Supporting Information

belonging to

Rhodium-mediated functionalization of an unactivated $\mathbf{C}_{alkyl}\!\!-\!\!H$ Bond

Anneke Krüger,^a Antonia Neels^b and Martin Albrecht*^a

a School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland Fax: (+)353-17161178, E-mail: martin.albrecht@ucd.ie

b XRD Application Lab, CSEM, Rue Jaquet-Droz 1, CH-2002 Neuchâtel, Switzerland

Experimental Procedures

General comments. The N-alkylated imidazoles^{Si} and compound 4 ^{Sii} were prepared according to literature procedures. All other reagents are commercially available and were used as received. Unless specified otherwise, NMR spectra were recorded at 25 °C on Bruker spectrometers operating at 400 or 500 MHz (¹H NMR) and 100 or 125 MHz (¹³C{¹H} NMR), respectively. Chemical shifts (δ in ppm, coupling constants *J* in Hz) were referenced to residual solvent resonances. Assignments are based on homo- and heteronuclear shift correlation spectroscopy. Elemental analyses were performed by the Microanalytical Laboratory at the Federal Institute of Technology in Zurich, Switzerland and at University College Dublin, Ireland.

General procedure for the synthesis of the diimidazolium salts 1a-b. The respective 1,2-diimidazoles were stirred together with 1,3-dibromopropane (0.5 mol equiv.) in refluxing toluene (20 mL) for 16 hours. The formed precipitate was isolated by centrifugation, washed with toluene and recrystallized from CH_2CH_2/Et_2O .

N,*N*-Propylenedi(*N*'-isopropyl-2-methyl)imidazolium dibromide (1a). According to the general procedure, starting from 2-methyl *N*-isopropyl imidazole (2.82 g, 22.7 mmol) and 1,3-dibromopropane (2.28 g, 11.3 mmol). Compound 1a was obtained as an off-white solid (2.89 g, 57%).

¹H NMR (CD₃CN, 500 MHz): δ 7.88 (d, 2H, ³*J*_{HH} = 2.3 Hz, H_{imi}), 7.43 (d, 2H, ³*J*_{HH} = 2.3 Hz, H_{imi}), 4.59 (septet, 2H, ³*J*_{HH} = 6.5 Hz, NCH(CH₃)₂), 4.40 (t, 4H, ³*J*_{HH} = 8.0 Hz, NCH₂CH₂CH₂N), 2.70 (s, 6H, C_{imi}CH₃), 2.34 (quintet, 2H, ³*J*_{HH} = 8.0 Hz, NCH₂CH₂CH₂N), 1.46 (d, 12H, ³*J*_{HH} = 6.5 Hz, NCH(CH₃)₂). ¹³C{¹H} NMR (CD₃CN, 125 MHz): δ 144.6 (NCN), 122.9 (C_{imi}), 118.4 (C_{imi}), 51.7 (NCH(CH₃)₂), 45.8 (NCH₂CH₂CH₂N), 30.6 (NCH₂CH₂CH₂N), 22.4 (NCH(CH₃)₂), 10.9 (C_{imi}CH₃). Anal. calc. for C₁₇H₃₀Br₂N₄ (450.26) × H₂O: C, 43.60; H, 6.89; N, 11.96. Found: C, 43.37; H, 6.56; N, 11.62.

N,*N*-**Propylenedi**(*N*^{*}-*n*-**butyl-2-methyl)imidazolium dibromide (1b).** According to the general procedure, starting from 2-methyl *N*-*n*-butyl imidazole (3.55 g, 25.7 mmol) and 1,3-dibromopropane (2.59 g, 12.6 mmol). Compound **1b** was obtained as a white solid (5.56 g, 90%).

¹H NMR (CD₃CN, 500 MHz): δ 7.74 (d, 2H, ³*J*_{HH} = 2.3 Hz, H_{imi}), 7.34 (d, 2H, ³*J*_{HH} = 2.3 Hz, H_{imi}), 4.34 (t, 4H, ³*J*_{HH} = 8.0 Hz, NCH₂CH₂CH₂N), 4.04 (t, 4H ³*J*_{HH} = 7.5 Hz, NCH₂CH₂CH₂CH₃), 2.64 (s, 6H, C_{imi}CH₃), 2.31 (quintet, 2H, ³*J*_{HH} = 8.0 Hz, NCH₂CH₂CH₂CH₂N), 1.76 (quintet, 4H, ³*J*_{HH} = 7.5 Hz, NCH₂CH₂CH₂CH₂CH₃), 1.36 (sextet, 4H, ³*J*_{HH} = 7.5 Hz, NCH₂CH₂CH₂CH₂CH₃), 0.95 (t, 6H, ³*J*_{HH} = 7.5 Hz, NCH₂CH₂CH₂CH₃). ¹³C{¹H} NMR (CD₃CN, 125 MHz): δ 145.2 (NCN), 122.3 (C_{imi}), 122.1 (C_{imi}), 48.9 (NCH₂CH₂CH₂CH₃), 45.8 (NCH₂CH₂CH₂CH₂N), 32.1 (NCH₂CH₂CH₂CH₃), 30.5 (NCH₂CH₂CH₂CH₂N), 20.1 (NCH₂CH₂CH₂CH₃), 13.7 (NCH₂CH₂CH₂CH₃), 10.6 (C_{imi}CH₃). Anal. calc. for C₁₉H₃₄N₄Br₂ (478.31): C, 47.71; H, 7.16; N, 11.71. Found: C, 47.58; H, 7.19; N, 11.42.

General procedure for the synthesis of $[RhI(C,C,C-dicarbene)(NCMe)_2]I$ (2a-b). and $[(\mu-I)_3-\{Rh(C,C,C-dicarbene)\}_2]I$ (3a-b). The corresponding diimidazolium salt 1, RhCl₃.H₂O (1 mol equiv.) and NaOAc (8 mol equiv.) were stirred together in refluxing acetonitrile (30 mL) for 16 hours, after which KI (4 mol equiv.) was added and stirring at reflux continued for a further hour. The reaction mixture was cooled to room temperature

and all volatiles were removed under reduced pressure. The residue was purified by column chromatography (SiO₂; CH₂Cl₂/acetone, 5:2).

Synthesis of 2a and 3a. According to the general procedure, starting from 1a (450 mg, 1.0 mmol), RhCl₃.H₂O (263 mg, 1.0 mmol), NaOAc (656 mg, 8.0 mmol) and KI (664 mg, 4.0 mmol). After column chromatography 3a was obtained as a light brown solid (380 mg, 59%). Dissolving 3a in CH₃CN and subsequent precipitation with Et₂O yielded complex 2a. Analytically pure material was obtained by the slow diffusion of Et₂O into a solution of 2a in CH₃CN.

Anal. calc. for C₂₁H₃₃I₂N₆Rh (726.25) × H₂O: C, 33.89; H, 4.74; N, 11.29. Found: C, 34.11; H, 4.49; N, 11.02.

Spectroscopic data for 2a.

Two species are distinguishable in the NMR spectra in a 2.5:1 ratio:

Major species: ¹H NMR (CD₃CN, 500 MHz): δ 6.78 (br, 2H, H_{imi}), 4.28 (septet, 2H, ³J_{HH} = 6.5 Hz, NCH(CH₃)₂), 4.17 (m, 2H, NCH₂CHCH₂N), 3.74 (m, 3H, RhCH, NCH₂CHCH₂N) 2.39 (s, 6H, C_{imi}CH₃), 1.37, 1.28 (2 × d, 6H, ³J_{HH} = 6.5 Hz, NCH(CH₃)₂). ¹³C{¹H} NMR (CD₃CN, 125 MHz): δ 138.3 (s, NCN), 119.5 (br, C_{imi}), 58.5 (s, NCH₂CHCH₂N), 49.7 (s, NCH(CH₃)₂), 33.7 (d, ¹J_{RhC} = 28.5 Hz, RhCH), 22.8, 22.6 (2 × s, NCH(CH₃)₂), 11.4 (s, C_{imi}CH₃).

Minor species: ¹H NMR (CD₃CN, 500 MHz): δ 6.67 (s, 2H, H_{imi}), 4.34 (septet, 2H, ³J_{HH} = 6.5 Hz, NC*H*(CH₃)₂), 4.17 (m, 2H, NC*H*₂CHC*H*₂N), 3.92 (br, 3H, RhCH, NC*H*₂CHC*H*₂N) 2.42 (s, 6H, C_{imi}CH₃), 1.40, 1.31 (2 × d, 6H, ³J_{HH} = 6.5 Hz, NCH(CH₃)₂). ¹³C{¹H} NMR (CD₃CN, 125 MHz): δ 144.6 (d, ¹J_{RhC} = 45.8 Hz, C_{imi}), 139.2 (s, NCN), 116.3 (d, ²J_{RhC} = 3.2 Hz, C_{imi}), 58.2 (br, NCH₂CHCH₂N), 50.0 (s, NCH(CH₃)₂), 38.8 (br, RhCH), 22.9, 22.6 (2 × s, NCH(CH₃)₂), 11.5 (s, C_{imi}CH₃).

Spectroscopic data for 3a.

Three sets of signals are distinguishable in the NMR spectra in approximate 1:1:1 ratio. Two of these sets have been assigned to the *anti* eclipsed conformation (C_2 symmetry), one set to the *syn* eclipsed conformer (C_{2v} symmetry).

¹H NMR (CD₂Cl₂, 500 MHz): δ 6.72, 6.65, 6.64 (3 × s, 4H, H_{imi}), 4.48-4.14 (m, 12H, RhCH, NCH₂CHCH₂N, NCHCH₃), 3.79 (m, 4H, NCH₂CHCH₂N), 2.47, 2.44, 2.43 (3 × s, 12H, C_{imi}CH₃), 1.46, 1.45, 1.43, 1.35, 1.33, 1.32 (6 × d, 24H, ³J_{HH} = 6.5 Hz, NCH(CH₃)₂). ¹³C{¹H} NMR (CD₂Cl₂, 125 MHz): δ 152.4, 152.3, 152.0 (3 × d, ¹J_{RhC} = 51.0 Hz, C_{imi}), 136.4, 136.3, 136.2 (3 × s, NCN), 116.2, 116.0, 115.9 (3 × d, ²J_{RhC} = 3.8 Hz, C_{imi}), 60.5, 60.4, 60.2 (3 × s, NCH₂CHCH₂N), 49.6 (s, NCH(CH₃)₂), 38.1, 38.0 (2 × d, ¹J_{RhC} = 30.4 Hz, RhCH), 22.9, 22.9, 22.8, 22.7, 22.6 (5 × s, NCH(CH₃)₂), 12.0, 12.0, 11.9 (3 × s, C_{imi}CH₃).

Synthesis of 2b and 3b. According to the general procedure, starting from 1b (478 mg, 1.0 mmol), RhCl₃.H₂O (263 mg, 1.0 mmol), NaOAc (656 mg, 8.0 mmol) and KI (664 mg, 4.0 mmol). After column chromatography 3b was obtained as a brown solid (480 mg, 71%). Analytically pure material was obtained by slow diffusion of Et_2O into a solution of 3b in CH₂Cl₂ and acetone (1:1).

Anal. calc. for C₃₈H₆₂I₄N₈Rh₂ (1344.38): C, 33.95; H, 4.65; N, 8.33. Found: C, 34.02; H, 4.85; N, 8.22.

Dissolving **3b** in CH₃CN and subsequent precipitation with Et₂O yielded complex **2b**.

Spectroscopic data for 2b.

Two species can be distinguished in the ¹H NMR spectrum in a 3:1 ratio.

Major species: ¹H NMR (CD₃CN, 500 MHz): δ 6.72 (br, 2H, H_{imi}), 4.18 (m, 2H, NCH₂CHCH₂N), 3.79 (m, 7H, RhCH, NCH₂CHCH₂N, NCH₂CH₂CH₂CH₃), 2.37 (s, 6H, C_{imi}CH₃), 1.61 (quintet, 4H, ³J_{HH} = 7.5 Hz, NCH₂CH₂CH₂CH₃), 1.24 (sextet, 4H, ³J_{HH} = 7.5 Hz, NCH₂CH₂CH₂CH₃), 0.88 (t, 6H, ³J_{HH} = 7.5 Hz, NCH₂CH₂CH₂CH₃). ¹³C{¹H} NMR (CD₃CN, 125 MHz): δ 139.0 (s, NCN), 121.2 (s, C_{imi}), 58.6 (s, NCH₂CH₂CH₂N), 47.5 (s, NCH₂CH₂CH₂CH₃), 33.7 (d, ¹J_{RhC} = 28.0 Hz, RhCH), 32.8 (s, NCH₂CH₂CH₂CHCH₃), 20.2 (s, NCH₂CH₂CH₂CH₃), 13.8 (s, NCH₂CH₂CH₂CH₃), 11.3 (C_{imi}CH₃).

Minor species: ¹H NMR (CD₃CN, 500 MHz): δ 6.63 (s, 2H, H_{imi}), 4.18 (br, 2H, NCH₂CHCH₂N), 3.93 (br, 1H, RhCH), 3.79 (m, 6H, NCH₂CHCH₂N, NCH₂CH₂CH₂CH₃), 2.40 (s, 6H, C_{imi}CH₃), 1.63 (quintet, 4H, ³J_{HH} = 7.5 Hz, NCH₂CH₂CH₂CH₃), 1.25 (sextet, 4H, ³J_{HH} = 7.5 Hz, NCH₂CH₂CH₂CH₃), 0.89 (t, 6H, ³J_{HH} = 7.5 Hz, NCH₂CH₂CH₂CH₃). ¹³C{¹H} NMR (CD₃CN, 125 MHz): δ 144.4 (d, ¹J_{RhC} = 45.5 Hz, C_{imi}), 140.0 (s, NCN), 120.6 (s, C_{imi}), 58.3 (br, NCH₂CHCH₂N), 47.7 (s, NCH₂CH₂CH₂CH₃), 39.0 (br, RhCH), 32.7 (s, NCH₂CH₂CH₂CH₃), 20.2 (s, NCH₂CH₂CH₂CH₃), 13.8 (s, NCH₂CH₂CH₂CH₃), 11.3 (C_{imi}CH₃).

Spectroscopic data for 3b.

Three sets of signals are distinguishable in the NMR spectra in approximate 1:1:1 ratio. Two of these sets have been assigned to the *anti* eclipsed conformation (C_2 symmetry), one set to the *syn* eclipsed conformer (C_{2v} symmetry).

¹H NMR (CD₂Cl₂, 500 MHz): δ 6.64, 6.57 (2 × s, 4H, H_{imi}), 4.49-4.25 (m, 18H, RhCH, NCH₂CHCH₂N, NCH₂CH₂CH₂CH₃), 2.45, 2.42 (2 × s, 12H, C_{imi}CH₃), 1.67 (m, 8H, NCH₂CH₂CH₂CH₂CH₃), 1.28 (m, 8H, NCH₂CH₂CH₂CH₃), 0.91 (m, 12H, NCH₂CH₂CH₂CH₃). ¹³C{¹H} NMR (CD₂Cl₂, 125 MHz): δ 152.6, 152.5, 152.4 (3 × d, ¹J_{RhC} = 50.3 Hz, C_{imi}), 137.4, 137.3 (2 × s, NCN), 120.9, 120.8 (2 × s, C_{imi}), 60.7, 60.6 (2 × s, NCH₂CHCH₂N), 47.7 (s, NCH₂CH₂CH₂CH₃), 38.2 (d, ¹J_{RhC} = 30.2 Hz, RhCH), 32.6 (s, NCH₂CH₂CH₂CH₃), 20.3 (s, NCH₂CH₂CH₂CH₃), 13.9 (s, NCH₂CH₂CH₂CH₃), 12.0 (C_{imi}CH₃).

Synthesis of 5. According to the general procedure described for 2a-b, starting from 4 (48 mg, 0.1 mmol), RhCl₃.H₂O (26 mg, 0.1 mmol), NaOAc (66 mg, 0.8 mmol) and KBr (48 mg, 0.4 mmol). After column chromatography the product was dissolved in CH₃CN and precipitated with Et₂O. 5 was obtained as a yellow solid (13 mg, 21%). Analytically pure material was obtained by slow diffusion of Et₂O into a solution of 5 in CH₃CN and acetone (1:1).

¹H NMR (DMSO–*d*₆, 500 MHz): δ 7.61 (d, 2H, ³*J*_{HH} = 2.5 Hz, H_{imi}), 7.43 (d, 2H, ³*J*_{HH} = 2.5 Hz, H_{imi}) 4.61–4.55 (m, 2H, NC*H*₂CH₂CH₂CH₃), 4.35–4.29 (m, 2H, NC*H*₂CH₂CH₂CH₃), 3.94–3.91 (m, 2H, NC*H*₂CH₂CH₂N), 3.55–3.49 (m, 2H, NC*H*₂CH₂CH₂N), 1.83-1.71 (m, 6H, NCH₂CH₂CH₂N, NCH₂CH₂CH₂CH₃), 1.40–1.34 (m, 4H, NCH₂CH₂CH₂CH₃), 0.93 (m, 6H, NCH₂CH₂CH₂CH₃). ¹³C{¹H} NMR (DMSO–*d*₆, 125 MHz): δ 186.5 (s, OOCCH₃), 147.7 (d, ¹*J*_{RhC} = 46.5 Hz, C_{imi}), 124.2 (s, NCN), 123.2 (s, C_{imi}), 50.0 (s, NCH₂CH₂CH₂CH₃), 44.8 (s, NCH₂CH₂CH₂CH₂N), 33.6 (s, NCH₂CH₂CHCH₃), 31.8 (s, NCH₂CH₂CH₂CH₂N), 24.5 (s, OOCCH₃), 19.4 (s,

NCH₂CH₂CH₂CH₃), 13.8 (s, NCH₂CH₂CH₂CH₃). Anal. calc. for C₁₉H₃₁Br₂N₄O₂Rh (610.19): C, 37.40; H, 5.12; N, 9.18. Found: C, 37.32; H, 5.02; N, 8.98.

Synthesis of 6. A suspension of complex 3a (97 mg, 75 μ mol) and AgBF₄ (58 mg, 0.30 mmol) was stirred at room temperature for 16 hours. The reaction mixture was filtered over Celite and the solvent removed *in vacuo*, yielding the title product as a dark red solid (101 mg, 97%).

¹H NMR (CD₃CN, 360 MHz): δ 6.64 (s, 2H, H_{imi}), 4.31 (septet, 2H, ³*J*_{HH} = 6.8 Hz, NC*H*(CH₃)₂), 4.15 (m, 2H, NC*H*₂CHC*H*₂N), 3.67 (m, 3H, RhCH, NC*H*₂CHC*H*₂N) 2.38 (s, 6H, C_{imi}CH₃), 1.39, 1.29 (2 × d, 6H, ³*J*_{HH} = 6.8 Hz, NCH(CH₃)₂). ¹³C{¹H} NMR (CD₃CN, 125 MHz): δ 144.6 (d, ¹*J*_{RhC} = 45.5 Hz, C_{imi}), 139.2 (s, NCN), 116.2 (d, ²*J*_{RhC} = 3.3 Hz, C_{imi}), 58.5 (s, NCH₂CHCH₂N), 50.0 (s, NCH(CH₃)₂), 33.6 (d, ¹*J*_{RhC} = 28.6 Hz, RhCH), 22.7, 22.5 (2 × s, NCH(CH₃)₂), 11.1 (s, C_{imi}CH₃). Anal. calc. for C₂₁H₃₅B₂F₈N₆ORh (664.06): C, 37.98; H, 5.31; N, 12.66. Found: C, 38.19; H, 5.31; N, 12.94.

General procedure for hydrogenation reactions. A mixture of cyclooctene (1 mmol), catalyst (10 μ mol Rh), and solvent (5 mL) was placed in a glass tube inside an autoclave. A pressure of 60 bar H₂ was applied and the autoclave placed in a preheated oil bath. At the relevant time, the autoclave was removed from the oil bath and cooled under a stream of running water after which the pressure was slowly released. A sample was taken and filtered over a short path of silica. The filtrate was subjected to GC analysis.

For reactions carried out at atmospheric pressure, a mixture of cyclooctene (1 mmol), catalyst (10 μ mol Rh) and solvent (5 mL) was placed in a round bottomed flask. The reaction mixture was stirred at the appropriate temperature while H₂ was bubbled through the solution for 5 minutes. The reaction mixture was kept under H₂ pressure using a balloon. At the relevant time a sample was taken, filtered through a short path of silica and subjected to GC analysis.

Structure determination and refinement of 2a and 3a

Suitable single crystals were mounted on a Stoe Imaging Plate Diffractometer System^{Siii} equipped with a onecircle φ gionometer and a graphite monochromator. Data collection was performed at -100(2) °C using Mo-K α radiation ($\lambda = 0.71073$ Å). The resolution was D_{min} - D_{max} 12.45 - 0.81 Å. **3a** crystallized in an orthorhombic cell (Pnma) and **2a** in a non-centrosymmetric orthorhombic cell (Pca2₁). The absolute structure was determined for **2a** (Flack parameter x = -0.08(3)).

Both structures were solved by direct methods using the program SHELXS-97^{Siv} and refined by full matrix least squares on F² with SHELXL-97.^{Sv} The hydrogen atoms were included in calculated positions and treated as riding atoms using SHELXL-97 default parameters. All non-hydrogen atoms were refined anisotropically. A semi-empirical absorption correction was applied using MULscanABS in PLATON03.

3a produced pronounced disorder in co-crystallised hexane molecules. The SQUEEZE option in PLATON was used to calculate the potential solvent accessible volume. 1320 Å³ was calculated corresponding to about 247 electrons. Four hexane molecules (4 x 50 electrons) per unit cell were thus included in all further calculations.

Further details on data collection and refinement parameters are summarized in Table S1. Crystallographic data (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 743284 and 743285. Copies of the data can be obtained free of charge on

application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk].

	2a	3 a
color, shape	orange, plate	orange, rod
cryst size /mm	0.5, 0.3, 0.15	0.5, 0.3, 0.2
refined formula	$C_{21}H_{33}I_2N_6Rh$	$C_{40}H_{68}I_4N_8Rh_2$
Fw	726.24	1374.44
crystal system	orthorhombic	orthorhombic
space group	<i>P</i> ca2 ₁ (No. 29)	<i>P</i> nma (No. 62)
unit cell		
<i>a</i> /Å	13.2142(12)	15.2889(13)
b /Å	13.7680(13)	15.9079(13)
c /Å	15.0238(10)	20.8008(19)
$V/\text{\AA}^3$	2733.2(4)	5059.1(8)
Ζ	4	4
$D_{\rm calc}/{ m g~cm^{-3}}$	1.765	1.805
μ /mm ⁻¹	2.902	3.128
no. of total, unique reflections	18938, 4629	36742, 5201
<i>R</i> _{int}	0.0593	0.1149
transmission range	0.492-0.554	0.358-0.514
no. parameters, restraints	255, 1	140, 0
R, ^[a] R ^[b]	0.0374, 0.0846	0.0751, 0.1913
GOF	0.985	0.844
min., max. residual density /e Å ⁻³	-1.467, 1.099	-1.722, 1.850

 $[a] R_1 = \Sigma ||F_0| - |F_C|| / \Sigma |F_0| \text{ for all } I > 2\sigma(I); [b] wR_2 = [\Sigma w (F_0^2 - F_C^2)^2 / \Sigma (w (F_0^4)]^{1/2}.$

References

- [Si] A. A. Gridnev, I. M. Mihaltseva, Synth. Commun. 1994, 24, 1547.
- [Sii] J. A. Mata, A. R. Chianese, J. R. Miecznikowski, M. Poyatos, E. Peris, J. W. Faller, R. H. Crabtree, Organometallics 2004, 23, 1253.
- [Siii] Stoe & Cie (2002). X-Area V1.17 & X-RED32 V1.04 Software. Stoe & Cie GmbH, Darmstdt Germany.
- [Siv] G. M. Sheldrick, Acta Cryst. 2008, A64, 112.
- [Sv] A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7.