aR)-6,7-Bis(benzyloxy)-5-(benzyloxymethyl)-1-((R)-2-
hydroxypropyl)-tetrahydropyrrolo[1,2-c]oxazol-3(1H)-one (14b). Following the general method for PMB deprotection using 13b ($0.173 \mathrm{~g}, 0.272 \mathrm{mmol}$), 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) ($0.136 \mathrm{~g}, 0.598 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.25$ mL) the title compound ($0.130 \mathrm{~g}, 92$ \%) was obtained as a yellow oil. $R_{f} 0.33$ (2.5:97.5 $\left.\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .[\alpha]_{D}^{24}+14.3\left(c 1.00, \mathrm{CHCl}_{3}\right) . \delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.35-7.17(15 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $5.01(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}$, OCHHPh $), 4.74(1 \mathrm{H}, \mathrm{dd}, J=7.5,13.5 \mathrm{~Hz}, \mathrm{H} 1), 4.64(1 \mathrm{H}, \mathrm{d}, J=$ 11.8 Hz, OCHHPh), 4.56 ($1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}$, OCHHPh), 4.51 ($1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}$, OCHHPh), $4.48(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}$, OCHHPh $), 4.38(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}$, OCHHPh), 4.27 (1H, dd, $J=1.7,7.8 \mathrm{~Hz}, \mathrm{H} 6), 4.02-4.01(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7), 4.00-3.96$ (1H, m, H5), 3.893.82 ($1 \mathrm{H}, \mathrm{dd}, J=6.1,11.2 \mathrm{~Hz}, \mathrm{H} 2$ '), $3.74\left(1 \mathrm{H}, \mathrm{dd}, J=3.4,10.4 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime}{ }_{\mathrm{A}}\right.$), $3.74-3.71$ (1H, m, H7a), 3.58 (1H, dd, $J=2.4,10.4 \mathrm{~Hz}, \mathrm{H} 1$ '" ${ }_{\mathrm{B}}$), $2.09(1 \mathrm{H}, \mathrm{dt}, J=7.6,14.6 \mathrm{~Hz}$,

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

H1' ${ }_{\mathrm{A}}$), 1.81 ($1 \mathrm{H}, J=4.9,14.6 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime}{ }_{\mathrm{B}}$), $1.10\left(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{H} 3\right.$ '). $\delta_{\mathrm{C}}(125 \mathrm{MHz})$:
161.9 (C3), 137.9 (ArC), 137.7 (ArC), 137.3 (ArC), 128.4 (ArC), 128.2 (ArC), 128.2 (ArC), 127.9 (ArC), 127.6 (ArC), 127.6 (ArC), 127.5 (ArC), 127.3 (ArC), 127.1 (ArC), 83.1 (C6), 76.5 (C7), $73.9(\mathrm{C} 1), 73.1\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 73.1\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 72.6\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 69.1$ (C1’'), 65.5 (C2'), 64.0 (C7a), 60.8 (C5), 37.7 (C1'), 23.0 (C3'). ESIMS m/z 540 (100\%) $[\mathrm{MH}]^{+}, 518$ (40\%) [MNa] ${ }^{+}$, HRESIMS found 518.2532, calc for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{NO}_{6}, 518.2543$ $[\mathrm{MH}]^{+}$.

(1R,3R)-1-((2R,3S,4R,5R)-3,4-Bis(benzyloxy)-5-(benzyloxymethyl)pyrrolidin-2-
yl)butane-1,3-diol (15b). Following the general method for the hydrolysis of oxazolidinones using 14b ($0.105 \mathrm{~g}, 0.203 \mathrm{mmol}$), sodium hydroxide ($0.016 \mathrm{~g}, 0.406$ mmol) and $\mathrm{EtOH}(4 \mathrm{~mL})$, the title compound ($0.090 \mathrm{~g}, 91 \%$) was obtained as a light yellow oil. $R_{f} 0.08$ (2.5:97.5 MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). $[\alpha]_{D}^{24}+14.2$ (c 1.00, CHCl_{3}). $\delta_{\mathrm{H}}(500 \mathrm{MHz})$: 7.39-7.22 (15H, ArH), 4.88 ($1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}$, OCHHPh), $4.61(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}$, OCHHPh), $4.56(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}$, OCHHPh $), 4.53(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}$, OCHHPh $)$, $4.50(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}$, OCHHPh $), 4.44(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{OCHHPh}), 4.17(1 \mathrm{H}, \mathrm{t}, J=$ $4.2 \mathrm{~Hz}, \mathrm{H} 3), 4.06(1 \mathrm{H}, \mathrm{ddd}, J=2.9,7.7,10.2 \mathrm{~Hz}, \mathrm{H} 1$ '), 4.02 ($1 \mathrm{H}, \mathrm{ddd}, J=2.7,6.2,8.9$ Hz, H3’), 3.89 ($1 \mathrm{H}, \mathrm{dd}, J=4.2,6.5 \mathrm{~Hz}, \mathrm{H} 4$), 3.54 ($1 \mathrm{H}, \mathrm{dd}, J=5.6,11.5 \mathrm{~Hz}, \mathrm{H} 1$ ’ ${ }_{\mathrm{A}}$), 3.49$3.46(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5), 3.48-3.46\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1{ }^{\prime}{ }_{\mathrm{B}}\right.$), $3.02(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.2,7.7 \mathrm{~Hz}, \mathrm{H} 2), 1.73(1 \mathrm{H}$,

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009 dt, $J=2.6,14.3 \mathrm{~Hz}, \mathrm{H}^{\prime}{ }_{\mathrm{A}}$), $1.44\left(1 \mathrm{H}, \mathrm{ddd}, J=8.9,10.2,14.3 \mathrm{~Hz}, \mathrm{H} 2{ }^{\prime}\right.$ в), $1.16(3 \mathrm{H}, \mathrm{d}, J=$ $6.2 \mathrm{~Hz}, \mathrm{H} 4$ '). $\delta_{\mathrm{C}}(125 \mathrm{MHz}): 138.0(\mathrm{ArC}), 137.9$ (ArC), 137.8 (ArC), 128.5 (ArC), 128.4 (ArC), 128.3 (ArC), 128.0 (ArC), 128.0 (ArC), 127.8 (ArC), 127.7 (ArC), 127.7 (ArC), 127.6 (ArC), $81.1(\mathrm{C} 4), 79.0(\mathrm{C} 3), 73.4\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 73.2\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 72.7\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 72.6$ (C1'), 70.1 (C1’), 68.1 (C3’), 62.9 (C2), 60.2 (C5), 42.4 (C2’), 23.6 (C4’). ESIMS m/z 492 (100\%) $[\mathrm{MH}]^{+}$, HRESIMS found 492.2765, calc for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{NO}_{5}, 492.2750[\mathrm{MH}]^{+}$.

(1R,3S,5R,6R,7S,7aR)-6,7-bis(benzyloxy)-5-(benzyloxymethyl)-3-methylhexahydro-
1H-pyrrolizin-1-ol (17). Following the general method for mesylation-cyclization using 15b ($0.056 \mathrm{~g}, 0.115 \mathrm{mmol}$), triethylamine ($79 \mu \mathrm{~L}, 0.573 \mathrm{mmol}$), $\mathrm{MeSO}_{2} \mathrm{Cl}(8.9 \mu \mathrm{~L}, 0.115$ $\mathrm{mmol})$ and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, the title compound ($0.028 \mathrm{~g}, 51 \%$) was obtained as a colorless oil. $R_{f} 0.19$ (4:1 EtOAc/petrol). $[\alpha]_{D}^{25}+7.2$ (c $\left.1.00, \mathrm{CHCl}_{3}\right) . \delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.39-$ 7.18 (15H, m, ArH), 4.74 (1H, $J=11.8 \mathrm{~Hz}, \mathrm{OCHHPh}), 4.68$ (1H, dt, 6.6, 9.1, H7), 4.564.48 ($5 \mathrm{H}, \mathrm{m}, 5$ x OCHHPh), $4.06(1 \mathrm{H}, \mathrm{dd}, J=4.0,5.4 \mathrm{~Hz}, \mathrm{H} 1), 3.93(1 \mathrm{H}, \mathrm{dd}, J=4.0,6.0$ $\mathrm{Hz}, \mathrm{H} 2), 3.45\left(1 \mathrm{H}, \mathrm{dd}, J=4.7,9.8 \mathrm{~Hz}, \mathrm{H8}_{\mathrm{A}}\right), 3.42(1 \mathrm{H}, \mathrm{dd}, J=5.4,6.3 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{a}), 3.42$ ($1 \mathrm{H}, \mathrm{dd}, J=5.3,9.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}$), $3.09(1 \mathrm{H}, \mathrm{dd}, J=5.3,10.9 \mathrm{~Hz}, \mathrm{H} 3), 3.07-3.01(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5)$, $2.27\left(1 \mathrm{H}, \mathrm{ddd}, J=5.4,6.9,12.1 \mathrm{~Hz}, \mathrm{H6}_{\mathrm{A}}\right), 1.62-1.5\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 6_{\mathrm{B}}\right), 1.14(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right) . \delta_{\mathrm{C}}(125 \mathrm{MHz}): 138.6(\mathrm{ArC}), 138.4$ (ArC) 138.2 (ArC), 128.4 (ArC), 128.3 (ArC), 128.3 (ArC), 127.8 (ArC), 127.7 (ArC), 127.6 (ArC), 127.6 (ArC), 127.6 (ArC), 127.5

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009
(ArC), $81.7(\mathrm{C} 2), 77.6(\mathrm{C} 1), 73.3\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 73.0(\mathrm{C} 7 \mathrm{a}), 73.0\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 72.3\left(\mathrm{OCH}_{2} \mathrm{Ph}\right)$,
71.7 (C8), 71.1 (C7), 68.1 (C3), 62.1 (C5), 43.8 (C6), 22.1 (C9). ESIMS m/z 474 (100\%) $[\mathrm{MH}]^{+}$, HRESIMS found 474.2665, calc for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{NO}_{4}, 474.2644[\mathrm{MH}]^{+}$.

(1S,2R,3S,5R,7R,7aR)-3-(Hydroxymethyl)-5-methylhexahydro-1H-pyrrolizine-1,2,7-
triol (putative hyacinthacine \mathbf{B}_{7}) (3). Following the general method for the hydrolysis of benzyl ethers using the cyclized product $17(27 \mathrm{mg}, 0.059 \mathrm{mmol}), \mathrm{PdCl}_{2}(16 \mathrm{mg}, 0.088$ mmol), $\mathrm{MeOH}\left(2 \mathrm{~mL}\right.$) and H_{2} (in balloon), the title compound ($10 \mathrm{mg}, 84 \%$) was obtained as a colorless film. $[\alpha]_{D}^{24}+31.2\left(c 0.20, \mathrm{CHCl}_{3}\right) . \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): 4.60(1 \mathrm{H}$, ddd, $J=5.8,7.0,9.2 \mathrm{~Hz}, \mathrm{H} 7), 4.13(1 \mathrm{H}$, app. t, $J=4.0 \mathrm{~Hz}, \mathrm{H} 1), 4.03(1 \mathrm{H}, \mathrm{dd}, J=4.0$, $9.1 \mathrm{~Hz}, \mathrm{H} 2), 3.74\left(1 \mathrm{H}, \mathrm{dd}, J=4.9,11.7 \mathrm{~Hz}, \mathrm{H} 8\right.$) ${ }^{2}, 3.70\left(1 \mathrm{H}, \mathrm{dd}, J=4.9,11.7 \mathrm{~Hz}, \mathrm{H} 8_{\alpha}\right)$, $3.32(1 \mathrm{H}, \mathrm{dd}, J=4.0,5.8 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{a}), 3.06-2.97(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5), 2.81(1 \mathrm{H}, \mathrm{app} . \mathrm{dd}, J=4.9,9.1$ Hz, H3), 2.38 (1H, ddd, $\left.J=5.0,7.0,12.2 \mathrm{~Hz}, \mathrm{H}_{\beta}\right), 1.60(1 \mathrm{H}, \mathrm{ddd}, J=9.3,11.0,12.2 \mathrm{~Hz}$, H6 ${ }_{\alpha}$), 1.17 (1H, d, J = $\left.6.3 \mathrm{~Hz}, \mathrm{H} 9\right) . \delta_{H}\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): 78.1$ (C2), 73.6 (C1), 71.8 (C3), 71.3 (C7), 75.4 (C7a), 65.6 (C8), 65.2 (C5), 46.2 (C6), 22.5 (C9). ESIMS m/z 204 $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, HRESIMS found 204.1319, calc for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{4}, 204.1236\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of hyacinthacine B_{7}

${ }^{13} \mathrm{C}$ NMR (500 MHz, $\mathrm{D}_{2} \mathrm{O}$) of hyacinthacine B_{7}

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009
NOESY ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of hyacinthacine B_{7} (correlations between $\mathrm{H}-5$ and $\mathrm{H}-7$ are shown inside the square)

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Table 2. Comparison of literature ${ }^{1} \mathrm{H}$ NMR chemical shifts ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of natural hyacinthacine B_{7} (Lit.) and synthetic 3 (Syn.)

H	$\delta_{\mathbf{H}}(\text { Lit. })^{* *}$	$\begin{gathered} \text { Mult., } J(\mathrm{~Hz}) \\ (\text { Lit.) } \end{gathered}$	δ_{H} (syn.)	$\begin{gathered} \text { Mult., } J(H z) \\ \text { (syn.) } \end{gathered}$
1	4.35	t (4.4)	4.13	t (3.9)
2	3.97	dd (4.4, 7.6)	4.03	dd (3.9, 9.0)
3	3.29	$\begin{gathered} \text { ddd (7.6, 5.5, } \\ 3.5) \end{gathered}$	2.81	$\begin{gathered} \text { ddd (4.9, 4.9, } \\ 9.0) \\ \hline \end{gathered}$
5	3.22	m	3.01	m
6α	1.68	m	1.60	m
6β	2.16	m	2.38	m
7	4.50	m	4.61	m
7a	3.45	dd (4.4, 7.6)	3.32	dd (3.9, 5.9)
8α	3.57	dd (5.5, 11.5)	3.70	dd (4.9, 11.5)

** J. Nat. Prod., 2007, 70, 993

Table 3. Comparison of literature ${ }^{13} \mathrm{C}$ NMR chemical shifts ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of natural hyacinthacine B_{7} (Lit.) and synthetic $\mathbf{3}$ (Syn.)

C	$\begin{gathered} \text { Lit. } \\ \delta_{\mathrm{C}}^{* *} \end{gathered}$	$\begin{gathered} \text { Syn. } \\ \delta_{\mathrm{C}} \end{gathered}$	$\Delta \delta_{\text {C }}$
1	77.9	73.6	-4.3
2	74.9	78.1	+3.2
3	66.2	71.8	+5.6
5	57.7	65.2	+7.5
6	45.2	46.2	+1.0
7	76.5	71.3	-5.2
7a	69.9	75.4	+5.5
8	66.8	65.6	-1.2
9	18.4	22.5	+4.1

** J. Nat. Prod., 2007, 70, 993

