Recycle of Tin Thiolate Compounds Relevent to Ammonia-Borane Regeneration.

Supplementary Information

Experimental

All reactions were performed under an inert atmosphere, using standard Schlenk line and glovebox techniques. Ethereal solvents and toluene were distilled from Na/benzophenone ketyl radical unless otherwise noted. ¹H, and ¹¹B (128 MHz) NMR spectra were recorded at room temperature on a Bruker AVANCE 400 MHz spectrometer. ¹H spectra were referenced to the residual protons in the solvent and ¹¹⁹Sn NMR shifts were referenced to SnMe₄. *All deuterated solvents were purchased from Cambridge Isotopes (Andover, MA). Bu₃SnH (Aldrich), 1,2-benzenedithiol (TCI), 1 M HCl in Et₂O (Aldrich), tributyltin oxide (Aldrich), benzenethiol (Aldrich), Bu₃SnCl (Aldrich), formic acid (Aldrich) were used as received. C₆H₄SH(S-SnBu₃) was prepared by the literature method.¹ [C₆H₄S₂]Na₂ was prepared by reacting ortho-benzenedithiol with two equivalents of NaH in THF.*

Synthesis of Bu₃SnSPh. Tributyltin oxide (23.6 g, 40 mmol) was combined with benzenethiol (9.3 g, 84 mmol) in toluene (200 mL) and refluxed overnight in a Dean-Stark apparatus. The reaction was allowed to cool to room temperature and then the solvent removed *in vacuo* and the residual oily liquid distilled under reduced pressure (110 °C, 80 mtorr) to yield Bu₃SnSPh (30.6 g, 97 % yield). $\delta_{\rm H}$ (400 MHz; THF; Me₄Si) 7.50 – 7.31 (2 H, m), 7.20 – 6.99 (3 H, m), 1.65 – 1.40 (5 H, m), 1.40 – 1.21 (6 H, m), 1.21 – 0.96 (6 H, m), 0.96 – 0.76 (9 H, m). $\delta_{\rm H}$ (400 MHz; C₆D₆; Me₄Si) 7.49 (2 H, d, *J* 7.4), 6.96 (3 H, dt, *J* 22.6, 7.1), 1.62 – 1.34 (6 H, m), 1.34 – 1.14 (6 H, m), 1.14 – 0.90 (6 H, m), 0.90 – 0.73 (9 H, m). $\delta_{\rm Sn}$ (149 MHz; C₆D₆; Me₄Sn) 77.8.

Reaction of Bu₃SnSPh with HCl. A solution of HCl in Et₂O (3 mL, 1.0 M) was added to Bu₃SnSPh (50 mg, 0.125 mmol) and stirred for 2 hours. The solution was taken to dryness and redissolved in C₆D₆ to show Bu₃SnCl and benzenethiol in 1:1 ratio. $\delta_{\rm H}$ (400 MHz; C₆H₆; Me₄Si) 6.99 - 6.85 (5H, m, Ar-H) 3.07 (1 H, s, SH), 1.59 – 1.47 (6 H, m, CH₂), 1.27 – 1.04 (12 H, m, CH₂), 0.87 – 0.83 (9 H, m, CH₃). $\delta_{\rm Sn}$ (149 MHz; C₆D₆; Me₄Sn) 149.

Synthesis of C₆H₄(S-SnBu₃)₂. [C₆H₄S₂][Na]₂ (1.84 mmol, 0.478 g) was added to a stirred THF solution of Bu₃SnCl (3.69 mmol, 1.20 g) and stirred overnight. The solution was filtered and the volatiles were removed. The resultant solid was dissolved in hexane, filtered once more and solvent removed under vacuum to yield a colourless oil (1.104 g, 83% yield). $\delta_{\rm H}$ (400 MHz; C₆D₆; Me₄Si) 7.75 (2 H, m, Ar-H), 6.87 – 6.76 (2 H, m, Ar-H), 1.75 – 1.44 (12 H, m, CH₂), 1.42 – 1.10 (24 H, m, CH₂), 1.01 – 0.70 (18 H, m, CH₃). $\delta_{\rm Sn}$ (149 MHz; C₆D₆; Me₄Sn) 73.5.

Reaction of C₆H₄SH(S-SnBu₃) with HCl. A solution of HCl in Et₂O (1.5 mL, 1.0 M) was combined with C₆H₄SH(S-SnBu₃) (500 mg, 1.16 mmol) and stirred for 1 hour. The resultant solution was taken to dryness to yield a colourless oil which is a mixture of *ortho*-benzenedithiol and Bu₃SnH. $\delta_{\rm H}$ (400 MHz; THF; Me₄Si) 7.28 (2 H, m, Ar-H), 7.12 – 6.83 (2 H, m, Ar-H), 4.36 (2 H, s, SH), 1.92 – 1.45 (12 H, m, CH₂), 1.45 – 1.08 (24 H, m, CH₂), 1.08 – 0.76 (18 H, m, CH₃). $\delta_{\rm Sn}$ (149 MHz; THF; Me₄Sn) 102. The oil was washed with Et₂O and taken to dryness, this was repeated three times (3 x 1.0 mL) to leave Bu₃SnCl (410 mg, 83 % yield). $\delta_{\rm H}$ (400 MHz; THF; Me₄Si) 1.86 – 1.45 (6 H, m, CH₂), 1.44 – 1.03 (12 H, m, CH₂), 0.98 – 0.68 (9 H, m, CH₃). $\delta_{\rm Sn}$ (149 MHz; THF; Me₄Sn) 102.

Reaction of C₆H₄(S-SnBu₃)₂ with HCl. A solution of HCl in Et₂O (1.0 mL, 1.0 M) was added to C₆H₄(S-SnBu₃)₂ (250 mg, 0.347 mmol) and stirred for 1 hour. The resultant solution was taken to dryness to yield a colourless oil identified as a mixture of *ortho*-benzenedithiol and Bu₃SnH. δ _H (400 MHz; THF; Me₄Si) 7.36 – 7.25 (2 H, m, Ar-H), 7.04 – 6.93 (2 H, m, Ar-H), 4.37 (2 H, s, SH), 1.86 – 1.45 (26 H, m, CH₂), 1.44 – 1.03

(51 H, m, CH₂), 0.98 – 0.68 (39 H, m, CH₃). δ_{Sn} (149 MHz; THF; Me₄Sn) 102. The oil was washed with Et₂O and taken to dryness, this was repeated three times (3 x 1.0 mL) to remove any volatile products resulting in Bu₃SnCl (256 mg, 87 % yield). δ_{H} (400 MHz; THF; Me₄Si) 1.86 – 1.45 (6 H, m, CH₂), 1.44 – 1.03 (12 H, m, CH₂), 0.98 – 0.68 (9 H, m, CH₃). δ_{Sn} (149 MHz; THF; Me₄Sn) 102.

Synthesis of Bu₃SnOCH(O). Method A. Tributyltin oxide (11.70 g, 19.63 mmol) was combined in Et₂O (100 mL) with formic acid (98 %, 1.55 mL, 41.2 mmol) and stirred at room temperature for 15 minutes. The volatiles were removed *in vacuo* to yield a white oil which was placed under vacuum (2 Torr), resulting in a colourless oil after approximately 15 minutes at room temperature. The oil was steadily heated under vacuum in 5 °C increments until the excess formic acid was distilled, resulting in a thick oil. (10.2 g, 78 % yield). Method B. To a solution of ⁿBu₃SnCl (13.07 g, 30.72 mmol) and HOC(O)H (1.41 g, 30.7 mmol) in Et₂O (~100 mL) was added NEt₃ (3.11 g, 30.7 mmol). A white precipitate rapidly formed. The slurry was stirred for 30 minutes and then filtered. The solution was washed with water and dried with Na₂SO₄, followed by the removal of volatiles under reduced pressure to yield Bu₃SnOC(O)H (10.19 g, 30.4 mmol, 99 % yield) $\delta_{\rm H}$ (400 MHz; C₆D₆; Me₄Si) 8.27 (1 H, s, C(O)H), 1.75 – 1.57 (12 H, m, CH₂), 1.43 - 1.33 (6 H, m, CH₂), 1.32 – 1.18 (6 H, m, CH₂), 0.95 (9 H, t, *J* 7.5, CH₃). $\delta_{\rm C}$ (101 MHz; C₆H₆; Me₄Si) 168.6, 28.6, 27.5, 18.8, 14.0. $\delta_{\rm Sn}$ (149 MHz; THF; Me₄Si) - 13.9.

Conversion of Bu₃SnOC(O)H to Bu₃SnH. Distillation of Bu₃SnOC(O)H (5.0 g, 14.9 mmol) through a column of 3 mm Raschig Rings under reduced pressure (112 °C, 0.3 mmHg) resulted in Bu₃SnH (2.59 g, 8.9mmol, 60 % yield). δ_{Sn} (149 MHz; THF; Me₄Si) -90.3.

¹ B. L. Davis, D. A. Dixon, E. B. Garner, J. C. Gordon, M. H. Matus, F. H. Stephens, *Angew. Chem Int. Ed.*, 2009, **48**, 6812.