Electronic Supporting Information for "Highly enantioselective hetero-Diels–Alder reactions between Rawal's diene and aldehydes catalyzed by chiral dirhodium(II) carboxamidates"

Yudai Watanabe, Takuya Washio, Naoyuki Shimada, Masahiro Anada and Shunichi Hashimoto*

General Methods	S 1
Experimental Section	S1-S11
Copies of ¹ H/ ¹³ C NMR spectra	S12-S25
Copies of Chromatogram	S26-S46

Experimental Section

General. Melting points were determined on a Büchi 535 digital melting point apparatus and are uncorrected. IR spectra were recorded on a JASCO FT/IR-5300 spectrometer and absorbance bands are reported in wavenumber (cm⁻¹). ¹H NMR spectra were recorded on JEOL JNM-AL 400 (400 MHz) spectrometer or JEOL JNM-ECA 500 (500 MHz) spectrometer. Chemical shifts are reported relative to internal standard (tetramethylsilane; $\delta_{\rm H}$ 0.00, CDCl₃; $\delta_{\rm H}$ 7.26 or CD₂Cl₂; $\delta_{\rm H}$ 5.30). Data are presented as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant and integration. 13 C NMR spectra were recorded on JEOL JNM-AL 400 (100 MHz) spectrometer. The following internal references were used (CDCl₃; δ 77.0). Optical rotations were measured on a JASCO P-1030 digital polarimeter at the sodium D line (589 nm). EI-MS spectra were obtained on a JEOL JMS-FABmate spectrometer, operating with ionization energy of 70 eV. Column chromatography was carried out on Kanto silica gel 60 N (63–210 mesh). Analytical thin layer chromatography (TLC) was carried out on Merck Kieselgel 60 F₂₅₄ plates with visualization by UV light, anisaldehyde stain solution or phosphomolybdic acid stain solution. Analytical high performance liquid chromatography (HPLC) was performed on a JASCO PU-1580 intelligent HPLC pump with JASCO UV-1575 intelligent UV/VIS detector. Detection was performed at 254 nm. Chiralcel OD-H and Chiralpak AD columns (0.46 cm \times 25 cm) from Daicel were used. Retention times (t_R) and peak ratios were determined with JASCO-Borwin analysis system.

All non-aqueous reactions were carried out in flame-dried glassware under argon atmosphere unless otherwise noted. Reagents and solvents were purified by standard means. Dehydrated CH_2Cl_2 , acetone, toluene and THF were purchased from Kanto Chemical Co., Inc. Rawal's diene (2) was prepared according to literature procedure.¹

Typical procedure for enantioselective hetero-Diels–Aleder (HDA) reaction: (S)-2-Phenyl-2,3-dihydro-4*H*-pyran-4-one (5a).² A solution of Rawal's diene (2) (68.2 mg, 0.3 mmol) in CH₂Cl₂ (0.2 mL) was added to a solution of benzaldehyde (3a) (47.7 mg, 0.45 mmol) and Rh₂(S-BPTPI)₄·3H₂O (1a) (4.30 mg, 0.003 mmol, 1 mol %)

in CH₂Cl₂ (0.4 mL) at –40 °C. The reaction mixture was stirred for 2 h and then diluted with CH₂Cl₂ (1.2 mL). The whole mixture was cooled to –78 °C, and treated dropwise with 1 M solution of AcCl in CH₂Cl₂ (0.45 mL, 0.45 mmol). After stirring for 30 min, the reaction was quenched with saturated NaHCO₃ (3 mL) and extracted with EtOAc (2 x 15 mL). The combined organic layers were washed with water (3 mL) and brine (2 x 3 mL), and dried over anhydrous Na₂SO₄. Filtration and evaporation *in vacuo* furnished the crude product, which was purified by column chromatography (silica gel 5 g, 6:1 hexane/EtOAc) to provide **5a** (43.5 mg, 83%) as a colorless oil; TLC $R_f = 0.34$ (2:1 hexane/EtOAc); $[\alpha]_D^{23} + 109$ (*c* 1.09, CHCl₃) for 98% ee [lit.,² [α]_D²³ -96.3 (*c* 0.87, CHCl₃) for (*R*)-enantiomer]; ¹H NMR (500 MHz, CDCl₃) δ 2.65 (ddd, *J* = 1.3, 3.6, 16.9 Hz, 1H, C3-*H*), 2.92 (dd, *J* =14.5, 16.9 Hz, 1H, C3-*H*), 5.43 (dd, *J* = 6.0 Hz, 1H, C6-*H*). Enantiomeric excess of **5a** was determined to be 98% by HPLC with a Chiralcel OD-H column (9:1 hexane/^{*i*}PrOH, 1.0 mL/min): t_R (major) = 13.4 min for (*S*)-enantiomer; t_R (minor) = 16.0 min for

(*R*)-enantiomer.

2-(4-Methylphenyl)-2,3-dihydro-4*H*-pyran-4-one (5b).³ According to the typical procedure for enantioselective HDA reaction, 5b was prepared from diene 2 (68.2 0.3 mmol), *p*-tolualdehyde (**3b**) (54.0 mg, 0.45 mmol), mg, and Rh₂(S-BPTPI)₄·3H₂O (4.30 mg, 0.003 mmol, 1 mol %). The crude product was purified by column chromatography (silica gel, 6:1 hexane/EtOAc) to provide 5b (43.4 mg, 77%) as a white solid; mp 80.0-81.0 °C; TLC $R_f = 0.35$ (2:1 hexane/EtOAc); $[\alpha]_D^{24} + 128$ (c 1.16, CHCl₃) for 98% ee [lit., $^{3} [\alpha]_{D}^{19} -27.5$ (c 0.26, CHCl₃) for 92% ee of **5b**]; ¹H NMR (400 MHz, CDCl₃) δ 2.38 (s, 3H, ArCH₃), 2.62 (ddd, J = 1.3, 3.6, 16.8 Hz, 1H, C3-H), 2.92 (dd, J = 14.5, 16.8 Hz, 1H, C3-*H*), 5.39 (dd, *J* = 3.6, 14.5 Hz, 1H, C2-*H*), 5.52 (dd, *J* = 1.3, 5.9 Hz, 1H, C5-*H*), 7.23 (d, *J* = 8.2 Hz, 2H, Ar), 7.30 (d, J = 8.2 Hz, 2H, Ar), 7.47 (d, J = 5.9 Hz, 1H, C6-H). Enantiomeric excess of **5b** was determined to be 98% by HPLC with a Chiralcel OD-H column (9:1 hexane/ⁱPrOH, 1.0 mL/min): $t_{\rm R} = 10.8$ min for major enantiomer; $t_{\rm R} = 12.5$ min for minor enantiomer. The preferred absolute configuration of **5b** was not determined.¹

2-(3-Methylphenyl)-2,3-dihydro-4*H*-pyran-4-one (5c).⁴ According to the typical

procedure for enantioselective HDA reaction, **5c** was prepared from diene **2** (68.2 mg, 0.3 mmol), *m*-tolualdehyde (**3c**) (54.0 mg, 0.45 mol), and $Rh_2(S-BPTPI)_4\cdot 3H_2O$ (4.30 mg, 0.003 mmol, 1 mol %). The crude product was

purified by column chromatography (silica gel, 9:1 hexane/EtOAc) to provide **5c** (44.6 mg, 79%) as a colorless oil; TLC $R_f = 0.28$ (4:1 hexane/EtOAc); $[\alpha]_D^{24} +103$ (*c* 1.03, CHCl₃) for 95% ee [lit.,⁴ $[\alpha]_D^{25} -103.1$ (*c* 0.945, CHCl₃) for 99.5% ee of **5c**]; ¹H NMR (400 MHz, CDCl₃) δ 2.39 (s, 3H, ArCH₃), 2.63 (ddd, J = 1.4, 3.6, 16.8 Hz, 1H, C3-*H*), 2.92 (dd, J = 14.5, 16.8 Hz, 1H, C3-*H*), 5.39 (dd, J = 3.6, 14.5 Hz, 1H, C2-*H*), 5.53 (dd, J = 1.4, 5.9 Hz, 1H, C5-*H*), 7.19–7.22 (m, 3H, *Ar*), 7.32 (t, J = 7.7 Hz, 1H, *Ar*), 7.48 (d, J = 5.9 Hz, 1H, C6-*H*). Enantiomeric excess of **5c** was determined to be 95% by HPLC with a Chiralcel OD-H column (9:1 hexane/ⁱPrOH, 1.0 mL/min): $t_R = 10.2$ min for major enantiomer; $t_R = 12.4$ min for minor enantiomer. The preferred absolute configuration of **5c** was not determined.

(S)-2-(4-Methoxyphenyl)-2,3-dihydro-4*H*-pyran-4-one (5d).⁵ According to the typical procedure for enantioselective HDA reaction, 5d was prepared from diene 2 (68.2 mg, 0.3 mmol), *p*-anisaldehyde (3d) (61.2 mg, 0.45 mmol), and $Rh_2(S$ -BPTPI)₄·3H₂O (4.30 mg, 0.003 mmol, 1 mol %). The crude product was

purified by column chromatography (silica gel, 4:1 hexane/EtOAc) to provide **5d** (51.4 mg, 84%) as a white solid; mp 50.5–51.5 °C; TLC $R_f = 0.28$ (4:1 hexane/EtOAc); $[\alpha]_D^{23} + 121$ (*c* 1.04, CHCl₃) for 99% ee [lit.,⁵ $[\alpha]_D^{25} - 121$ (*c* 0.397, CHCl₃) for 92% ee of (*R*)-enantiomer]; ¹H NMR (400 MHz, CDCl₃) δ 2.63 (ddd, J = 1.4, 3.2, 17.2 Hz, 1H, C3-*H*), 2.94 (dd, J = 14.5, 17.2 Hz, 1H, C3-*H*), 3.83 (s, 3H, ArOC*H*₃), 5.38 (dd, J = 3.2, 14.5 Hz, 1H, C2-*H*), 5.51 (dd, J = 1.4, 6.3 Hz, 1H, C5-*H*), 6.95 (d, J = 8.6 Hz, 2H, *Ar*), 7.34 (d, J = 8.6 Hz, 2H, *Ar*), 7.46 (d, J = 6.3 Hz, 1H, C6-*H*). Enantiomeric

Me

excess of 5d was determined to be 99% by HPLC with a Chiralcel OD-H column (19:1 hexane/^{*i*}PrOH, 1.0 mL/min): t_R (major) = 24.4 min for (S)-enantiomer; t_R (minor) = 28.0 min for (R)-enantiomer.

2-(4-tert-Butyldimethylsilyloxyphenyl)-2,3-dihydro-4H-pyran-4-one (5e).

According to the typical procedure for enantioselective HDA reaction, 5e was prepared from diene 2 (68.2 mg, 0.3 mmol), 4-tert-butyldimethylsilyloxybenzaldehyde (3e) (106.4 mg, 0.45 mmol), and Rh₂(S-BPTPI)₄·3H₂O (4.30 mg,

0.003 mmol, 1 mol %). The crude product was purified by column chromatography (silica gel, 9:1 hexane/EtOAc) to provide **5e** (66.3 mg, 73%) as a colorless oil; TLC $R_f = 0.31$ (4:1 hexane/EtOAc); $[\alpha]_D^{24}$ +95.4 (c 1.07, CHCl₃) for 98% ee; IR (film) 2955, 1681, 1595, 1513, 1264 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.21 (s, 6H, Si(CH₃)₂), 0.98 (s, 9H, SiC(CH₃)₃), 2.62 (ddd, J = 0.7, 4.5, 6.7 Hz, 1H, C3-*H*), 2.92 (dd, *J* = 4.5 17.2 Hz, 1H, C3-*H*), 5.35 (dd, *J* = 6.7, 17.2 Hz, 1H, C3-*H*), 5.15 (dd, *J* = 0.7, 5.9 Hz, 1H, C5-H), 6.87 (d, J = 5.9 Hz, 1H, C6-H), 7.27 (d, J = 6.8 Hz, 2H, Ar), 7.47 (d, J = 6.8 Hz, 2H, Ar), 6.8 Hz, 2H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ -4.5 (CH₃), 18.1 (C), 25.6 (CH₃), 43.1 (CH₂), 80.9 (CH), 107.2 (CH), 120.3 (CH₂), 127.6 (CH₂), 130.3 (C), 156.2 (C), 163.3 (CH), 192.4 (C); EI-HRMS m/z calcd for C₁₇H₂₄O₃Si (M⁺) 304.14948, found 304.14940. Enantiomeric excess of 5e was determined to be 98% by HPLC with a Chiralcel OD-H column (19:1 hexane/ⁱPrOH, 1.0 mL/min): $t_{\rm R} = 9.3$ min for major enantiomer; $t_{\rm R} = 10.7$ min for minor enantiomer. The preferred absolute configuration of 5e was not determined.

2-(3-Methoxylphenyl)-2.3-dihydro-4H-pyran-4-one (5f).⁴ According to the typical procedure for enantioselective HDA reaction, 5f was prepared from diene 2 (68.2 mg, 0.3 mmol), *m*-anisaldehyde (3f) (61.2 mg, 0.45 mmol), and Rh₂(S-BPTPI)₄·3H₂O (4.30 mg, 0.003 mmol, 1 mol %). The crude product was purified by column chromatography (silica gel, 6:1 hexane/EtOAc) to provide 5f (46.7 mg, 76%) as a colorless oil; TLC $R_f = 0.24$ (4:1 hexane/EtOAc); $[\alpha]_D^{23} + 97.8$ (c 1.19, CHCl₃) for 96% ee [lit.,⁴ $[\alpha]_{D}^{25}$ -85.6 (c 2.230, CHCl₃) for 99.8% ee of **5f**]; ¹H NMR (400 MHz, CDCl₃) δ 2.64 (ddd, J = 1.3, 3.1, 16.7 Hz, 1H, C3-*H*), 2.93 (dd, *J* = 14.5, 16.7 Hz, 1H, C3-*H*), 3.84 (s, 3H, ArOCH₃), 5.40 (dd, *J* = 3.1, 14.5 Hz, 1H, C2-H), 5.53 (dd, J = 1.3, 6.3 Hz, 1H, C5-H), 6.91–6.98 (m, 3H, Ar), 7.33 (dd, J = 7.7, 8.2 Hz, 1H, Ar), 7.49 (d, J = 6.3 Hz, 1H, C6-H). Enantiomeric excess of 5f was determined to be 96% by HPLC with a Chiralcel OD-H column (9:1 hexane/^{*i*}PrOH, 1.0 mL/min): $t_{\rm R} = 17.6$ min for major enantiomer; $t_{\rm R} = 24.6$ min for minor enantiomer. The preferred absolute configuration of

5f was not determined.

2-(3,4-Methylenedioxyphenyl)-2,3-dihydro-4H-pyran-4-one (5g). According to the typical procedure for enantioselective HDA reaction, 5g was prepared from diene 2 (68.2 mg, 0.3 mmol), piperonal (3g) (67.5 mg, 0.45 mmol), and Rh₂(S-BPTPI)₄·3H₂O (4.30 mg, 0.003 mmol, 1 mol %). The crude product was

purified by column chromatography (silica gel, 6:1 hexane/EtOAc) to provide 5g (47.9 mg, 73%) as

OTBS

a white solid; mp 111–112 °C; TLC $R_f = 0.31$ (2:1 hexane/EtOAc); $[\alpha]_D^{21} + 125$ (*c* 1.05, CHCl₃) for 96% ee; IR (KBr) 3079, 2913, 1671, 1594, 1254 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.61 (ddd, J = 1.4, 3.6, 16.8 Hz, 1H, C3-*H*), 2.89 (dd, J = 14.5, 16.8 Hz, 1H, C3-*H*), 5.32 (dd, J = 3.6, 14.5 Hz, 1H, C2-*H*), 5.51 (dd, J = 1.4, 6.3 Hz, 1H, C5-*H*), 6.00 (s, 2H, OCH₂O), 6.81–6.85 (m, 2H, *Ar*), 6.90 (d, J = 1.8 Hz, 1H, *Ar*), 7.45 (d, J = 6.3 Hz, 1H, C6-*H*); ¹³C NMR (100 MHz, CDCl₃) δ 43.2 (CH₂), 80.9 (CH), 101.3 (CH₂), 106.7 (CH), 107.2 (CH), 108.3 (CH), 120.1 (CH), 131.5 (C), 148.0 (C), 163.2 (CH), 192.2 (C); EI-HRMS *m/z* calcd for C₁₂H₁₀O₄ (M⁺) 218.05791, found 218.05799. Enantiomeric excess of **5g** was determined to be 96% by HPLC with a Chiralcel OD-H column (9:1 hexane/^{*i*}PrOH, 1.0 mL/min): *t*_R = 19.3 min for major enantiomer; *t*_R = 23.4 min for minor enantiomer. The preferred absolute configuration of **5g** was not determined. A sample for combustion analysis was obtained by recrystallizations from hexane as colorless needles (99% ee); mp 112.5-113.5 °C; Anal Calcd for C₁₂H₁₀O₄: C, 66.05; H, 4.62. Found: C, 66.13; H, 4.70.

2-(3,5-Dimethoxyphenyl)-2,3-dihydro-4H-pyran-4-one (5h). According to the typical procedure for enantioselective HDA reaction, 5h was prepared from diene OMe 2 (68.2 mg, 0.3 mmol), 3,5-dimethoxybenzaldehyde (3h) (74.7 mg, 0.45 mmol), and Rh₂(S-BPTPI)₄·3H₂O (4.30 mg, 0.003 mmol, 1 mol %). The crude product ÓМе was purified by column chromatography (silica gel, 4:1 hexane/EtOAc) to provide **5h** (52.8 mg, 75%) as a colorless oil; TLC $R_f = 0.31$ (2:1 hexane/EtOAc); $[\alpha]_D^{21}$ +75.9 (*c* 1.11, CHCl₃) for 90% ee; IR (film) 3071, 2939, 1680, 1590, 1273, 1222 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) & 2.65 (ddd, *J* = 1.4, 3.6, 16.8 Hz, 1H, C3-*H*), 2.88 (dd, *J* = 14.5, 16.8 Hz, 1H, C3-*H*), 3.85 (s, 6 H, ArOCH₃), 5.35 (dd, J = 3.6, 14.5 Hz, 1H, C2-H), 5.52 (dd, J = 1.4, 5.9, Hz, 1H, C5-H), 6.46 (t, J = 2.2 Hz, 1 H, Ar), 6.54 (d, J = 2.2 Hz, 2 H, Ar), 7.48 (d, J = 6.9 Hz, 1 H, C6-H);¹³C NMR (100) MHz, CDCl₃) & 43.4 (CH₂), 55.3 (CH₃), 80.9 (CH), 100.4 (CH), 104.0 (CH), 107.3 (CH), 140.0 (C), 161.0 (C), 163.1 (CH), 192.1 (C); EI-HRMS *m/z* calcd for C₁₃H₁₄O₄ (M⁺) 234.08921, found 234.09016. Enantiomeric excess of 5h was determined to be 90% by HPLC with a Chiralcel OD-H column (9:1 hexane/ⁱPrOH, 1.0 mL/min): $t_R = 17.6$ min for major enantiomer; $t_R = 24.3$ min for minor enantiomer. The preferred absolute configuration of **5h** was not determined.

2-(4-Chlorophenyl)-2,3-dihydro-4*H***-pyran-4-one (5i).⁶** According to the typical procedure for enantioselective HDA reaction, **5i** was prepared from diene **2** (68.2 mg, 0.30 mmol), 4-chlorobenzaldehyde (**3i**) (63.2 mg, 0.45 mmol), and $Rh_2(S$ -BPTPI)₄·3H₂O (4.3 mg, 0.003 mmol, 1 mol %). The crude product was purified by column chromatography (silica gel, 4:1 hexane/EtOAc) to provide **5i**

(44.3 mg, 71%) as a white solid; mp 70.0–71.0 °C; TLC $R_f = 0.34$ (2:1 hexane/EtOAc); $[\alpha]_D^{24} + 100$ (*c* 1.33, CHCl₃) for 97% ee [lit.,⁶ $[\alpha]_D^{25}$ –76.3 (*c* 1.17, CHCl₃) for 88% ee of **5i**]; ¹H NMR (400 MHz, CDCl₃) δ 2.65 (dd, J = 3.6, 16.8 Hz, 1H, C3-*H*), 2.86 (dd, J = 14.4, 16.8 Hz, 1H, C3-*H*), 5.41 (dd, J = 3.6, 14.4 Hz, 1H, C2-*H*), 5.53 (d, J = 6.0 Hz, 1H, C5-*H*), 7.33–7.36 (m, 2H, *Ar*), 7.41-7.47 (m, 2H, *Ar*), 7.47 (d, J = 6.0 Hz, 1H, C6-*H*). Enantiomeric excess of **5i** was determined to be 97% by HPLC with a Chiralcel OD-H column (9:1 hexane/^{*i*}PrOH, 1.0 mL/min): $t_R = 14.7$ min for major

enantiomer; $t_{\rm R} = 18.6$ min for minor enantiomer. The preferred absolute configuration of **5i** was not determined.

2-(4-Trifluoromethylphenyl)-2,3-dihydro-4H-pyran-4-one (5j).7 According to

the typical procedure for enantioselective HDA reaction, **5j** was prepared from diene **2** (68.2 mg, 0.3 mmol), 4-trifluoromethylbenzaldehyde (**3j**) (78.3 mg, 0.45 mmol), and $Rh_2(S$ -BPTPI)₄·3H₂O (4.30 mg, 0.003 mmol, 1 mol %). The crude

product was purified by column chromatography (silica gel, 9:1 hexane/EtOAc) to provide **5j** (67.5 mg, 93%) as a white solid; mp 48.0–49.0 °C; TLC $R_f = 0.25$ (2:1 hexane/EtOAc); $[\alpha]_D^{24}$ +50.8 (*c* 1.02, CHCl₃) for 95% ee; [lit.,⁷ $[\alpha]_D^{24}$ +44.4 (*c* 0.630, CHCl₃) for 91% ee of **5j**]; ¹H NMR (400 MHz, CDCl₃) δ 2.68 (ddd, J = 1.4, 3.2, 16.8 Hz, 1H, C3-*H*), 2.87 (dd, J = 14.0, 16.8 Hz, 1H, C3-*H*), 5.50 (dd, J = 3.2, 14.0 Hz, 1H, C2-*H*), 5.57 (dd, J = 1.4, 6.4 Hz, 1H, C5-*H*), 7.51 (d, J = 6.4 Hz, 1H, C6-*H*), 7.52 (d, J = 8.2 Hz, 2H, *Ar*), 7.69 (d, J = 8.2 Hz, 2H, *Ar*). Enantiomeric excess of **5j** was determined to be 95% by HPLC with a Chiralcel OD-H column (9:1 hexane/^{*i*}PrOH, 1.0 mL/min): $t_R = 12.3$ min for major enantiomer; $t_R = 17.1$ min for minor enantiomer. The preferred absolute configuration of **5j** was not determined.

(S)-2-(4-Nitrolphenyl)-2,3--dihydro-4H-pyran-4-one (5k).⁸ According to the

typical procedure for enantioselective HDA reaction, **5k** was prepared from diene **2** (68.2 mg, 0.3 mmol), 4-nitrobenzaldehyde (**3k**) (68.0mg, 0.45 mmol), and $Rh_2(S$ -BPTPI)₄·3H₂O (4.30 mg, 0.003 mmol, 1 mol %). The crude product was

purified by column chromatography (silica gel, 3:1 hexane/EtOAc) to provide **5k** (51.3 mg, 78%) as a pale yellow solid; mp 101–102 °C; TLC $R_f = 0.25$ (2:1 hexane/EtOAc); $[\alpha]_D^{24}$ +58.8 (*c* 1.03, CH₂Cl₂) for 94% ee; [lit.,⁸ $[\alpha]_D$ +59 (*c* 0.39, CH₂Cl₂) for (*S*)-enantiomer]; ¹H NMR (400 MHz, CDCl₃) δ 2.71 (ddd, J = 1.4, 3.6, 16.8 Hz, 1H, C3-*H*), 2.85 (dd, J = 14.0, 16.8 Hz, 1H, C3-*H*), 5.56 (dd, J = 3.6, 14.0 Hz, 1H, C2-*H*), 5.59 (dd, J = 1.4, 6.4 Hz, 1H, C5-*H*), 7.52 (d, J = 6.4 Hz, 1H, C6-*H*), 7.60 (d, J = 6.8 Hz, 2H, *Ar*), 8.30 (d, J = 6.8 Hz, 2H, *Ar*). Enantiomeric excess of **5k** was determined to be 94% by HPLC with a Chiralcel OD-H column (3:1 hexane/ⁱPrOH, 1.0 mL/min): t_R (major) = 20.4 min for (*S*)-enantiomer; t_R (minor) = 30.0 min for (*R*)-enantiomer.

(S)-2-(3-tert-Butyldiphenylsilyloxyprop-1-ynyl)-2,3-dihydro-4H-pyran-4-

one (51).⁹ According to the typical procedure for enantioselective HDA reaction, **51** was prepared from diene **2** (68.2 mg, 0.3 mmol), **4**-*tert*-butyldiphenyl- silyloxy-2-butynal (**31**)⁹ (145.1 mg, 0.45 mmol), and

Rh₂(*S*-BPTPI)₄·3H₂O (4.30 mg, 0.003 mmol, 1 mol %). The crude product was purified by column chromatography (silica gel, 19:1 hexane/EtOAc) to provide **5l** (84.3 mg, 72%) as a pale yellow oil; TLC $R_f = 0.38$ (4:1 hexane/EtOAc); $[\alpha]_D^{20} + 122$ (*c* 1.08, CHCl₃) for 87% ee; [lit.,⁹ $[\alpha]_D + 99.8$ (*c* 3.2, CHCl₃) for 90% ee of (*S*)-enantiomer]; ¹H NMR (400 MHz, CDCl₃) δ 1.05 (s, 9H, SiC(CH₃)₃), 2.64 (s, 1H, C3-*H*), 2.66 (d, *J* = 2.2 Hz, 1H, C3-*H*), 4.36 (d, *J* = 1.4 Hz, 2H, SiOCH₂), 5.14 (dd, *J* = 6.8, 8.2 Hz, 1H, C2-*H*), 5.45 (d, *J* = 6.3 Hz, 1H, C5-*H*), 7.28 (d, *J* = 6.3 Hz, 1H, C6-*H*), 7.38–7.45

(m, 6H, Ar), 7.68–7.70 (m, 4H, Ar).

Determination of Enantiomeric Excess of 51: (2*S*,4*S*)-2-[3-(*tert*-Butyldiphenylsiloxy)prop-1ynyl]-3,4-dihydro-2*H*-pyran-4-ol (6).⁹

Cerium trichloride heptahydrate (80.4 mg, 0.33 mmol) was added to a stirred solution of **51** (84.3 mg, 0.22 mmol) in methanol (1.0 mL) and ethanol (1.0 mL). The mixture was cooled to -78 °C and sodium borohydride (16.7 mg, 0.44 mmol) was added. After stirring for 30 min, the reaction was poured into water (3 mL) and extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine (3 mL) and dried over anhydrous Na₂SO₄. Filtration and evaporation *in vacuo* followed by column chromatography (silica gel, 9:1 toluene/EtOAc) provided **6** (67.4 mg, 80%) as a pale yellow oil. TLC $R_f = 0.33$ (9:1 toluene/EtOAc); $[\alpha]_D^{21} +73.5$ (*c* 1.00, CHCl₃) for 87% ee; [lit., ${}^9 [\alpha]_D^{25} +69.6$ (*c* 1.15, CHCl₃) for 90% ee of **6**]; ¹H NMR (400 MHz, CDCl₃) δ 1.06 (s, 9H, SiC(CH₃)₃), 2.16-2.20 (m, 2H, C3-*H*), 4.12 (dd, *J* = 7.2, 14.5 Hz, 1H, C4-*H*), 4.31 (d, *J* = 1.4 Hz, 2H, SiOCH₂), 4,89 (t, *J* = 4.1 Hz, 1H, C5-*H*), 5.09 (ddd, *J* = 0.9, 4.1, 6.3 Hz, 1H, C2-*H*), 6.39 (dd, *J* = 0.9, 6.3 Hz, 1H, C6-*H*), 7.37–7.44 (m, 6H, *Ar*), 7.68-7.71 (m, 4H, *Ar*). Enantiomeric excess of **6** was determined to be 87% by HPLC with a Chiralcel OD-H column (50:1 hexane/ⁱPrOH, 1.0 mL/min): t_R (major) = 12.5 min for (*S*)-enantiomer; t_R (minor) = 14.9 min for (*R*)-enantiomer.

2-(2-Naphthyl)-2,3-dihydro-4*H***-pyran-4-one (5m).¹⁰** According to the typical procedure for enantioselective HDA reaction, **5m** was prepared from diene **2** (68.2 mg, 0.3 mmol), 2-naphthaldehyde (**3m**) (80.2 mg, 0.45 mmol), and $Rh_2(S$ -BPTPI)₄·3H₂O (4.30 mg, 0.003 mmol, 1 mol %). The crude product was

purified by column chromatography (silica gel, 19:1 hexane/EtOAc) to provide **5m** (59.3 mg, 71%) as a white solid; mp 55.5–56.5 °C; TLC $R_f = 0.28$ (4:1 hexane/EtOAc); $[\alpha]_D^{21}$ +95.8 (*c* 1.03, CHCl₃) for 96% ee; [lit.,¹⁰ $[\alpha]_D^{22}$ –74.2 (*c* 0.708, CHCl₃) for 92.3% ee of **5m**]; ¹H NMR (400 MHz, CDCl₃) δ 2.74 (ddd, J = 1.0, 3.4, 17.1 Hz, 1H, C3-*H*), 3.02 (dd, J = 14.6, 16.1 Hz, 1H, C3-*H*), 5.57 (dd, J = 1.0, 5.9 Hz, 1H, C5-*H*), 5.60 (dd, J = 3.4, 14.6 Hz, 1H, C2-*H*), 7.50–7.54 (m, 4H, *Ar* and C6-*H*), 7.86–7.92 (m, 4H, *Ar*). Enantiomeric excess of **5m** was determined to be 96% by HPLC with a Chiralcel OD-H column (9:1 hexane/^{*i*}PrOH, 1.0 mL/min): $t_R = 24.6$ min for minor enantiomer; $t_R = 41.8$ min for major enantiomer. The preferred absolute configuration of **5m** was not determined.

(S)-2-(2-Furyl)-2,3-dihydro-4*H*-pyran-4-one (5n).¹¹ According to the typical procedure for enantioselective HDA reaction, 5n was prepared from diene 2 (68.2 mg, 0.3 mmol), furfural (3n) (43.3 mg, 0.45 mmol), and $Rh_2(S$ -BPTPI)₄·3H₂O (4.30 mg, 0.003 mmol, 1 mol %). The crude product was purified by column chromatography

(silica gel, 4:1 hexane/EtOAc) to provide **5n** (39.6 mg, 80%) as a white solid; mp 66.0–67.5 °C; TLC $R_f = 0.41$ (2:1 hexane/EtOAc); $[\alpha]_D{}^{21} + 335$ (*c* 1.02, CHCl₃) for 90% ee; [lit.,¹¹ $[\alpha]_D - 255$ (*c* 0.5, CHCl₃) for 67% ee of (*R*)-enantiomer]; ¹H NMR (400 MHz, CDCl₃) δ 2.72 (ddd, J = 0.9, 4.1, 16.7 Hz, 1H, C3-*H*), 3.10 (dd, J = 12.7, 16.7 Hz, 1H, C3-*H*), 5.48 (dd, J = 3.6, 12.7 Hz, 1H, C2-*H*), 5.51 (dd, J = 0.9, 5.9 Hz, 1H, C5-*H*), 6.42 (dd, J = 1.8, 3.2 Hz, 1H, *Ar*), 6.46 (d, J = 3.2 Hz, 1H, *Ar*), 7.38 (d, J = 5.9 Hz, 1H, C6-*H*), 7.48 (d, J = 1.8 Hz, 1H, *Ar*). Enantiomeric excess of **5n** was determined to be 90% by HPLC with a Chiralcel OD-H column (50:1 hexane/ⁱPrOH, 1.0 mL/min): t_R (major) = 24.4 min for (*S*)-enantiomer; t_R (minor) = 26.5 min for (*R*)-enantiomer.

2-(2-Thienyl)-2,3-dihydro-4H-pyran-4-one (50).¹² According to the typical procedure for enantioselective HDA reaction, 50 was prepared from diene 2 (68.2 mg, 2-thiophencarbaldehyde (30) (50.5 0.3 mg, 0.45 mmol), mmol). and Rh₂(S-BPTPI)₄·3H₂O (4.30 mg, 0.003 mmol, 1 mol %). The crude product was purified by column chromatography (silica gel, 4:1 hexane/EtOAc) to provide 50 (38.3 mg, 71%) as a yellow oil; TLC $R_f = 0.38$ (2:1 hexane/EtOAc); $[\alpha]_D^{21} + 248$ (c 1.08, CHCl₃) for 93% ee; [lit.,¹²] $[\alpha]_{\rm D}$ +130 (c 1.03, CHCl₃) for 52% ee of **50**]; ¹H NMR (400 MHz, CDCl₃) δ 2.83 (ddd, J = 0.9, 4.1, 16.8 Hz, 1H, C3-*H*), 3.03 (dd, *J* = 13.1, 16.8 Hz, 1H, C3-*H*), 5.53 (dd, *J* = 0.9, 6.3 Hz, 1H, C5-*H*), 5.68 (dd, J = 4.1, 13.1 Hz, 1H, C2-H), 7.04 (dd, J = 3.6, 5.0 Hz, 1H, Ar), 7.12 (d, J = 3.6 Hz, 1H, Ar), 7.38 (d, J = 5.0 Hz, 1H, Ar), 7.42 (d, J = 6.3 Hz, 1H, C6-H). Enantiomeric excess of 50 was determined to be 93% by HPLC with a Chiralpak AD column (50:1 hexane/ⁱPrOH, 0.7 mL/min): $t_{\rm R}$ = 34.1 min for major enantiomer; $t_{\rm R}$ = 38.1 min for minor enantiomer. The preferred absolute configuration of 50 was not determined.

(S)-2-[(E)-2-Phenylethenyl]-2,3-dihydro-4H-pyran-4-one (5p).¹³ According to the typical procedure for enantioselective HDA reaction, 5p was prepared from diene 2 (68.2 mg, 0.3 mmol), (E)-cinnamaldehyde (3p) (59.4 mg, 0.45 mmol), and $Rh_2(S$ -BPTPI)₄·3H₂O (4.30 mg, 0.003 mmol, 1 mol %). The crude product was

purified by column chromatography (silica gel, 6:1 hexane/EtOAc) to provide **5p** (45.1 mg, 75%) as a white solid; mp 49.0–50.0 °C; TLC $R_f = 0.28$ (4:1 hexane/EtOAc); $[\alpha]_D^{21}$ +198 (*c* 1.04, CH₂Cl₂) for 97% ee; [lit.,¹³ $[\alpha]_D$ –215 (*c* 0.36, CH₂Cl₂) for 99% ee of (*R*)-enantiomer]; ¹H NMR (400 MHz, CDCl₃) δ 2.63 (dd, J = 3.6, 16.8 Hz, 1H, C3-*H*), 2.74 (dd, J = 13.2, 16.8 Hz, 1H, C3-*H*), 5.08 (ddd, J = 3.6, 6.4, 13.2 Hz, 1H, C2-*H*), 5.48 (d, J = 5.5 Hz, 1H, C5-*H*), 6.30 (dd, J = 6.4, 15.8 Hz, 1H, CH=CHPh), 6.73 (d, J = 15.8 Hz, 1H, CH=CHPh), 7.27–7.42 (m, 6H, *Ar* and C6-*H*). Enantiomeric excess of **5p** was determined to be 97% by HPLC with a Chiralcel OD-H column (3:1 hexane/^{*i*}PrOH, 1.0 mL/min): t_R (major) = 12.3 min for (*S*)-enantiomer; t_R (minor) = 23.2 min for (*R*)-enantiomer.

(R)-2-(2-Phenylethyl)-2,3-dihydro-4H-pyran-4-one (5q).¹¹ According to the typical procedure for enantioselective HDA reaction, 5q was prepared from diene [2 (68.2 mg, 0.3 mmol), hydrocinnamaldehyde (3q) (60.3 mg, 0.45 mmol), and

Rh₂(*S*-BPTPI)₄·3H₂O (4.30 mg, 0.003 mmol, 1 mol %). The crude product was purified by column chromatography (silica gel, 4:1 hexane/EtOAc) to provide **5q** (56.2 mg, 93%) as a colorless oil; TLC $R_f = 0.33$ (2:1 hexane/EtOAc); $[\alpha]_D^{21}$ +112.6 (*c* 1.27, CHCl₃) for 99% ee; [lit.,¹¹ $[\alpha]_D^{23}$ -69 (*c* 0.5, CHCl₃) for 69% ee of (*S*)-enantiomer]; ¹H NMR (400 MHz, CDCl₃) δ 1.97 (m, 1H, C*H*HCH₂Ph), 2.16 (m, 1H, C*H*HCH₂Ph), 2.42 (ddd, J = 0.9, 3.7, 16.8 Hz, 1H, C3-*H*), 2.56 (dd, J = 13.1, 16.8 Hz, 1H, C3-*H*), 2.75–2.85 (m, 2H, CH₂CH₂Ph), 4.41 (m, 1H, C2-*H*), 5.41 (dd, J = 1.4, 6.4 Hz, 1H, C5-*H*), 7.18–7.24 (m, 3H *Ar*), 7.29–7.33 (m, 2H, *Ar*), 7.39 (d, J = 6.4 Hz, 1H, C6-*H*). Enantiomeric excess of **5q** was determined to be 99% by HPLC with a Chiralcel OD-H column (3:1 hexane/ⁱPrOH, 1.0 mL/min): t_R (major) = 12.4 min for (*R*)-enantiomer; t_R (minor) = 23.2 min for (*S*)-enantiomer.

2-Pentyl-2,3-dihydro-4*H***-pyran-4-one (5r).³** According to the typical procedure for enantioselective HDA reaction, **5r** was prepared from diene **2** (68.2 mg, 0.3 mmol), hexanal (**3r**) (45.0 mg, 0.45 mmol), and Rh₂(*S*-BPTPI)₄·3H₂O (4.30 mg,

0.003 mmol, 1 mol %). The crude product was purified by column chromatography (silica gel, 19:1 hexane/EtOAc) to provide **5r** (40.4 mg, 80%) as a colorless oil; TLC $R_f = 0.45$ (4:1 hexane/EtOAc); $[\alpha]_D^{21} + 130$ (*c* 1.04, CHCl₃) for 97% ee; [lit., ${}^3 [\alpha]_D^{19} - 131.4$ (*c* 0.54, CHCl₃) for 83% ee of **5r**]; ¹H NMR (400 MHz, CDCl₃) δ 0.90 (t, J = 6.8 Hz, 3H, CH₃), 1.30–1.49 (m, 6H, CH₂CH₂CH₂), 1.65 (m, 1H, C2-CHH) 1.80 (m, 1H, C2-CHH), 2.42 (ddd, J = 1.3, 4.5, 16.8 Hz, 1H, C3-H), 2.52 (dd, J = 13.1, 16.8 Hz, 1H, C3-H), 4.41 (ddt, J = 4.5, 9.1, 13.1 Hz, 1H, C2-H), 5.40 (dd, J = 0.9, 5.9 Hz, 1H, C5-H), 7.36 (d, J = 5.9 Hz, 1H, C6-H). Enantiomeric excess of **5r** was determined to be 97% by HPLC with a Chiralcel OD-H column (9:1 hexane/^{*i*}PrOH, 0.3 mL/min): $t_R = 18.6$ min for minor enantiomer; $t_R = 19.7$ min for major enantiomer. The preferred absolute configuration of **5r** was not determined.

(*R*)-2-(2-*tert*-Butyldimethylsilyloxyethyl)-2,3-dihydro-4*H*-pyran-4-one (5s).¹⁴

According to the typical procedure for enantioselective HDA reaction, **5s** was prepared from diene **2** (68.2 mg, 0.3 mmol), 2-*tert*-butyldimethylsilyloxypropanal **(3s)** (84.7 mg, 0.45 mmol), and Rh₂(S-BPTPI)₄·3H₂O (4.30 mg, 0.003 mmol, 1 mol %). The crude product was purified by column chromatography (silica gel, 9:1 hexane/EtOAc) to provide **5s** (56.9 mg, 74%) as a colorless oil; TLC $R_f = 0.45$ (4:1 hexane/EtOAc); $[\alpha]_D^{21}$ +82.2 (*c* 1.08, CH₂Cl₂) for 98% ee; [lit.,¹⁴ $[\alpha]_D^{20}$ -70.0 (*c* 1.00, CH₂Cl₂) for (*S*)-enantiomer]; ¹H NMR (400 MHz, CDCl₃) δ 0.04 (s, 6H, Si(CH₃)₂), 0.87 (s, 9H, SiC(CH₃)₃), 1.82 (ddt, *J* = 5.0, 8.6, 17.2, 1H, C2-CH*H*), 2.00 (ddt, *J* = 5.0, 8.6, 14.0 Hz, 1H, C2-CH*H*), 2.46 (dd, *J* = 4.1, 16.8 Hz, 1H, C3-*H*), 2.55 (dd, *J* = 13.1, 16.8 Hz, 1H, C3-*H*), 3.71–3.83 (m, 2H, CH₂OTBS), 5.40 (d, *J* = 5.9 Hz, 1H, C5-*H*), 7.34 (d, *J* = 5.9 Hz, 1H, C6-*H*). Enantiomeric excess of **5s** was determined to be 98% by HPLC with a Chiralcel OD-H column (50:1 hexane/^{*i*}PrOH, 1.0 mL/min): t_R (major) = 7.9 min for (*R*)-enantiomer; t_R (minor) = 8.6 min for (*S*)-enantiomer.

(S)-2-Cyclohexyl-2,3-dihydro-4*H*-pyran-4-one (5t).¹¹ According to the typical

procedure for enantioselective HDA reaction, **5t** was prepared from diene **2** (68.2 mg, 0.3 mmol), cyclohexanecarbaldehyde (**3t**) (50.4 mg, 0.45 mmol), and Rh₂(*S*-BPTPI)₄·3H₂O (4.30 mg, 0.003 mmol, 1 mol %). The crude product was purified by column chromatography (silica gel, 9:1 hexane/EtOAc) to provide **5t** (38.3 mg, 71%) as a colorless oil; TLC R_f = 0.45 (4:1 hexane/EtOAc); $[\alpha]_D^{21}$ +130 (*c* 1.04, CHCl₃) for 95% ee; [lit.,¹¹ $[\alpha]_D^{23}$ –159 (*c* 0.5, CHCl₃) for 76% ee of (*R*)-enantiomer]; ¹H NMR (500 MHz, CDCl₃) δ 1.05–1.30 (m, 6H, C₆H₁₁), 1.67–1.90 (m, 5H, C₆H₁₁), 2.38 (ddd, *J* = 1.1, 3.4, 16.6 Hz, 1H, C3-*H*), 2.55 (dd, *J* = 14.4, 16.6 Hz, 1H, C3-*H*), 4.17 (ddd, *J* = 2.3, 3.5, 14.4 Hz, 1H, C2-*H*), 5.39 (dd, *J* = 1.1, 6.3 Hz, 1H, C5-*H*), 7.38 (d, *J* = 6.3 Hz, 1H, C6-*H*). Enantiomeric excess of **5t** was determined to be 95% by HPLC with a Chiralcel OD-H column (19:1 hexane/^{*i*}PrOH, 0.3 mL/min): t_R (major) = 26.1 min for (*S*)-enantiomer; t_R (minor) = 29.1 min for (*R*)-enantiomer.

2-(1-Adamantylmethyl)-2,3-dihydro-4*H***-pyran-4-one (5u).** According to the typical procedure for enantioselective HDA reaction, **5u** was prepared from diene **2** (68.2 mg, 0.3 mmol), 1-adamantylacetaldehyde (**3u**) (80.2 mg, 0.45 mmol), and Rh₂(*S*-BPTPI)₄·3H₂O (4.30 mg, 0.003 mmol, 1 mol %). The crude product was

purified by column chromatography (silica gel, 19:1 hexane/EtOAc) to provide **5u** (59.3 mg, 73%) as a white solid; mp 55.5–56.5 °C; TLC $R_f = 0.28$ (4:1 hexane/EtOAc); $[\alpha]_D^{21}$ +64.0 (*c* 1.03, CHCl₃) for 90% ee; IR (KBr) 2903, 1676, 1593, 1274 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.27 (dd, J = 3.2, 5.4 Hz, 1H, C2-CH*H*), 1.52-1.76 (m, 13H, Ad-*H* and C2-C*H*H), 1.97 (s, 3H, Ad-*H*), 2.35 (ddd, J = 1.3, 3.6, 16.7 Hz, 1H, C3-*H*), 2.53 (dd, J = 13.5, 16.7 Hz, 1H, C3-*H*), 4.60 (ddt, J = 3.6, 8.1, 13.5 Hz, 1H, C2-*H*), 5.40 (dd, J = 1.3, 5.9 Hz, 1H, C5-*H*), 7.34 (d, J = 5.9 Hz, 1H, C6-*H*); ¹³C NMR (100 MHz, CDCl₃) δ 28.5 (CH), 32.0 (C), 36.8 (CH₂), 42.6 (CH₂), 43.6 (CH₂), 48.8 (CH₂), 76.2 (CH), 106.8 (CH), 163.3 (CH), 193.0 (C); EI-HRMS *m/z* calcd for C₁₆H₂₂O₂ (M⁺) 246.16198, found 246.16181. Enantiomeric excess of **5u** was determined to be 90% by HPLC with a Chiralcel OD-H column (200:1 hexane/^{*I*}PrOH, 1.0 mL/min): $t_R = 24.1$ min for minor enantiomer; $t_R = 30.3$ min for major enantiomer. The preferred absolute configuration of **5u** was not determined. A sample for combustion analysis was obtained by recrystallizations from hexane as colorless needles (99% ee); mp 59.0–60.0 °C; Anal Calcd for C₁₆H₂₂O₂: C, 78.01; H, 9.00. Found: C, 78.00; H 9.17.

NMR Analysis of 4a.¹⁵

A solution of diene **2** (11.4 mg, 0.05 mmol) in CD_2Cl_2 (0.05 mL) was added to a solution of benzaldehyde (**3a**) (10.6 mg, 0.10 mmol) and $Rh_2(S$ -BPTPI)₄·3H₂O (0.72 mg, 0.0005 mmol, 1 mol %) in CD_2Cl_2 (0.05 mL) at 0 °C. After stirring for 1 h, the reaction mixture was diluted with CD_2Cl_2 (0.4 mL). ¹H NMR showed exclusive formation of **4a**; ¹H NMR (400 MHz, CD_2Cl_2) δ 0.17

(s, 3H, SiC*H*₃), 0.19 (s, 3H, SiC*H*₃), 0.92 (s, 9H, SiC(C*H*₃)₃), 2.15 (ddd, J = 2.3, 3.5, 16.4 Hz, 1H, C3-*H*), 2.41 (ddd, J = 1.6, 10.4, 16.4 Hz, 1H, C3-*H*), 2.61 (s, 6H, N(C*H*₃)₂), 4.61 (dd, J = 3.5, 10.4 Hz, 1H, C2-*H*), 4.81 (dd, J = 1.6, 1.8 Hz, 1H, C5-*H*), 4.95 (dd, J = 1.8, 2.3 Hz, 1H, C6-*H*), 7.31–7.39 (m, 5H, *Ar*). In order to assign the stereochemistry at C2 and C6, NOE studies were performed on **4a**. Irradiation of C2-H showed NOE with C6-H (6.3%). Additionally, irradiation of C6-H exhibited NOE with the C2-H (8.0%). These data revealed *cis* relationship between C2-H and C6-H.

Preparation of (*E*)-5-*tert*-Butyldimethylsilyloxy-1-(*N*,*N*-dimethylamino)-5-phenyl-1-penten-3-one (7).

A solution of diene **2** (68.2 mg, 0.30 mmol) in CH₂Cl₂ (0.2 mL) was added to a solution of benzaldehyde (**3a**) (47.7 mg, 0.45 mmol) and Rh₂(*S*-BPTPI)₄·3H₂O (4.30 mg, 0.003 mmol, 1 mol %) in CH₂Cl₂ (0.4 mL) at -40 °C. The reaction mixture was stirred for 2 h and then diluted with CH₂Cl₂ (1.2 mL). The whole mixture was treated with 10% solution of TFA in THF (0.45 mL). After stirring for 24 h, the reaction was quenched with saturated NaHCO₃ (3 mL) and extracted with EtOAc (2 x 10 mL). The combined organic layers were washed with water (3 mL) and brine (2 x 3 mL), and dried over anhydrous Na₂SO₄. Filtration and evaporation *in vacuo* furnished the crude product, which was purified by column chromatography (silica gel, 1:1 hexane/EtOAc) to provide 7 (54.7 mg, 55%) as a pale yellow oil; TLC $R_f = 0.48$ (1:3 hexane/EtOAc); [α] $_D^{20}$ -111 (*c* 1.02, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ -0.22 (s, 3H, SiCH₃), -0.07 (s, 3H, SiCH₃), 0.76 (s, 9H, SiC(CH₃)₃), 2.42 (dd, *J* = 4.1, 13.6 Hz, 1H, C4-*H*), 2.61–2.82 (m, 4H, C4-*H*, NCH₃), 2.97 (br, 3H, NCH₃), 4.96 (d, *J* = 13.2 Hz, C2-*H*), 5.13 (dd, *J* =4.1, 8.6 Hz, C5-*H*), 7.15 (m, 1H, *Ar*), 7.20–7.24 (m, 2H, *Ar*), 7.29–7.31 (m, 2H, *Ar*), 7.39 (d, *J* = 13.2, 1H, C1-*H*).

A mixture of 7 (20.0 mg, 0.06 mmol) and $Rh_2(S$ -BPTPI)₄·3H₂O (0.86 mg, 0.0006 mmol, 1 mol %) in CH₂Cl₂ (0.4 mL) was stirred at 0 °C for 12 h, but no detectable peaks of the cyclized product (**4a** or **5a**) were observed.

References

- 1) S. A. Kozmin, S. He and V. H. Rawal, Org. Synth., 2002, 78, 152.
- 2) M. Bednarski and S. Danishefsky, J. Am. Chem. Soc., 1986, 108, 7060.
- 3) Y. Yamashita, S. Saito, H. Ishitani and S. Kobayashi, Org. Lett., 2002, 4, 1221.
- 4) J. Long, J. Hu, X. Shen, B. Ji and K. Ding, J. Am. Chem. Soc., 2002, 124, 10.
- 5) J. Mihara, K. Aikawa, T. Uchida, R. Irie and T. Katsuki, Heterocycles, 2001, 54, 395.
- 6) K. Aikawa, R. Irie and T. Katsuki, Tetrahedron, 2001, 57, 845.
- 7) S. Kezuka, T. Mita, N. Ohtsuki, T. Ikeno and T. Yamada, *Bull. Chem. Soc. Jpn.*, 2001, 74, 1333.

S10

- 8) R. F. Lowe and R. J. Stoodley, *Tetrahedron Lett.*, 1994, **35**, 6351.
- 9) A. Boyer, G. E. Veitch, E. Beckmann and S. V. Ley, Angew. Chem., Int. Ed., 2009, 48, 1317.
- 10) H. Furuno, T. Hayano, T. Kambara, Y. Sugimoto, T. Hanamoto, Y. Tanaka, Y. Z. Jin, T. Kagawa and J. Inanaga, *Tetrahedron*, 2003, **59**, 10509.
- 11) E. J. Corey, C. L. Cywin and T. D. Roper, Tetrahedron Lett., 1992, 33, 6907.
- 12) A. Zulauf, M. Mellah, R. Guillot and E. Schulz, Eur. J. Org. Chem., 2008, 2118.
- 13) S. E. Schaus, J. Brånalt and E. N. Jacobsen, J. Org. Chem., 1998, 63, 403.
- 14) A. B. Smith, III, R. J. Fox and J. A. Vanecko, Org. Lett., 2005, 7, 3099.
- 15) Y. Huang and V. H. Rawal, Org. Lett., 2000, 2, 3321.

Copies of ¹H/¹³C NMR spectra

Copies of Chromatogram

5a

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	13.38	2836312	98.92
2	16.02	30925	1.08

5a (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	13.38	841208	50.03
2	15.98	840110	49.97

5b

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	10.84	5718572	98.98
2	12.50	58926	1.02

5b (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	11.25	2657864	50.01
2	12.98	2657006	49.99

5c

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	10.20	2698561	97.50
2	12.42	69203	2.50

5c (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1 .	10.68	1968148	50.05
2	13.04	1964131	49.95

5d

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	24.35	2002734	99.46
2	28.00	10892	0.54

5d (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	24.42	936347	50.23
2	28.08	927834	49.77

5e

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	9.28	13434523	98.87
2	10.72	153518	1.13

5e (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	9.40	419920	50.35
2	10.83	413938	49.65

5f

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	17.61	4068653	97.75
2	24.62	93543	2.25

5f (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	17.54	1708413	50.07
2	24.42	1703726	49.93

5g

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	19.34	7914760	98.02
2	23.43	159489	1.98

5g (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	19.15	1087198	50.02
2	23.23	1086320	49.98

5h

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	17.64	1881568	94.95
2	24.31	100071	5.05

5h (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	17.53	513447	50.12
2	23.98	510887	49.88

5i

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	14.73	7304830	98.65
2	18.58	100264	1.35

5i (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	14.86	2006011	49.92
2	18.64	2012464	50.08

5j

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	12.26	8000145	97.27
2	17.12	224876	2.73

5i	(race	ma	te)
- 1	tace	an a	<i>ue</i> /

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	12.23	4845107	50.01
2	17.04	4842498	49.99

5k

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	20.42	2433829	97.21
2	29.96	698763	2.79

5k (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
. 1	20.40	5342988	49.95
2	29.40	5353856	50.05

6

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	12.45	4910883	93.47
2	14.93	343034	6.53

6 (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	12.81	101227	50.20
2	15.20	100414	49.80

5m

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	24.59	7790089	98.19
2	41.84	143395	1.81

5m(racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	24.03	311989	49.91
2	40.43	313069	50.09

5n

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	24.43	153324	4.73
2	26.50	3088074	95.27

5n (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	25.14	1370819	49.88
2	27.38	1377353	50.12

50

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	39.08	312658	3.51
2	43.83	8600748	96.49

50 (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	39.87	3358083	49.62
2	44.94	3409195	50.38

5p

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	12.34	7244612	98.72
2	23.23	93917	1.28

5p (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	12.63	256094	50.17
2	24.37	254267	49.83

5q

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	12.38	5376813	99.28
2	23.19	38906	0.72

5q (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	11.70	24537247	49.86
2	22.23	24673748	50.14 .

5r

Peak No.	Time (min)	Area [m V. Sec]	Area %
1 1	18.58	19350232	98.54
2	19.74	286326	1.46

5r (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	18.88	4995612	49.77
2	20.23	5041790	50.23

5s

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	7.93	7882415	99.05
2	8.62	75289	0.95

5s (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	7.98	1904967	49.92
2	8.78	1910097	50.08

5t

Peak No.	Time (min)	Area [m V. Sec]	Area %
. 1	26.10	7109642	97.33
2	29.13	195250	2.67

5t (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	25.97	8839714	50.00
2	28.81	8838594	50.00

5u

Peak No.	Time (min)	Area [m V. Sec]	Area %	
1	24.14	321841	4.80	
2	30.28	6386333	95.20	

5u (racemate)

Peak No.	Time (min)	Area [m V. Sec]	Area %
1	23.80	115704	49.68
2	29.63	117183	50.32