Supporting Information

Assembly of Indole-2-Carboxylic Acid Esters through a Ligand-Free Copper-Catalysed Cascade Process

Qian Cai*, Zhengqiu Li, Jiajia Wei, Chengyong Ha, Duanqing Pei and Ke Ding*

Key Laboratory of Regenerative Biology and Institue of Chemical Bioology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences 10th floor, Building D, Guangzhou International Business Incubator, Guangzhou Science Park, Guangzhou, China, 510663 Fax: (+) 86-20-32290606 E-mail: cai_qian@gibh.ac.cn, ding_ke@gibh.ac.cn

Content:

Typical Procedures	2
Chemical Data	2
Reference	5
NMR Spectrum	6

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Typical procedure for the preparation of Indole-2-Carboxylic Acid Esters: The aryl halides, base, copper salts and solvent were added together into a reacting tube under nitrogen atmosphere. Then ethyl isocyanoacetate was slowly added and the mixtures were stirred at certain temperature. After the reactions were finished, ethyl acetate and water were added. The organic phase was separated, dried over sodium sulphate and evaporated in vacuum. The residues were loaded on silica gel column and purified to get the final products.

Ethyl 1*H*-indole-2-carboxylate (5)^[1]

¹H NMR (CDCl₃, 400 MHz) δ 8.99 (br, 1H), 7.68 (m, 1H), 7.13-7.42 (m, 4H), 4.42 (q, *J* = 7.2 Hz, 2H), 1.43 (t, *J* = 7.2 Hz, 3H); ESI-MS *m*/*z* 189.9 (M+H)⁺.

Ethyl 5-methyl-1*H*-indole-2-carboxylate (7a)^[2]

¹H NMR (CDCl₃, 400 MHz) δ 8.88 (br, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.19 (m, 2H), 7.00 (d, *J* = 8.0 Hz 1H), 4.41 (q, *J* = 7.2 Hz, 2H), 2.47 (s, 3H), 1.41 (t, *J* = 7.2 Hz, 3H). ESI-MS *m*/*z* 204.1 (M+H)⁺.

Ethyl 5-chloro-1*H*-indole-2-carboxylate (7b)^[3]

¹H NMR (CDCl₃, 400 MHz) δ 9.25 (br, 1H), 7.65 (s, 1H), 7.35 (d, *J* = 8.8 Hz, 1H), 7.26 (d, *J* = 8.8 Hz, 1H), 7.15 (s, 1H), 4.43 (q, *J* = 7.2 Hz, 2H), 1.45 (t, *J* = 7.2 Hz, 3H), ESI-MS *m*/*z* 222.0 (M-H)⁻.

Ethyl 5, 6-dimethoxy-1*H*-indole-2-carboxylate (7c)^[4]

 $\overset{\text{MeO}}{\longrightarrow} \overset{\text{N}}{\overset{\text{H}}{\longrightarrow}} \overset{1}{\overset{\text{H}}{\longrightarrow}} \text{NMR} (\text{CDCl}_3, 400 \text{ MHz}) \delta 9.06 (br, 1\text{H}), 7.11 (s, 1\text{H}), 7.03 (s, 1\text{H}), 6.84 (s, 1\text{H}), 4.39 (q, J = 7.2 \text{ Hz}, 2\text{H}), 3.91 (s, 3\text{H}), 1.39 (t, J = 7.2 \text{ Hz}, 3\text{H}), \text{ESI-MS} m/z 250.0 (M+\text{H})^+.$

Ethyl 5-(trifluoromethyl)-1*H*-indole-2-carboxylate (7d)^[5]

CO₂Et

 $\overset{\text{H}}{\overset{\text{H}}{\longrightarrow}} \overset{\text{H}}{\overset{\text{H}}{\longrightarrow}} \overset{\text{H}}{\overset{\text{H}}{\longrightarrow}} \text{NMR} (\text{CDCl}_3, 400 \text{ MHz}) \delta 9.55 (br, 1H), 8.00(s, 1H), 7.55-7.50 (m, 2H), 7.30 (s, 1H), 4.46 (q, J = 7.2 \text{ Hz}, 2H), 1.43 (t, J = 7.2 \text{ Hz}, 3H), \text{ESI-MS } m/z 256.0 (M-H)^{-}.$

Ethyl 1*H*-benzo[g]indole-2-carboxylate (7e) [6]

-CO₂Et

¹H NMR (CDCl₃, 400 MHz) δ 9.95 (br, 1H), 8.19 (d, *J* = 8.0 Hz, 1H), 7.92 (d, *J* = 7.6 Hz, 1H), 7.68 (d, *J* = 8.8 Hz, 1H), 7.59-7.49 (m, 3H), 7.35 (s, 1H), 4.47 (q, *J* = 7.2 Hz, 2H), 1.46 (t, *J* = 7.2 Hz, 3H), ESI-MS *m*/z 240.0 (M+H)⁺.

Ethyl 1*H*-pyrrolo [2, 3-*b*] pyridine-2-carboxylate (7f) ^[7]

^N ^H ^I ^H ^I ^H NMR (CDCl₃, 400 MHz) δ 11.58 (br, 1H), 8.61 (m, 1H), 8.05 (m, 1H), 7.19-7.15 (m, 2H), 4.46 (q, *J* = 6.8 Hz, 2H), 1.39 (t, *J* = 6.8 Hz, 3H). ESI-MS *m*/*z* 191.1 (M+H)⁺.

Ethyl 6-methyl-4*H*-thieno [3, 2-*b*] pyrrole-5-carboxylate (7g)^[8]

-CO₂Et

S ¹H NMR (CDCl₃, 400 MHz) δ 9.18 (br, 1H), 7.29 (d, J = 5.6 Hz, 1H), 6.89 (d, J = 5.6 Hz, 1H), 4.38 (q, J = 7.2 Hz, 2H), 2.53 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H), ¹³C NMR (CDCl₃, 75 MHz) δ 162.4, 139.6, 129.1, 126.5, 123.1, 120.2, 111.3, 60.3, 14.5, 12.1, ESI-MS m/z 209.9 (M+H)⁺.

Ethyl 3-methyl-1*H*-indole-2-carboxylate (7h)^[9]

CO₂Et

^N ¹H NMR (CDCl₃, 400 MHz) δ 8.79 (br, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.38-7.30 (m, 2H), 7.16-7.13 (m, 1H), 4.42 (q, J = 7.2 Hz, 2H), 2.62 (s, 3H), 1.43 (t, J = 7.2 Hz, 3H). ESI-MS m/z 204.1 (M+H)⁺.

Ethyl 3-(4-acetamidophenethyl)-1H-indole-2-carboxylate (7i)

^H ¹H NMR (DMSO, 400 MHz) δ 11.47 (br, 1H), 9.82 (br, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.47 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.24 (m, 1H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.05 (m, 1H), 4.33 (q, *J* = 7.2 Hz, 2H), 3.28 (t, *J* = 8.0 Hz, 2H), 2.81 (t, *J* = 8.0 Hz, 2H), 2.02 (s, 3H), 1.35 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (DMSO, 100 MHz) δ 168.4, 162.2, 137.2, 136.9, 136.7, 128.8, 127.4, 125.2, 123.5, 123.0, 120.7, 119.8, 119.4, 112.8, 60.6, 36.8, 27.2, 24.4, 14.8; EI-MS *m*/z 350 (M⁺), 202, 156, 128, 106; HR-MS (EI) calcd for C₂₁H₂₂N₂O₃ requires 350.1630, found 350.1626.

Ethyl 3-phenethyl-1*H*-indole-2-carboxylate (7j)^[10]

^N ^H ¹H NMR (CDCl₃, 400 MHz) δ 8.73 (br, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.40-7.12 (m, 8H), 4.41 (q, *J* = 7.2 Hz, 2H), 3.40 (t, *J* = 8.0 Hz, 2H), 2.96(t, *J* = 8.0 Hz, 2H), 1.42 (t, *J* = 7.2 Hz, 3H). ESI-MS *m*/*z* 294.2 (M+H)⁺.

Ethyl 3-(4-methoxyphenethyl)-1H-indole-2-carboxylate (7k)

H 1H NMR (CDCl₃, 400 MHz) δ 8.80 (br, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 8.4 Hz, 1H), 7.33 (m, 1H), 7.17-7.12 (m, 3H), 6.84 (d, J = 8.4 Hz, 1H), 4.41 (q, J = 7.2 Hz, 2H), 3.37 (t, J = 6.8 Hz, 2H), 2.91(t, J = 6.8 Hz, 2H), 1.44 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃ 100 MHz) δ 162.4, 157.8, 135.9, 134.4, 129.3, 127.8, 125.5, 124.1, 123.3, 120.7, 120.0, 113.7, 111.7, 60.7, 55.3, 36.4, 27.4, 14.5; EI-MS m/z 323 (M⁺), 202, 156, 128, 121; HR-MS (EI) calcd. for C₂₀H₂₁NO₃ requires 323.1521, found 323.1517.

Ethyl 1-formyl-3-methyl-5-nitro-1*H*-indole-2-carboxylate (7l)

^cHO ¹H NMR (CDCl₃, 400 MHz) δ 8.69 (s, 1H), 8.47 (d, J = 8.4 Hz, 1H), 8.01 (d, J = 8.4 Hz, 1H), 6.51 (s, 1H), 4.26 (q, J = 5.2 Hz, 2H), 2.72 (s, 3H), 1.44 (t, J = 7.2 Hz, 3H); ESI-MS m/z 277.1 (M+H)⁺.

2-ethyl 6-methyl 3-methyl-1*H*-indole-2,6-dicarboxylate (7m)^[11]

 $\overset{\text{MeO}_2\text{C}}{\overset{\text{MeO}_2\text{C}}}{\overset{\text{MeO}_2\text{C}}}{\overset{\text{MeO}_2\text{C}}}{\overset{\text{MeO}_2\text{C}}}{\overset{\text{MeO}_2\text{C}}{\overset{\text{MeO}_2\text{C}}}{\overset{\text{MeO}_2\text{C}}}{\overset{\text{MeO}_2\text{C}}}{\overset{\text{MeO}_2\text{C}}}{\overset{\text{MeO}_2\text{C}}}{\overset{\text{MeO}_2\text{C}}}{\overset{\text{MeO}_2\text{C}}}{\overset{\text{MeO}_2\text{C}}}{\overset{\text{MeO}_2\text{C}}}{\overset{\text{MeO}_2\text{C}}}{\overset{\text{MeO}_2\text{C}}}{\overset{\text{MeO}_2\text{C}}}{\overset{\text{MeO}_2\text{C}}}{\overset{\text{MeO}_2\text{C}}}{\overset{\text{MeO}_2\text{C}}}{\overset{\text{MeO}_2\text{C}}}{\overset{\text{MeO}_2\text{C}}}{\overset{\text{MeO}_2\text{C}}}{\overset{MeO_2\text{C}}}{\overset{MeO_2\text{C}}}{\overset{MeO_2\text{C}}}{\overset{MeO_2\text{C}}}}{\overset{MeO_2\text{C}}}{\overset{MeO_2\text{C}}}{\overset{MeO_2\text{C}}}{\overset{$

Ethyl 6-bromo-3-methyl-1*H*-indole-2-carboxylate (7n)^[12]

¹H NMR (CDCl₃, 400 MHz) δ 8.71 (br, 1H), 7.51 (m, 2H), 7.23 (m, 1H), 4.42 (q, *J* = 7.2 Hz, 2H), 2.58 (s, 3H), 1.43 (t, *J* = 7.2 Hz, 3H). ESI-MS *m*/*z* 282.0 (M+H)⁺.

Ethyl 5-amino-3-methyl-1*H*-indole-2-carboxylate (70)^[13]

 $\overset{\text{H}}{=} 7.2 \text{ Hz}, 2\text{H}, 3.56 (br, 2\text{H}), 2.53 (s, 3\text{H}), 1.42 (t, J = 7.2 \text{ Hz}, 3\text{H}); \text{ESI-MS } m/z \ 219.0 (\text{M}+\text{H})^+.$

Ethyl 5-acetamido-3-methyl-1*H*-indole-2-carboxylate (7p)

 $\overset{\text{H}}{\overset{\text{L}}{\longrightarrow}} \overset{\text{H}}{\overset{\text{H}}{\longrightarrow}} \overset{\text{H}}{\overset{\text{H}}{\longrightarrow}} \text{NMR} (\text{CDCl}_3, 400 \text{ MHz}) \\ \delta 8.63 (\text{br}, 1\text{H}), 7.88 (\text{s}, 1\text{H}), 7.31-7.22 (\text{m}, 3\text{H}), 4.41 (\text{q}, J = 7.2 \text{ Hz}, 2\text{H}), 2.57 (\text{s}, 3\text{H}), 2.20 (\text{s}, 3\text{H}), 1.42 (\text{t}, J = 7.2 \text{ Hz}, 3\text{H}); \overset{\text{H}}{\overset{\text{S}}{\longrightarrow}} \text{NMR} (\text{DMSO}, 100 \text{ MHz}) \\ \delta 168.2, 162.3, 133.5, 132.3, 127.8, 124.1, 119.6, 118.4, 112.7, 110.2, 60.5, 24.3, 14.8, 10.2; \text{EI-MS} m/z 260 (\text{M}^+), 214, 172, 144, 116; \text{HR-MS} (\text{EI}) \text{ calcd for } C_{14}\text{H}_{16}\text{N}_2\text{O}_3 \text{ requires } 260.1161, \text{ found } 260.1158. \end{aligned}$

Ethyl 6,7-dimethoxy-1*H*-indole-2-carboxylate (9a)

¹Me ¹H NMR (CDCl₃, 400 MHz) δ 8.93 (br, 1H), 7.33 (d, J = 8.4 Hz, 1H), 7.16 (s, 1H), 6.89 (d, J = 8.4 Hz, 1H), 4.39 (q, J = 7.2 Hz, 2H), 4.01 (s, 3H), 3.94 (s, 3H), 1.40 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) 161.8, 149.0, 132.0, 127.5, 124.0, 117.6, 109.9, 109.2, 61.0, 60.9, 57.2, 14.4; ESI-MS m/z 250.1 (M+H)⁺; HR-MS (EI) calcd for C₁₃H₁₅NO₄ requires 249.2625, found 249.2629.

Ethyl 6-chloro-3-(4-methoxyphenethyl)-1H-indole-2-carboxylate (9b)

Ethyl 6-chloro-3-methyl-1*H*-indole-2-carboxylate (9c)^[14]

^{CI} ^N ¹H NMR (CDCl₃, 400 MHz) δ 8.69 (br, 1H), 7.56 (d, J = 8.4 Hz, 1H), 7.35 (s, 1H), 7.10 (d, J = 8.4 Hz, 1H), 4.42 (q, J = 7.2 Hz, 2H), 2.58 (s, 3H), 1.43 (t, J = 7.2 Hz, 3H); ESI-MS m/z 238.1 (M+H)⁺.

Ethyl 6-fluoro-3-methyl-1*H*-indole-2-carboxylate (9d)^[15]

F² N ¹H NMR (CDCl₃, 400 MHz) δ 8.65 (br, 1H), 7.58 (m, 1H), 7.03 (m, 1H), 6.90 (m, 1H), 4.41 (q, *J* = 7.2 Hz, 2H), 2.59 (s, 3H), 1.43 (t, *J* = 7.2 Hz, 3H); ESI-MS *m*/*z* 222.0 (M+H)⁺.

Ethyl 3-methyl-5-(trifluoromethyl)-1*H*-indole-2-carboxylate (9e)^[16]

¹H NMR (CDCl₃, 400 MHz) δ 8.99 (br, 1H), 7.96 (s, 1H), 7.53 (d, *J* = 8.8 Hz, 1H), 7.44 (d, *J* = 8.8 Hz 1H), 4.41 (q, *J* = 7.2 Hz, 2H), 2.63 (s, 3H), 1.45 (t, *J* = 7.2 Hz, 3H); ESI-MS *m/z* 270.0 (M-H)⁻.

Ethyl 5-(dibenzylamino)-3-methyl-1*H*-indole-2-carboxylate (9f)

^H ¹H NMR (CDCl₃, 400 MHz) δ 8.43 (br, 1H), 7.31-7.24 (m, 10H), 7.18 (m, 1H), 6.99 (m, 1H), 6.89 (s, 1H), 4.61(s, 4H), 4.38 (q, *J* = 7.2 Hz, 2H), 2.45 (s, 3H), 1.40 (t, *J* = 7.2 Hz, 3H); ³C NMR (CDCl₃, 100 MHz) δ 162.6, 144.0, 139.1, 130.2, 129.3, 128.4, 127.2, 126.8, 123.7, 119.2, 116.7, 112.1, 103.3, 60.4, 55.5, 14.4, 9.93; EI-MS *m*/z 398 (M⁺), 352, 307, 261, 233,128, 91; HR-MS (EI) calcd for C₂₆H₂₆N₂O₂ requires 398.1994, found 398.1990.

Ethyl 6-methoxy-3-methyl-1*H*-indole-2-carboxylate (9g)^[17]

 $\overset{\text{MeO}}{\longrightarrow} \overset{\text{H}}{\overset{\text{H}}{\longrightarrow}} \overset{\text{I}}{\overset{\text{H}}{\longrightarrow}} \overset{\text{I}}{\overset{\text{H}}{\longrightarrow}} \text{MRR} (\text{CDCl}_3, 400 \text{ MHz}) \\ \delta 8.69 (\text{br}, 1\text{H}), 7.51 (\text{d}, J = 8.8 \text{ Hz}, 1\text{H}), 6.81-6.77 (\text{m}, 2\text{H}), 4.38 (\text{q}, J = 7.2 \text{ Hz}, 2\text{H}), \\ 3.85 (\text{s}, 3\text{H}), 2.58(\text{s}, 3\text{H}), 1.42 (\text{t}, J = 7.2 \text{ Hz}, 3\text{H}); \overset{\text{I}^3}{\overset{\text{C}}{\longrightarrow}} \text{NMR} (\text{CDCl}_3, 100 \text{ MHz}) \\ \delta 162.6, 159.1, 136.9, 123.1, 122.4.1, 121.6, 120.7, 111.2, \\ 93.5, 60.4, 55.4, 14.5, 10.0; \text{ESI-MS} m/z \\ 234.1 (\text{M+H})^+. \end{aligned}$

Ethyl 2-chloro-4-methyl-6*H*-thieno[2,3-b]pyrrole-5-carboxylate (9h)

CO₂Et

^{Cl} s^{-NH} ¹H NMR (CDCl₃, 400 MHz) δ 9.45 (br, 1H), 6.87 (s, 1H), 4.37 (q, *J* = 7.2 Hz, 2H), 2.47 (s, 3H), 1.39 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 162.0, 133.3, 130.3, 123.9, 123.7, 120.1, 116.5, 60.5, 14.5, 11.6; ESI-MS *m*/*z* 244.5 (M+H)⁺; HR-MS (EI) calcd for C₁₀H₁₀CINO₂S requires 243.0121, found 243.0119.

Reference:

- [1] A. Mitsuo, M. Takanobu, T. Toyozo, S. Yasuo, *Heterocycles* 1989, 29, 629-34.
- [2] I. Hisashi, M. Yasuoki, Yakugak. Zasshi. 1979, 99, 413-20.
- [3] S. Roberto, E. Jaime, P. Maria R., A. Rafael, A. Francisco J, Adv. Synth. Catl. 2007, 349, 713-718.
- [4] B. B. Adhyaru, N. G. Akhmedov, A. R. Katritzky, C. R. Bowers, Magn. Reson. Chem. 2003, 41, 466-474.
- [5] D. Laurent, E. Yannick, M. Andre, WO 2007010144.
- [6] W. Toshiko, T. Hiroyuki, K. Hiroyuki, S. Susumu, O. Masako, Chem Pharm Bull. 1991, 39, 3145-52.
- [7] H. G. F. Richter, D. R. Adams, A. Benardeau, M. J. Bickerdike, J. M. Bentley, T. J. Blench, I. A. Cliffe, C. Dourish, P.
- Hebeisen, G. A. Kennett, A. R. Knight, C. S. Malcolm, P. Mattei, A. Misra, J. Mizrahi, N. J. T. Monck, J. M. Plancher, S.
- Roever, J. R. A. Roffey, S. Taylor, S. P. Vickers, Bioorg. Med. Chem. Lett. 2006, 16, 1207-1211.
- [8] V. I. Shvedov, L. B. Altukhova, Y. I. Trofimkin, A. N. Grinev, Khim. Getero. 1972, 11, 1577.
- [9] K. G. Liu, A. J. Robichaud, J. R. Lo, J. F. Mattes, Y. Cai, Org. Lett. 2006, 8, 5769-5771.
- [10] D. J. Kempf, S. H. Rosenberg, J. J. Plattner, H. L. Shan, B. De, US 4994477
- [11] A. G. Schultz, W. K. Hagmann, J. Org. Chem. 1978, 43, 3391-3.
- [12] S. P. Hiremath, B. H. M. Mruthyunjayaswamy, M. G. Purohit, J. Chem. Soc. Perkin 1. 1979, 3, 595-8.
- [13] S. Vincenzo, P. Paola, D. Maria Emilia, M. Jose Ignacio, N. Emanuela, GB 2450771
- [14] Y. Kim, S. Han, Synth Commun. 2004, 34, 2931-2943.
- [15] M. Arai, T. Yamazaki, K. Tamaki, WO 2005113499
- [16] C. Emily Jane, G. Lynn Stacy, M. Nathan Bryan, Q. Shi, M. Wang, W. Alan M., Y. Xu, WO 2005054176.
- [17] T. Gan, R. Liu, P. Yu, S. Zhao, C. James M, J.Org. Chem. 1997, 62, 9298-9304.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

